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We'll talk about some very basic inverse problems. While the
examples aren’'t very hard, they make us aware of some com-
mon difficulties. Our examples will come from ODE and PDE
problems

e Pressure Model

e Population Model

e Hyperbolic PDE

e Parabolic PDE

e Elliptic PDE
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Inverse problems ask the following:
Can we, given some prescribed output, determine properties of
the map M and or of the input =7



Inverse problems naturally occur in many fields:

e Geology ( material properties, domain recovery),

e Ecology (parameter estimation,... ),

e Medicine (parameter estimation, tomography)

e inverse scattering (ie acoustic obstacle analysis, material prop-
erties, non-destructive testing)

e Others ....



Magnetic Resonance Image (MRI)




Electric Capacitance Tomography (ECT)




Electrical Impedence Tomography, part I (EIT)

Figure AL The two-dimensional phantom thomx with pink agar hongs, blee agar
heart and bleck skin in saline, The clectrodies are stainless steel, 254 x 254 em. Thie
risistivity of the heart is E50 olim-cm, and that of the hangs is 1000 ohme-cm,



Electrical Impedence Tomography, part II (EIT)




Tomography




Domain Recovery
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Ray Tracing
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Seismic Tomography Image
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Most inverse problems share the feature being not well-posed.
Well-posedness is a concept developed by Hadamard (in the early
1900's).

A well-posed problem in one in which:

there exists a unique solution that depends continuously on
the data.
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We'll consider several examples that might be classified as fol-
lows:

e Missing parameter -

e Missing domain -

e Missing initial/boundary conditions -
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A Pressure Example
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Suppose that the rate of change of pressure with respect to
depth in a column of fluid is constant, and denote the pressure
at the surface by 3. Writing this as an initial value problem , we
have

arP

=
In the direct problem, we consider a« and @ known, and ask to
find P(z). Then

«, P(0) = 3.

P(z) = az + 3.
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In the inverse problem, a and S are unknown, and we are given
the data points {(z1, P1), ..., (zn, Pn)}.

We could determine the coefficients by solving the system
2:1 1 o] Py
P g

This inverse solution requires a little more work...

Zn 1_
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The accuracy of the inverse solution depends on several compo-
nents.

e Ill-posedness physically inherent in system (Condition num-
ber)

e Stability of inversion scheme

e [ he data

These are in general difficult questions to answer.
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A Problem in Population
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Consider the exponential growth equation

d
au(t) = r(t)u(t)

Given initial population ug and growth rate »(t), find u(¢). The
solution:

uw(t) = ug exp (/Otr(s) ds)

This process is relatively stable.
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Inverse Problem -

Can we find r(t) given some measured u(t)?

1du

d
r®) =g T

If there is error, the derivative might blow up. Small perturba-
tions in measured output can result in large perturbations of the
growth function. It's an ill-posed problem.
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Hyperbolic Problems
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The prototype hyperbolic equation is the wave equation. The
Cauchy problem for the general wave equation is

Opu(x,t) =V - (e°Vu(x,t))

u(x,0) = f(x)
Opu(x,0) = g(x)
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In 1d, for fixed wave speed, an exact solution is given by D'Alembert’s
formula

u(x,t) = %(f(a: —ot) + f(x + ot)) ...

1 x+ot
+ / g(s) ds

20 Jx—ot

assuming f € C?(R) and g € C1(R).

Resulting waves will have smooth trailing edges.
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Tomography is a term which refers to the recovery of internal
information from external measurement. Imagine an experiment
in which an explosion is triggered. The vibrations are felt at
distant points at future times. These acoustic vibrations can be
modeled with the generalized 3d wave equation.

Apu(x,t) = V - (02 Vu(x,t))
u(x,0) = f(x),
8t’LL(X, O) — g(X)7

in which the speed o is spatially dependent.
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If we force f(x) = 6(x), the dirac delta function, we can draw
the characteristics in space time:

o Pl ----- % ' ------ 9 -
time

IR S
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Measuring the arrival time of the plane wave and calculating the
distance of travel allows the construction of the linear system

T1 O 0 o1 t1
r1 To — Xq 0 oo| = |t
|1 Tp —T1 3 —T2| |03] 13

which results in
o1 =1t1/%1,
oo = (to —t1)/(x2 — x1),

03 = (t3 — t2)/(x3 — z2).
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Domain Recovery

Acoustic scattering problem.
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Recall that we can model the acoustic wave in a isotropic ho-
mogeneous medium in R"®, n = 2,3 using the wave equation

OuU — 02VU = 0.
Assuming a solution of the form U(zx,t) = u(x)e ™!, the wave
equation reduces to the Helmholtz equation
Vu — k2u =0

where kK = w/o. The soft body direct scattering problem is to
find v = u*4u®, where u' is the incident wave and u® the scattered
wave, such that u satisfies the BVP

Vu(x) —k2u(x) = 0 xeR*"—D
u(zr) = 0 xe€ 0D

where D is the acoustic obstruction.
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Inverse acoustic obstacle problem: Use a given far field pattern
uso Of @ scattered wave u® and one or more incoming plane waves
u® to determine the location and shape of the obstruction D.
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Parabolic Example
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Consider the following initial boundary value problem in the quar-
ter plane:

u(0,t) = (t) 0O<t
uw(x,0) = f(x) O<x< oo
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space X

Standard Direct problem: Given «, f(x) and/or g(t) and ug, find
u(x,t).
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Since the HE is linear, we can split into two separate problems.
Let u = v+w, where v satisfies the forward heat equation (FHE)

0w = a?0ppv, 0<z,0<t
v(0,t) = O 0<t
v(z,0) = f(x) O<x < oo

and w satisfies the sideways heat equation (SHE)

Orw = aldppw, 0<xz,0<t
w(0,t) = ¢g(¢t) 0<t
w(x,0) = 0 O<z<oo
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First, consider the FHE. A Fourier transform with respect to =z
yields

VI(t) = —a2?V(t), z€R,t>0
V()= F

Inverting this (assuming a2t > 0), we see that the solution is
a convolution of the initial condition f(x) and the fundamental
solution K(xz,t), where

1 _x2
K(x,t) = exp
’ 20/ 7t 42t

then
v(z,t) = /f(s)K(a: — s,t)ds
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Some Inverse Problems:

The Backward heat equation

Oru(z,t) = —a?0ppu, = €R,7€[0,T]
w(z,T) = f(x) r € R

The (Inverse) Sideways Heat Equation

Orw = a28xgpw, O<x,0<t
w(l,t) = g(t) 0<t
w(z,0) = 0
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Both considered ill-posed. A plot of the Forward Heat Equation
Kernel: a2 =
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Kernel for Forward Heat Equation
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The kernel for the Sideways Heat Equation: a2 = 1.

Kernel for Sideways Heat Equation
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Consider the kernel of the SHE, limited to =z >= 3/5.

Kernel for Sideways Heat Equation
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An Elliptic Example
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The prototypical forward elliptic problem is Laplace’'s equation,
given by

V- (cVu(x)) =0 xe

over some domain €2 and various side conditions.
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Consider the problem for which the parameter o is unknown,

0 O<z,y<1

u(z,0) = f(z) zel
o(z,y)oyu(z,0) = j(z) zely
u(z,y) = 0 =z,yels,

for which data measurements are made on the surface (IF'{uUl»),

w(z,0) = F(x) z€ls
o(x,y)Oyu(z,0) = J(z) xz el
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Fundamental solution for constant o
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Here, a problem with spatially dependent conductivity has been
simulated using Femlab.
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o= 10 in top cell.

Contour: u (u) Arrow: [culx (cuix),culy (culy)]
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o= 10 in bottom cell.

Contour: U Arrow: FLUX FIELD
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Plot of current as measured on the surface.

u on surface {(at y=1)
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Plot of current flux as measured on the surface.

FLUX
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Flux on surface (at y=1)
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Inverse problems typically attempt to answer specific questions,
but rarely prescribe the setting for the problem. The challenge is
to find a formulation of the problem that balances experimental
feasiblity with information. This balance is hard to achieve.

/D

Problem
Formulation

</

Analysis of the direct problem is often the first step in inverse
research.
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3D Ultrasound
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