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Abstract

We exploit the power of an iterative symbolic computation to efficiently
compute the Lyapunov spectrum of highly nonlinear systems of ODEs.
The technique constructs a truncated Taylor series representation (a jet of
degree k) at a generic point of the separation of the flow. An approximate
spectrum is then recovered and analyzed. Several examples will be
discussed. (circa Sept 2, 2021)
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Abstract

We exploit the power of an iterative symbolic computation to explore
ODEs. We will talk about solutions, stability, error bounds, convergence,
and control. The methods and theory are accessible to undergraduate
students at the end of a first course in ODE, and the techniques are useful
extensions that can be applied to power series solutions, and applicable to
a wide range complex questions. (July 1, 2022)
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y ′ = αy 2

We’ll begin with a toy problem...

y ′ = αy2 y(0) = y0

An analytic solution to this one is easy:

y(t) = − y0
αy0t − 1
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y ′ = αy 2 : series solution?

What happens if we try (formal, for now) series?

Let

y(t) =
∞∑
k=0

ykt
k

then
∞∑
k=0

(k + 1)yk+1t
k = α

∞∑
k=0

i+j=k∑
i ,j≥0

yiyj

 tk

so we equate coefficients to get

yk+1 =
α

k + 1

∑
i+j=k

yiyj
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y ′ = αy 2: series solution?

Or, with MAPLE:

> ODE1 := diff(y(t),t) = alpha*y(t)^2;

> IC := y(0) = y0;

> y1 := dsolve({ODE1,IC},y(t))

and

> Y1 := dsolve({ODE1,IC},y(t),series);

Y1 := 1+2*alpha*t*y0+3*alpha^2*y0^2*t^2+...
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y ′ = αy 2: sensitivity?

Consider the ODE system

ẋ = F(x) with x(0) = x0.

and let
φ(t; x0)

represent the flow of this system through the initial point x0.

Suppose we want to understand the divergence of two nearby trajectories:

φ(t; y0)− φ(t; x0) ≈ Dxφ(t; x0)(y0 − x0),

but Dxφ(t; x0) is usually hard to compute!
https://en.wikipedia.org/wiki/Lyapunov_exponent
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Aside: The Lyapunov exponent

For any curve of initial conditions xs , define

v(t) = ∂sφ(t; xs)
∣∣
s=0

,

then v(t) satisfies the first variation equation

v̇ = DxF(φ(t; x)
∣∣
x0
v0 with v0 = ∂sxs .

The Lyapunov exponent captures the (exponential) growth rate of v(t).
The largest Lyapunov exponent, λ, can be computed as:

||v(t)|| ≈ exp(λ · t)||v0||,

More generally, the full Lyapunov spectrum might be computed, but this is
more difficult.
Can power series help?
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y ′ = α(t)y

With Maple

>> restart:

>> Order := 4:

>> alpha := t -> sum(a[k]*t^k,k=0..Order):

>> GROWTH := diff(y(t),t) = alpha(t)*y(t):

>> Yseries := dsolve({GROWTH,y(0)=y[0]},y(t),type=’series’);

y (t) =y0 + a0 y0t +
(
1/2 a0

2 y0 + 1/2 a1 y0
)
t2+(

1/6 a0
3 y0 + 1/2 a1 a0 y0 + 1/3 a2 y0

)
t3 + O

(
t4
)

which we can check

>> SOLN1 := y[0] * exp(int(alpha(tau),tau=0..t));

>> check := taylor(SOLN1,t=0) - Yseries;
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Why?

From

y (t) =y0 + a0 y0t +
(
1/2 a0

2 y0 + 1/2 a1 y0
)
t2+(

1/6 a0
3 y0 + 1/2 a1 a0 y0 + 1/3 a2 y0

)
t3 + O

(
t4
)

we can find

∂y0y(t) =1 + a0t +
(
1/2 a0

2 + 1/2 a1
)
t2+(

1/6 a0
3 + 1/2 a1 a0 + 1/3 a2

)
t3 + O

(
t4
)

Sensitivity to initial conditions!

Which we can easily compute...

>> Yy0 := taylor(diff(Yseries,y_0),t=0);
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The Lyapunov exponent

We have

∂y0y (t) =
∞∑
n=0

fn(y0, . . . , yn−1)tn

and so λ(t) is easy to compute:
>> simplify(taylor(ln(Yy0))/t);

λ(t) = a0 + 1/2a1t + 1/3a2t
2 + O(t3)

For our problem, a direct calculation verifies this:

1

t

∫ t

0
α(τ)dτ).

This time average is the mean coefficient on [0, t]
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y ′ = 2 ∗ y 2, y(0) = 1: error?

What about the error?

> alpha := 2; y0 := 1; plot(abs(Y1-y1),t=0..0.5);

Can we quantify this?

Let’s take a little diversion...
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y ′ = αym

The solution to the constant coefficient nonlinear IVODE

y ′ = αym y(0) = y0

is messy:

y(t) =
(
(α− αm)t + y1−m0

)−(m−1)−1

.

But the ratio of y
y ′ isn’t!

y

y ′
=

(α− αm)t + y1−m0

α

and so
y ′(t) =

α

(α− αm)t + y1−m0︸ ︷︷ ︸
K(t)

y(t),

a non-constant coefficient LINEAR ode.
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y ′ = αym: important aside

So
y ′(t) =

α

(α− αtm)t + y1−m0︸ ︷︷ ︸
K(t)

y(t),

has solution

y(t) = y0exp

(∫ t

0
K (τ)dτ

)
or, via series,

Yk+1 =
α(1 + (m − 1)k)

y1−m0 (k + 1)
Yk
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y ′ = αym: important aside

From

Yk+1 =
α(1 + (m − 1)k)

y1−m0 (k + 1)
Yk

and for m ≥ 2,

Yk+1 ≤ (m − 1)|y0|m−1Yk := C∞Yk .

This leads directly to a geometric series bounding y(t):

y(t) ≤ |y0|
1− C∞

= |y0|
∑
k=0

(C∞t)k

Now for the bound...
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y ′ = αy 2: back to error

From

y(t) ≤ |y0|
1− C∞

= |y0|
∑
k=0

(C∞t)k

we see that the absolute error is

|Y 1− y1| ≤ |y0|
∞∑

k=n+1

C∞|t|k ≤
|y0|Cn+1

∞
1− C∞|t|

where C∞ = |y0α|.
An ERROR bound!
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y ′ = 2 ∗ y 2, y(0) = 1: error plots

> ee := abs(Y1-y1);

> m := 2; Cinf := y0*alpha;

> EE := N -> abs(y0)*(Cinf*t)^(N+1)/( 1 - Cinf*abs(t));

> plot({ee,EE(5)},t=0..0.3);

> plot({ee-EE(5)},t=0..0.2);

Great!
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y ′ = 2y 2, y(0) = 1: radius of convergence?

>plot({ee-EE(5)},t=0..0.48);

Hmmmm....


y(t) = − y0

αy0t − 1
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y ′ = 2y 2, y(0) = 1: radius of convergence?
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y ′ = αy 2: radius of convergence

But what if we only have this form?

> Y20 := dsolve({ODE1,IC},y(t),series);

Y20 := 1+2*alpha*t*y0+3*alpha^2*y0^2*t^2+...

Approximate using the root or ratio test. Or calculate the Padé
approximant.
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y ′ = 2y 2, y(0) = 1: radius of convergence?

> Order := 20: alpha := 2; y0 := 1;

> Y20 := rhs(dsolve({ODE1,IC},y(t),series)):

> Ycoeff := [seq(coeff(convert(Y20,polynom),t,i),i=1..20)];

> RatioT := i -> abs(a[i+1]/a[i]): RootT := i -> abs(a[i])^(1/i):

> RootEst := [seq(1/RootT(i),i=1..Order)]: RatioEst := [seq(1/RatioT(i),i=1..Order)]:

> plot ....
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y ′ = αy 2: for control?

Suppose we want to control

y ′ = αy2 y(0) = y(0)

so that y(T ) = β.
If we apply frictional damping to the system

y ′ − αy2 = u,

where u = kty ′, can we drive the system to the desired state?
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y ′ = αy 2: for control?

Let’s try to drive the system so that Y (0.2) = 3.2.

> ODE := diff(y(t),t) = alpha*y(t)^2 + k*t*diff(y(t),t);

> IC := y(0) = 2;

> Y := convert(rhs(dsolve({ODE1,IC},y(t),series)),polynom);

> kvals := solve(subs(t=0.2,Y)=3.2);

-2.051118481+8.300750459*I, -.6504685102 , ...

> subs({k=kvals[2],t=0.2},Y);

3.200000000
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y ′ = αy 2 + kty ′

It looks like we can.

> kvals := solve(subs(t=0.2,Y)=3.2);

-2.051118481+8.300750459*I, -.6504685102 , ...

>plot({Yk(0),Yk(kvals[2]),Yk(kvals[3])},t=0..0.2);

Repeated application allows trajectory control, and our error bound still
applies to the forced system!
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Torsional Deformation of Blatz-Ko material?

Torsional deformation of a compressible elastic solid cylinder can be
modelled as:

y ′′

[
1 +

√
2

y ′2

(
x

yy ′

)√2−1]
=

[
√

2

(
x

yy ′

)√2
+ 1

] [
y

x2
− y ′

x

]
+
π2

16
y

A solution to arbitrary order can also be computed via power series.

Just
introduce auxiliary variables to generate a polynomial system. All the same
ideas apply!
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Six degree-of-freedom flight mechanics

from: http:

//plantarchy.us/katko/projects/dope/DSTO-TR-0931-PR.pdf

A solution to arbitrary order can be computed via power series.

Just
introduce auxiliary variables to generate a polynomial system. All the same
ideas apply!
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Conclusions

We considered a toy problem already cast as a polynomial ode. Extension
and application of these methods will rely on the use of auxiliary variables
to build a system of polynomial IVODEs. Once the system is polynomial,
series methods allow remarkably direct analysis.

Analytic approximation of solution

Stability and sensitivity

Easy error BOUND

Radius of Convergence estimate

Simple control?

These techniques apply to a broad range of highly nonlinear ODE.
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?

Thanks!

Questions?
thelwerj@jmu.edu

http://educ.jmu.edu/~sochacjs/PSM.html
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