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We'll talk about some very basi inverse problems. While theexamples aren't very hard, they make us aware of some om-mon diÆulties. Our examples will ome from ODE and PDEproblems
• Pressure Model
• Population Model
• Hyperboli PDE

• Paraboli PDE

• Ellipti PDE 2
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Inverse problems ask the following:Can we, given some presribed output, determine properties ofthe map M and or of the input x?
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Inverse problems naturally our in many �elds:

• Geology ( material properties, domain reovery),

• Eology (parameter estimation,... ),
• Mediine (parameter estimation, tomography)

• inverse sattering (ie aousti obstale analysis, material prop-erties, non-destrutive testing)
• Others .... 4



Magneti Resonane Image (MRI)
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Eletri Capaitane Tomography (ECT)
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Eletrial Impedene Tomography, part I (EIT)
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Eletrial Impedene Tomography, part II (EIT)
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Tomography
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Domain Reovery
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Ray Traing

11



Seismi Tomography Image

12



Most inverse problems share the feature being not well-posed.Well-posedness is a onept developed by Hadamard (in the early1900's).A well-posed problem in one in whih:there exists a unique solution that depends ontinuously onthe data.
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We'll onsider several examples that might be lassi�ed as fol-lows:
• Missing parameter -
• Missing domain -
• Missing initial/boundary onditions -
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A Pressure Example
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Suppose that the rate of hange of pressure with respet todepth in a olumn of uid is onstant, and denote the pressureat the surfae by β. Writing this as an initial value problem , wehave
dP

dz

= α, P(0) = β.In the diret problem, we onsider α and β known, and ask to�nd P(z). Then
P(z) = αz + β.
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In the inverse problem, α and β are unknown, and we are giventhe data points {(z1, P1), ..., (zn, Pn)}.We ould determine the oeÆients by solving the system







z1 1... ...
zn 1







[

α
β

] = 





P1...

Pn





This inverse solution requires a little more work...
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The auray of the inverse solution depends on several ompo-nents.
• Ill-posedness physially inherent in system (Condition num-ber)

• Stability of inversion sheme
• The data

These are in general diÆult questions to answer.
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A Problem in Population
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Consider the exponential growth equation

d

dt
u(t) = r(t)u(t)Given initial population u0 and growth rate r(t), �nd u(t). Thesolution:

u(t) = u0 exp(∫ t0 r(s) ds

)

This proess is relatively stable.
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Inverse Problem -Can we �nd r(t) given some measured u(t)?

r(t) = 1
u

du

dt

= d

dt

(lnu)

If there is error, the derivative might blow up. Small perturba-tions in measured output an result in large perturbations of thegrowth funtion. It's an ill-posed problem.
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Hyperboli Problems
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The prototype hyperboli equation is the wave equation. TheCauhy problem for the general wave equation is

∂ttu(x, t) = ∇ · (σ2∇u(x, t))

u(x,0) = f(x)

∂tu(x,0) = g(x)
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In 1d, for �xed wave speed, an exat solution is given by D'Alembert'sformula
u(x, t) = 12 (f(x − σt) + f(x+ σt)) ...+ 12σ

∫ x+σt

x−σt
g(s) dsassuming f ∈ C2(R) and g ∈ C1(R).Resulting waves will have smooth trailing edges.
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Tomography is a term whih refers to the reovery of internalinformation from external measurement. Imagine an experimentin whih an explosion is triggered. The vibrations are felt atdistant points at future times. These aousti vibrations an bemodeled with the generalized 3d wave equation.

∂ttu(x, t) = ∇ · (σ2∇u(x, t))

u(x,0) = f(x),
∂tu(x,0) = g(x),

in whih the speed σ is spatially dependent.
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If we fore f(x) = δ(x), the dira delta funtion, we an drawthe harateristis in spae time:
t1

σ1 σ σ2 3

x x x2 31

Space

2

t3

time
t
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Measuring the arrival time of the plane wave and alulating thedistane of travel allows the onstrution of the linear system







x1 0 0

x1 x2 − x1 0
x1 x2 − x1 x3 − x2













σ1

σ2

σ3







= 





t1

t2

t3





whih results in
σ1 = t1/x1,

σ2 = (t2 − t1)/(x2 − x1),
σ3 = (t3 − t2)/(x3 − x2).
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Domain ReoveryAousti sattering problem.
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Reall that we an model the aousti wave in a isotropi ho-mogeneous medium in Rn, n = 2,3 using the wave equation

∂ttU − σ2∇U = 0.Assuming a solution of the form U(x, t) = u(x)e−iωt, the waveequation redues to the Helmholtz equation

∇u − k2u = 0where k = ω/σ. The soft body diret sattering problem is to�nd u = ui+us, where ui is the inident wave and us the satteredwave, suh that u satis�es the BVP
∇u(x)− k2u(x) = 0 x ∈ Rn − D

u(x) = 0 x ∈ ∂Dwhere D is the aousti obstrution. 29



Inverse aousti obstale problem: Use a given far �eld pattern

u∞ of a sattered wave us and one or more inoming plane waves

ui to determine the loation and shape of the obstrution D.
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Paraboli Example
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Consider the following initial boundary value problem in the quar-ter plane:
∂tu = α2∂xxu, 0 < x < 1,0 < t

u(0, t) = g(t) 0 < t
u(x,0) = f(x) 0 < x < ∞
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time
t

space x

t xxu =     uα2

Standard Diret problem: Given α, f(x) and/or g(t) and u0, �nd

u(x, t).
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Sine the HE is linear, we an split into two separate problems.Let u = v+w, where v satis�es the forward heat equation (FHE)

∂tv = α2∂xxv, 0 < x,0 < t
v(0, t) = 0 0 < t
v(x,0) = f(x) 0 < x < ∞and w satis�es the sideways heat equation (SHE)

∂tw = α2∂xxw, 0 < x,0 < t
w(0, t) = g(t) 0 < t
w(x,0) = 0 0 < x < ∞
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First, onsider the FHE. A Fourier transform with respet to xyields
V ′(t) = −α2ξ2V (t), x ∈ R, t > 0

V (0) = F

Inverting this (assuming α2t > 0), we see that the solution isa onvolution of the initial ondition f(x) and the fundamentalsolution K(x, t), where
K(x, t) = 12α

√
πt

exp(−x24α2t)then

v(x, t) = ∫

f(s)K(x − s, t)ds
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Some Inverse Problems:The Bakward heat equation
∂τu(x, t) = −α2∂xxu, x ∈ R, τ ∈ [0, T ℄

u(x, T) = f(x) x ∈ R

The (Inverse) Sideways Heat Equation
∂tw = α2∂xxw, 0 < x,0 < t

w(1, t) = g(t) 0 < t
w(x,0) = 0
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Both onsidered ill-posed. A plot of the Forward Heat EquationKernel: α2 = 1.
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The kernel for the Sideways Heat Equation: α2 = 1.
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Consider the kernel of the SHE, limited to x >= 3/5.
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An Ellipti Example
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The prototypial forward ellipti problem is Laplae's equation,given by
∇ · (σ∇u(x)) = 0 x ∈ 
over some domain 
 and various side onditions.
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Consider the problem for whih the parameter σ is unknown,

∇ · (σ(x, y)∇u(x, y)) = 0 0 < x, y < 1

u(x,0) = f(x) x ∈ �1

σ(x, y)∂yu(x,0) = j(x) x ∈ �2

u(x, y) = 0 x, y ∈ �3,for whih data measurements are made on the surfae (�1∪�2),

u(x,0) = F(x) x ∈ �2

σ(x, y)∂yu(x,0) = J(x) x ∈ �1
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Fundamental solution for onstant σ
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Here, a problem with spatially dependent ondutivity has beensimulated using Femlab.
3Γ2Γ1Γ

4
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σ = 10 in top ell.
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σ = 10 in bottom ell.
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Plot of urrent as measured on the surfae.
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Plot of urrent ux as measured on the surfae.
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Inverse problems typially attempt to answer spei� questions,but rarely presribe the setting for the problem. The hallenge isto �nd a formulation of the problem that balanes experimentalfeasiblity with information. This balane is hard to ahieve.

Existence Uniqueness
Problem

Experiment

Formulation

Analysis of the diret problem is often the �rst step in inverseresearh. 49



3D Ultrasound
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