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We'll talk about some very basi
 inverse problems. While theexamples aren't very hard, they make us aware of some 
om-mon diÆ
ulties. Our examples will 
ome from ODE and PDEproblems
• Pressure Model
• Population Model
• Hyperboli
 PDE

• Paraboli
 PDE

• Ellipti
 PDE 2
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Inverse problems ask the following:Can we, given some pres
ribed output, determine properties ofthe map M and or of the input x?
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Inverse problems naturally o

ur in many �elds:

• Geology ( material properties, domain re
overy),

• E
ology (parameter estimation,... ),
• Medi
ine (parameter estimation, tomography)

• inverse s
attering (ie a
ousti
 obsta
le analysis, material prop-erties, non-destru
tive testing)
• Others .... 4



Magneti
 Resonan
e Image (MRI)
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Ele
tri
 Capa
itan
e Tomography (ECT)
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Ele
tri
al Impeden
e Tomography, part I (EIT)
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Ele
tri
al Impeden
e Tomography, part II (EIT)
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Tomography
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Domain Re
overy
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Ray Tra
ing
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Seismi
 Tomography Image
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Most inverse problems share the feature being not well-posed.Well-posedness is a 
on
ept developed by Hadamard (in the early1900's).A well-posed problem in one in whi
h:there exists a unique solution that depends 
ontinuously onthe data.

13



We'll 
onsider several examples that might be 
lassi�ed as fol-lows:
• Missing parameter -
• Missing domain -
• Missing initial/boundary 
onditions -
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A Pressure Example
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Suppose that the rate of 
hange of pressure with respe
t todepth in a 
olumn of 
uid is 
onstant, and denote the pressureat the surfa
e by β. Writing this as an initial value problem , wehave
dP

dz

= α, P(0) = β.In the dire
t problem, we 
onsider α and β known, and ask to�nd P(z). Then
P(z) = αz + β.
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In the inverse problem, α and β are unknown, and we are giventhe data points {(z1, P1), ..., (zn, Pn)}.We 
ould determine the 
oeÆ
ients by solving the system







z1 1... ...
zn 1







[

α
β

] = 





P1...

Pn





This inverse solution requires a little more work...
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The a

ura
y of the inverse solution depends on several 
ompo-nents.
• Ill-posedness physi
ally inherent in system (Condition num-ber)

• Stability of inversion s
heme
• The data

These are in general diÆ
ult questions to answer.
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A Problem in Population
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Consider the exponential growth equation

d

dt
u(t) = r(t)u(t)Given initial population u0 and growth rate r(t), �nd u(t). Thesolution:

u(t) = u0 exp(∫ t0 r(s) ds

)

This pro
ess is relatively stable.
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Inverse Problem -Can we �nd r(t) given some measured u(t)?

r(t) = 1
u

du

dt

= d

dt

(lnu)

If there is error, the derivative might blow up. Small perturba-tions in measured output 
an result in large perturbations of thegrowth fun
tion. It's an ill-posed problem.
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Hyperboli
 Problems
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The prototype hyperboli
 equation is the wave equation. TheCau
hy problem for the general wave equation is

∂ttu(x, t) = ∇ · (σ2∇u(x, t))

u(x,0) = f(x)

∂tu(x,0) = g(x)
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In 1d, for �xed wave speed, an exa
t solution is given by D'Alembert'sformula
u(x, t) = 12 (f(x − σt) + f(x+ σt)) ...+ 12σ

∫ x+σt

x−σt
g(s) dsassuming f ∈ C2(R) and g ∈ C1(R).Resulting waves will have smooth trailing edges.
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Tomography is a term whi
h refers to the re
overy of internalinformation from external measurement. Imagine an experimentin whi
h an explosion is triggered. The vibrations are felt atdistant points at future times. These a
ousti
 vibrations 
an bemodeled with the generalized 3d wave equation.

∂ttu(x, t) = ∇ · (σ2∇u(x, t))

u(x,0) = f(x),
∂tu(x,0) = g(x),

in whi
h the speed σ is spatially dependent.

25



If we for
e f(x) = δ(x), the dira
 delta fun
tion, we 
an drawthe 
hara
teristi
s in spa
e time:
t1

σ1 σ σ2 3

x x x2 31

Space

2

t3

time
t
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Measuring the arrival time of the plane wave and 
al
ulating thedistan
e of travel allows the 
onstru
tion of the linear system







x1 0 0

x1 x2 − x1 0
x1 x2 − x1 x3 − x2













σ1

σ2

σ3







= 





t1

t2

t3





whi
h results in
σ1 = t1/x1,

σ2 = (t2 − t1)/(x2 − x1),
σ3 = (t3 − t2)/(x3 − x2).
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Domain Re
overyA
ousti
 s
attering problem.
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Re
all that we 
an model the a
ousti
 wave in a isotropi
 ho-mogeneous medium in Rn, n = 2,3 using the wave equation

∂ttU − σ2∇U = 0.Assuming a solution of the form U(x, t) = u(x)e−iωt, the waveequation redu
es to the Helmholtz equation

∇u − k2u = 0where k = ω/σ. The soft body dire
t s
attering problem is to�nd u = ui+us, where ui is the in
ident wave and us the s
atteredwave, su
h that u satis�es the BVP
∇u(x)− k2u(x) = 0 x ∈ Rn − D

u(x) = 0 x ∈ ∂Dwhere D is the a
ousti
 obstru
tion. 29



Inverse a
ousti
 obsta
le problem: Use a given far �eld pattern

u∞ of a s
attered wave us and one or more in
oming plane waves

ui to determine the lo
ation and shape of the obstru
tion D.
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Paraboli
 Example
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Consider the following initial boundary value problem in the quar-ter plane:
∂tu = α2∂xxu, 0 < x < 1,0 < t

u(0, t) = g(t) 0 < t
u(x,0) = f(x) 0 < x < ∞
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time
t

space x

t xxu =     uα2

Standard Dire
t problem: Given α, f(x) and/or g(t) and u0, �nd

u(x, t).

33



Sin
e the HE is linear, we 
an split into two separate problems.Let u = v+w, where v satis�es the forward heat equation (FHE)

∂tv = α2∂xxv, 0 < x,0 < t
v(0, t) = 0 0 < t
v(x,0) = f(x) 0 < x < ∞and w satis�es the sideways heat equation (SHE)

∂tw = α2∂xxw, 0 < x,0 < t
w(0, t) = g(t) 0 < t
w(x,0) = 0 0 < x < ∞

34



First, 
onsider the FHE. A Fourier transform with respe
t to xyields
V ′(t) = −α2ξ2V (t), x ∈ R, t > 0

V (0) = F

Inverting this (assuming α2t > 0), we see that the solution isa 
onvolution of the initial 
ondition f(x) and the fundamentalsolution K(x, t), where
K(x, t) = 12α

√
πt

exp(−x24α2t)then

v(x, t) = ∫

f(s)K(x − s, t)ds
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Some Inverse Problems:The Ba
kward heat equation
∂τu(x, t) = −α2∂xxu, x ∈ R, τ ∈ [0, T ℄

u(x, T) = f(x) x ∈ R

The (Inverse) Sideways Heat Equation
∂tw = α2∂xxw, 0 < x,0 < t

w(1, t) = g(t) 0 < t
w(x,0) = 0
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Both 
onsidered ill-posed. A plot of the Forward Heat EquationKernel: α2 = 1.
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The kernel for the Sideways Heat Equation: α2 = 1.
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Consider the kernel of the SHE, limited to x >= 3/5.
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An Ellipti
 Example
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The prototypi
al forward ellipti
 problem is Lapla
e's equation,given by
∇ · (σ∇u(x)) = 0 x ∈ 
over some domain 
 and various side 
onditions.
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Consider the problem for whi
h the parameter σ is unknown,

∇ · (σ(x, y)∇u(x, y)) = 0 0 < x, y < 1

u(x,0) = f(x) x ∈ �1

σ(x, y)∂yu(x,0) = j(x) x ∈ �2

u(x, y) = 0 x, y ∈ �3,for whi
h data measurements are made on the surfa
e (�1∪�2),

u(x,0) = F(x) x ∈ �2

σ(x, y)∂yu(x,0) = J(x) x ∈ �1
42



Fundamental solution for 
onstant σ
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Here, a problem with spatially dependent 
ondu
tivity has beensimulated using Femlab.
3Γ2Γ1Γ

4

Cell
1

3

2
Cell

Cell

Cell

u=+1 u=-1

Flux = 0

u=0

u=0 u=0
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σ = 10 in top 
ell.
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σ = 10 in bottom 
ell.
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Plot of 
urrent as measured on the surfa
e.
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Plot of 
urrent 
ux as measured on the surfa
e.
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Inverse problems typi
ally attempt to answer spe
i�
 questions,but rarely pres
ribe the setting for the problem. The 
hallenge isto �nd a formulation of the problem that balan
es experimentalfeasiblity with information. This balan
e is hard to a
hieve.

Existence Uniqueness
Problem

Experiment

Formulation

Analysis of the dire
t problem is often the �rst step in inverseresear
h. 49



3D Ultrasound
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