The Restricted Hill's Problem (and the Power Series Method) JMM 2024 in San Francisco

Roger Thelwell[∗] & Stefano Colafranceschi

James Madison University & Eastern Mennonite University

January 6, 2024

4 D F

Outline

3 [Three Body](#page-24-0)

Þ \mathcal{A} .

K ロ ▶ K 何 ▶

重

 298

Abstract

We present an approach to recast non-polynomial IVODEs into polynomial differential systems which exploit auxiliary variables, and provide several examples using the Power Series Method (PSM). We review an a priori error bound for the solution to IVODES of polynomial form. We apply this approach to Hill's Restricted Three Body Problem of celestial mechanics to demonstrate that PSM is effectively symplectic. If we have time, we will offer some novel conservation expressions for this system, and a general approach to generate others.

 QQ

イロト イ押 トイヨ トイヨ トー

Act I

Act I: Power series

重

 299

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{B}$

$$
y'=\alpha y^2
$$

We start with a toy problem...

$$
y' = \alpha y^2 \qquad y(0) = y_0
$$

重

 298

イロト イ部 トイヨ トイヨト

$$
y'=\alpha y^2
$$

We start with a toy problem...

$$
y' = \alpha y^2 \qquad y(0) = y_0
$$

An analytic solution to this one is easy:

$$
y(t) = -\frac{y_0}{\alpha y_0 t - 1}
$$

Þ

 \mathcal{A} . \sim

← ロ → → ← 何 →

÷,

 299

$y'=\alpha y^2$: series solution

What happens if we try (formal, for now) series?

ミドメミドー

ALC

K ロ ▶ K 何 ▶

D.

$y'=\alpha y^2$: series solution

What happens if we try (formal, for now) series? Let

$$
y(t) = \sum_{k=0}^{\infty} y_k t^k
$$

then

$$
\sum_{k=0}^{\infty} (k+1) y_{k+1} t^k = \alpha \sum_{k=0}^{\infty} \left(\sum_{i,j\geq 0}^{i+j=k} y_i y_j \right) t^k
$$

so we equate coefficients to get

$$
y_{k+1} = \frac{\alpha}{k+1} \sum_{i+j=k} y_i y_j
$$

4 D F → 冊 → 医单头 人 E

$$
y' = \alpha y^2
$$
: Maple

Or, with MAPLE:

> ODE1 := diff(y(t),t) = alpha*y(t)^2; $> IC := y(0) = y0;$ $> y1 := dsolve({ODE1, IC}, y(t))$

and

> Y1 := $dsolve({ODE1, IC}, y(t), series);$ $Y1 := 1+2*alpha*x0+3*alpha^2*y0^2*y0^2*t^2+...$

 Ω

KID KA KA SA KE KI E

$\mathsf{y}'=\alpha\mathsf{y}^2$: Error

What about the error?

> alpha := 1; $y0 := 2$; $plot(abs(Y1-y1), t=0..0.5)$;

Can we quantify this?

4 **D**

Þ

$\mathsf{y}'=\alpha\mathsf{y}^2$: Error

What about the error?

> alpha := 1; $y0 := 2$; $plot(abs(Y1-y1), t=0..0.5)$;

Can we quantify this? Let's take a little diversion...

 200

The solution to the constant coefficient nonlinear IVODE

$$
y' = \alpha y^m \qquad y(0) = y_0
$$

is messy:

$$
y(t) = ((\alpha - \alpha m)t + y_0^{1-m})^{-(m-1)^{-1}}
$$

D.

 QQ

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{B}$

.

The solution to the constant coefficient nonlinear IVODE

$$
y' = \alpha y^m \qquad y(0) = y_0
$$

is messy:

$$
y(t) = ((\alpha - \alpha m)t + y_0^{1-m})^{-(m-1)^{-1}}
$$

But the ratio $\frac{y'}{y}$ $\frac{y}{y}$ isn't!

э

 200

 $\mathbf{A} = \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \mathbf{B} + \mathbf{A}$

.

The solution to the constant coefficient nonlinear IVODE

$$
y' = \alpha y^m \qquad y(0) = y_0
$$

is messy:

$$
y(t) = ((\alpha - \alpha m)t + y_0^{1-m})^{-(m-1)^{-1}}
$$

But the ratio $\frac{y'}{y}$ isn't!

$$
\frac{y'}{y} = \frac{\alpha}{(\alpha - \alpha m)t + y_0^{1-m}}
$$

and we see that

$$
y'(t) = \underbrace{\frac{\alpha}{(\alpha - \alpha m)t + y_0^{1-m}} y(t)}_{K(t)},
$$

is a non-constant coefficient LINEAR ode.

イロト イ押ト イヨト イヨトー

D.

 200

.

So

$$
y'(t) = \underbrace{\frac{\alpha}{(\alpha - \alpha tm)t + y_0^{1-m}} y(t)}_{K(t)},
$$

has solution

$$
y(t) = y_0 \exp\left(\int_0^t K(\tau) d\tau\right)
$$

or, via series,

$$
Y_{k+1} = \frac{\alpha(1 + (m-1)k)}{y_0^{1-m}(k+1)} Y_k
$$

重

 298

イロト イ部 トイヨ トイヨト

From

$$
Y_{k+1} = \frac{\alpha(1 + (m-1)k)}{y_0^{1-m}(k+1)} Y_k
$$

and for $m > 2$,

$$
Y_{k+1} \leq \alpha(m-1)|y_0|^{m-1}Y_k \leq \alpha C_{\infty}Y_k.
$$

This leads directly to a geometric series bounding $y(t)$:

$$
y(t) \le \frac{|y_0 \alpha|}{1 - C_\infty t} = |y_0 \alpha| \sum_{k=0} (C_\infty t)^k
$$

Now for the bound...

 \equiv

 R

K ロ ト K 何 ト K ヨ ト K ヨ ト

 $y'=\alpha y^2$: back to error

From

$$
y(t) \le \frac{|y_0 \alpha|}{1 - C_\infty t} = |y_0 \alpha| \sum_{k=0} (C_\infty t)^k
$$

we see that the absolute error is

$$
|Y1-y1|\leq |y_0\alpha|\sum_{k=n+1}^\infty C_\infty|t|^k\leq \frac{|y_0\alpha|C_\infty^{n+1}}{1-C_\infty|t|}
$$

where $C_{\infty} = |y_0 \alpha|$. An ERROR bound!

E

 QQ

イロト イ押ト イヨト イヨト

 $y'=\alpha y^2$: error plots

> ee := abs(Y1-y1); > m := 2; Cinf := y0*alpha; > EE := N -> abs(y0)*(Cinf*t)^(N+1)/(1 - Cinf*abs(t)); > plot({ee,EE(5)},t=0..0.3); > plot({ee-EE(5)},t=0..0.2);

Э× 重

 \leftarrow \Box ← ● п.

 299

 $y'=2y^2, \quad y(0)=1$: radius of convergence?

>plot({ee-EE(5)},t=0..0.48);

Hmmmm....

4 D F ∢母 E

 $y'=2y^2, \quad y(0)=1$: radius of convergence?

>plot({ee-EE(5)},t=0..0.48);

4 D F ∢ nD QQ

E

 $y'=2y^2, \quad y(0)=1$: radius of convergence?

>plot({ee-EE(5)},t=0..0.48);

4 0 F → 何 ▶ ミドメミドー

E

 QQQ

 $y'=\alpha y^2$: radius of convergence

But what if we only have this form?

> $Y20 := dsolve({ODE1, IC}, y(t), series);$ Y20 := 1+2*alpha*t*y0+3*alpha^2*y0^2*t^2+...

4 0 F → 何 ▶ Ω

 $y'=\alpha y^2$: radius of convergence

But what if we only have this form?

> $Y20 := dsolve({ODE1, IC}, y(t), series);$ $Y20 := 1+2*alpha*b$ ha*t*y0+3*alpha^2*y0^2*t^2+...

Approximate using the root or ratio test. Or calculate the Padé approximant.

4 0 F

$y' = 2y^2, y(0) = 1$: radius of convergence?

- > Order := 20: alpha := 2; y0 := 1;
- $>$ Y20 := rhs(dsolve({ODE1,IC}, $y(t)$, series)):
- $>$ Ycoeff := [seq(coeff(convert(Y20,polynom),t,i),i=1..20)];
- > RatioT := i -> abs(a[i+1]/a[i]): RootT := i -> abs(a[i])^(1,
- > RootEst := $[seq(1/RootT(i), i=1..Order)]$: RatioEst := $[seq(1, 1)]$
- > plot

Act II

Act II₂ Hill's Lunar 3 body

thelwerj@jmu.edu (JMU & EMU) [Hill's Problem](#page-0-0) January 6, 2024 17 / 50

э

- 4 国家 4 国家

∢ □ ▶ ⊣ 倒 ▶

The Sun, the Earth, and the Moon

- 1000 B.C.E Babylonians
- 200 B.C.E Greeks
- (1543-1609) Copernicus to Kepler

E

 QQ

÷

 \sim

4 0 F ∢母

The Sun, the Earth, and the Moon

- 1000 B.C.E Babylonians
- 200 B.C.E Greeks
- (1543-1609) Copernicus to Kepler
- 1687 Newton (1.66)

4 0 F ∢母 ⋍ **IN** э

The Sun, the Earth, and the Moon

- 1000 B.C.E Babylonians
- 200 B.C.E Greeks
- (1543-1609) Copernicus to Kepler
- 1687 Newton (1.66)

 200

The Sun, the Earth, and the Moon

- 1000 B.C.E Babylonians
- 200 B.C.F. Greeks
- (1543-1609) Copernicus to Kepler
- 1687 Newton (I.66)
- 1740-55 Clairaut, Euler, and d'Alembert
- **1767 Euler**
- 1860-67 Delaunay
- 1877-1878 Hill

4 D F

э

Hill's Lunar equations

Hill's 1877 "On the Part of the Motion of the Lunar Perigee which is a Function of the Mean Motions of the Sun and the Moon" Key features:

- \bullet earth-centric coordinate frame
- sun massive, infinitely far away.
- moon as point mass in rotating coordinate, one axis towards sun.
- **•** looked for a periodic orbit of a perturbed system
- not a systematic perturbation theory, but thoughtful expansion of variables

For much more detail, see survey by: Martin C. Gutzwiller, Moon-Earth-Sun: The oldest three-body problem, Rev. Mod. Phys. 1998 [\[4\]](#page-53-0)

G.

 QQ

イロト イ母 トイヨ トイヨ トー

Hill's Lunar equations

From [Waldvogel, 1997] in geocentric cartesian (x, y) :

$$
\ddot{x} - 2\dot{y} = 3x - xr^{-3}
$$
 (1)

$$
\ddot{y} + 2\dot{x} = +yr^{-3} \tag{2}
$$

Or, in conjugate momenta (q, p) , with $q_1 = x, q_2 = y, p_1 = \dot{q}_1 - q_2$, and $p_2 = \dot{q}_2 + q_1$,

$$
\dot{q}_1 = p_1 + q_2 \tag{3}
$$

$$
\dot{q}_2 = p_2 - q_1 \tag{4}
$$

$$
\dot{p}_1 = p_2 + 2q_1 - q_1 r^{-3} \tag{5}
$$

$$
\dot{p}_2 = -p_1 - q_2 - q_2 r^{-3}, \qquad (6)
$$

 QQ

イロト イ押 トイヨ トイヨ トーヨ

Hill's Lunar equations

From [Waldvogel, 1997] in geocentric cartesian (x, y) :

$$
\ddot{x} - 2\dot{y} = 3x - xr^{-3}
$$
 (1)

$$
\ddot{y} + 2\dot{x} = +yr^{-3} \tag{2}
$$

Or, in conjugate momenta (q, p) , with $q_1 = x, q_2 = v, p_1 = \dot{q}_1 - q_2$, and $p_2 = \dot{q}_2 + q_1$,

$$
\dot{q}_1 = p_1 + q_2 \tag{3}
$$

$$
\dot{q}_2 = p_2 - q_1 \tag{4}
$$

$$
\dot{p}_1 = p_2 + 2q_1 - q_1 r^{-3} \tag{5}
$$

$$
\dot{p}_2 = -p_1 - q_2 - q_2 r^{-3}, \qquad (6)
$$

with a conserved quantity $h = \frac{1}{2} (\dot{x}^2 + \dot{y}^2) - \frac{3}{2} x^2 - \frac{1}{r}, \quad r = \sqrt{x^2 + y^2}$ or $H(q, p) = \frac{1}{2}(p_1^2 + p_2^2) + p_1q_2 - p_2q_1 - q_1^2 + \frac{1}{2}q_2^2 - \frac{1}{r}, \quad r = \sqrt{q_1^2 + q_2^2}.$

イロト イ母 トイミト イヨト ニヨー りんぴ

Symplectic integrator?

Powerful symplectic tools are available, such as:

- Martin Hairer's GNI package [\(link here\)](http://www.unige.ch/~hairer/software.html)
- SymInt package [\(link here \)](https://www.mathworks.com/matlabcentral/fileexchange/7686-symplectic-integrators)
- Velocity Verlet [\(one link here\)](https://people.sc.fsu.edu/~jburkardt/m_src/velocity_verlet/velocity_verlet.html)

4 D F

- 1 冊 →

э

Symplectic integrator?

Powerful symplectic tools are available, such as:

- Martin Hairer's GNI package [\(link here\)](http://www.unige.ch/~hairer/software.html)
- SymInt package [\(link here \)](https://www.mathworks.com/matlabcentral/fileexchange/7686-symplectic-integrators)
- Velocity Verlet [\(one link here\)](https://people.sc.fsu.edu/~jburkardt/m_src/velocity_verlet/velocity_verlet.html)

Unfortunately, these general integrators are for canonical second order system. They require that

$$
\vec{U}^{\prime\prime}=F(t,\vec{U}),
$$

or

$$
\vec{U}' = \vec{V}
$$
\n
$$
\vec{V}' = F(t, \vec{U}),
$$
\n(3)

4 0 F

where U is position and V is velocity.

 QQQ

Symplectic integrator?

Powerful symplectic tools are available, such as:

- Martin Hairer's GNI package [\(link here\)](http://www.unige.ch/~hairer/software.html)
- SymInt package [\(link here \)](https://www.mathworks.com/matlabcentral/fileexchange/7686-symplectic-integrators)
- Velocity Verlet [\(one link here\)](https://people.sc.fsu.edu/~jburkardt/m_src/velocity_verlet/velocity_verlet.html)

Unfortunately, these general integrators are for canonical second order system. They require that

$$
\vec{U}^{\prime\prime}=F(t,\vec{U}),
$$

or

$$
\vec{U}' = \vec{V}
$$
\n
$$
\vec{V}' = F(t, \vec{U}),
$$
\n(3)

(□) (_□) (

where U is position and V is velocity. We have a velocity-dependent force.

What to do? Several authors have constructed special formulations to handle non-symmetry in Hills three body, which include:

- [Waldvogel, 1997] 'Symplectic Integrator's for Hill's Lunar Problem'
- [Quinn, 2010] 'A Symplectic Integrator for Hill's Equations'

Both of these require gymnastics: finding a canonical transform to build new Hamiltonian $K(u, v) = K_1(u, v) + K_2(u)$, such that K_1 and K_2 are both integrable.

◂**◻▸ ◂⁄** ▸

÷.
Hill's Lunar equations: Symplectic integrator?

Power series?

 \sim

K ロ ▶ K 何 ▶

D.

Hill's Lunar equations: Symplectic integrator?

Power series?

Power series methods may provide effectively symplectic integration of conservative systems through a (numerically) faithful algorithm.

4 D F

Hill's Lunar equations: Symplectic integrator?

Power series?

Power series methods may provide *effectively symplectic* integration of conservative systems through a (numerically) faithful algorithm.

```
function dYdt = fhill3 xy(t, Y)
```

```
recipr3 = 1/(Y(1)^2 + Y(3)^2)(3/2);
```

```
dYdt = \int Y(2):
    2*Y(4) + 3*Y(1) - Y(1)*recipr3;Y(4):
    -2*Y(2) - Y(3)*recipr3;
```
end

KED KARD KED KED E LORO

Hill's Lunar equations: PSM (x,y)

```
>> analyze(fhill3_xy,0,[1;0;0;1])
                    Series recur *=CP u1 = y1 * y1u1 = y1 * y1 u1 = y1 * y1<br>
u2 = y3 * y3 u2 = y3 * y3u2 = y3 * y3'u3 = u1 + u2'u4 = u3^1.5 u3 * u4' = 1.5 u4 * u3' solve for u4(k)'<br>'u5 = 1 / u4 1 = u5 * u4 solve for u5(k)1 = u5 * u4 solve for u5(k)'u6 = 2 * y4'u7 = 3 * v1'u8 = u6 + u7<br>
'u9 = v1 * u5 u9 = v1 * u5'u9 = v1 * u5'u10 = u8 - u9'u11 = -2 * y2<br>'u12 = y3 * u5u12 = y3 * u5'u13 = u11 - u12
   y1' = y2y2' = u10<br>
y3' = y4y3' = y4v4' = u13
```
イロト イ押ト イヨト イヨト

 ORO

÷.

Hill's Lunar equations: PSM (q,p)

```
>> analyze(fhill3_pq,0,[1;0;0;1])
```


÷.

 298

イロメ イ母メ イヨメ イヨメー

 \Rightarrow Þ

4日下

 \rightarrow \equiv \rightarrow

4日下

∢ ⊜⊺

 299

Þ

 \Rightarrow Þ

4日下

 \Rightarrow э

4日下

 299

Hmmmm..... Can we do better?

 \leftarrow \Box

 QQQ

Þ

What do the coefficients look like?

4 **D D** \equiv \rightarrow Þ

Refine step?

€⊡

 \Rightarrow Þ QQQ

Refine step?

Hmmmmm.......

Ð

€⊡

Э× Þ

What if we raise degree?

€⊡

 QQQ

What if we raise degree?

Conclusions

Our PSM methods rely on the use of auxiliary variables to build a system of polynomial IVODEs. Once the system is polynomial, series methods allow remarkably direct analysis. We made a small study of Hill's 3 body lunar problem and demonstrated:

- **•** Effectively symplectic
- Easy to apply
- Easy error BOUND
- **•** Transparent information

These techniques should apply to a broad range of highly nonlinear ODE. And something we didn't talk about - PSM techniques can be used to identify numerically conserved quantities for validation.

 QQ

イロト イ押 トイヨ トイヨ トー

Thank you

Thanks!

Questions?

thelwerj@jmu.edu

Collaborators: J.S. Sochacki, G.E. Parker, D.C. Carothers, S.K. Lucas, J.D. Rudmin, A. Tongen, D.A. and P.G. Warne, R.D. Neidinger

4 D F

э

References: Hill, and history

George William Hill.

On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon. 1886.

George William Hill.

Researches in the lunar theory.

American journal of Mathematics, 1(1):5–26, 1878.

Siegfried Bodenmann.

The 18th-century battle over lunar motion. Physics Today, 63(1):27–32, 2010.

Martin C Gutzwiller.

Moon-earth-sun: The oldest three-body problem. Reviews of Modern Physics, 70(2):589, 1998.

 QQQ

References: Symplectic methods

- - J Waldvogel.

Symplectic integrators for hill's lunar problem.

In The Dynamical Behaviour of our Planetary System: Proceedings of the Fourth Alexander von Humboldt Colloquium on Celestial Mechanics, pages 291–305. Springer, 1997.

Thomas Quinn, Randall P Perrine, Derek C Richardson, and Rory **Barnes**

A symplectic integrator for hill's equations. The Astronomical Journal, 139(2):803, 2010.

- Robert I McLachlan and G Reinout W Quispel. Geometric integrators for odes. Journal of Physics A: Mathematical and General, 39(19):5251, 2006.
- Brett Gladman, Martin Duncan, and Jeff Candy. Symplectic integrators for long-term integrations in celestial mechanics.

 QQ Celestial Mechanics and Dynamical Astrono[my](#page-53-0)^{[,](#page-51-0)[5](#page-55-0)[2](#page-55-0):3}2[1](#page-50-0)[–](#page-51-0)[24](#page-75-0)[0](#page-50-0), [19](#page-75-0)[9](#page-0-0)[1.](#page-75-0)
Hill's Problem (INU & EMU), 1994. 1994. 1994. 1994. 1994. 1994. 1994. 1994. 1994. 1994. 1994. 1994. 1994. 1995 thelwerj@jmu.edu (JMU & EMU) and the [Hill's Problem](#page-0-0) and January 6, 2024 37/50

References: PSM

E. Fehlberg

Numerical integration of differential equations by power series expansions, illustrated by physical examples. Technical Report NASA-TN-D-2356, NASA, 1964.

David Carothers et. al.

Some properties of solutions to polynomial systems of differential equations.

Electronic Journal of Differential Equations, 2005:1–18, 2005.

P. G. Warne et. al.

Explicit a-priori error bounds and adaptive error control for approximation of nonlinear initial value differential systems. Comput. Math. Appl., 52(12):1695–1710, 2006.

 QQ

イロト イ押 トイヨ トイヨ トー

Conserved quantities in a polynomial system Start with

$$
x'_1 = x_2
$$

\n
$$
x'_2 = 2x_4 + 3x_1 - x_1x_5^3
$$

\n
$$
x'_3 = x_4
$$

\n
$$
x'_4 = -2x_2 - x_3x_5^3
$$

\n
$$
x'_5 = -x_1x_2x_5^3 - x_3x_4x_5^3
$$

\n
$$
r' = x_1x_2x_5 + x_3x_4x_5
$$

Then

$$
x_2x'_2 = 2x_2x_4 + 3x_1x_2 - x_1x_2x_5^3
$$
 and $x_4x'_4 = -2x_2x_4 - x_3x_4x_5^3$,

so

$$
x_5' - x_2x_2' - x_4x_4' = -3x_1x_2 = -3x_1x_1'.
$$

And we have a conserved (Jacobi) constant:

$$
2h = 2x_5 - x_2^2 - x_4^2 + 3x_1^2.
$$

→ 冊 →

 \Rightarrow э

Act III

Act III The 4 Body Problem

thelwerj@jmu.edu (JMU & EMU) [Hill's Problem](#page-0-0) January 6, 2024 40 / 50

E

 QQ

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Hill's Lunar 4 body equations

THE RESTRICTED HILL FOUR-BODY PROBLEM WITH APPLICATIONS TO THE EARTH-MOON-SUN SYSTEM

D. J. SCHEERES

Department of Aerospace Engineering & Engineering Mechanics. Iowa State University, Ames. IA 50011-3231, U.S.A (e-mail: scheeres@iastate.edu)

(Received: 14 October 1997; accepted: 13 May 1998)

Point-masses, with space-craft orbiting binary asteroids in mutual orbit about a massive sun.

э

 QQ

イロト イ押ト イヨト イヨト

Hill's Lunar 4 body equations

[Scheeres, 1998]

$$
x'' - 2(1+m)y' = V_x,
$$

\n
$$
y'' + 2(1+m)x' = V_y,
$$

\n
$$
z'' = V_z,
$$
\n(55)

where

$$
V(x, y, z, \tau; \nu, m) = \frac{1}{2} \left(1 + 2m + \frac{3}{2}m^2 \right) (x^2 + y^2) - \frac{1}{2}m^2 z^2 + \frac{3}{4}m^2 ((x^2 - y^2) \cos 2\tau - 2xy \sin 2\tau) + \frac{m^2}{a_0^3} \left[\frac{1 - \nu}{R_{1-\nu}} + \frac{\nu}{R_{\nu}} \right]
$$
(56)

and where

$$
R_{1-\nu} = \sqrt{[x + \nu(1 + \bar{\xi})]^2 + [y + \nu\bar{\eta}]^2 + z^2},
$$
\n(57)

$$
R_{\nu} = \sqrt{[x - (1 - \nu)(1 + \bar{\xi})]^2 + [y - (1 - \nu)\bar{\eta}]^2 + z^2}.
$$
 (58)

These equations are periodic in τ with period π . They contain the two parameters v and m. If $m \to 0$ then the equations of motion for the restricted three-body problem are recovered. Thus Equations (55) are a generalization of both the restricted three-body problem and the Hill equations of motion.

イロト イ押ト イヨト イヨト

 QQ

э

Combining different types of processors, accelerators, and specialized hardware to work together.

- CPU
- GPU
- FPGA

 \sim

◂**◻▸ ◂⁄** ▸

E

Hetrogeneous system: Why?

Performance Boost:

- Leveraging specialized processors for specific tasks leads to enhanced overall performance.

э

 QQ

 \rightarrow \equiv \rightarrow

IN

4 D F → 冊 → Performance Boost:

- Leveraging specialized processors for specific tasks leads to enhanced overall performance.

Energy Efficiency:

- Optimal utilization of resources, reducing power consumption.

4 0 F

Performance Boost:

- Leveraging specialized processors for specific tasks leads to enhanced overall performance.

Energy Efficiency:

- Optimal utilization of resources, reducing power consumption. Parallel Processing

- Simultaneous execution of tasks, accelerating complex computations.

 QQQ

Programming complexity usually is a barrier, decision about which code would run where (calculating overheads and data "movements" across diverse hardware)

4 D F

 Ω

Programming complexity usually is a barrier, decision about which code would run where (calculating overheads and data "movements" across diverse hardware)

Specialized hardware (fpga/gpu) is more costly than general purpose (cpu), benchmarking for specific application drives the development

 200

Programming complexity usually is a barrier, decision about which code would run where (calculating overheads and data "movements" across diverse hardware) Specialized hardware (fpga/gpu) is more costly than general purpose (cpu), benchmarking for specific application drives the development But....

 200

Programming complexity usually is a barrier, decision about which code would run where (calculating overheads and data "movements" across diverse hardware)

Specialized hardware (fpga/gpu) is more costly than general purpose (cpu), benchmarking for specific application drives the development But....

Heterogeneous computing "done right" is a powerful paradigm for improving performance and efficiency in a wide range of applications.

 QQ

イロト イ母 トイヨ トイヨ トー

Heterogenous system: so far

Different parts of PSM were rewritten in VHDL to be synthetized in hardware to study the behavior and the performance of the new dedicated hardware

- **1** Intel Cyclone V for preliminary testing
	- \triangleright CPU/FPGA on the same silicon, handy memory sharing but limited FPGA logic elements)
	- \triangleright Acceptable number of logic elements but somewhat complex memory sharing via PCIe
	- \triangleright Limited number of hardware wires to submit the large number of inputs/arrays required by an n-body problem

 QQ

イロト イ押 トイヨ トイヨ トー

Different parts of PSM were rewritten in VHDL to be synthetized in hardware to study the behavior and the performance of the new dedicated hardware

- **1** Intel Cyclone V for preliminary testing
- ² Exploiting the heterogeneous framework oneAPI (by Intel) to bridge CPU/FPGA (and also GPU)
	- \triangleright No need to struggle with memory mapping
	- \triangleright No need to port to VHDL, $C++$ code

 Ω

Different parts of PSM were rewritten in VHDL to be synthetized in hardware to study the behavior and the performance of the new dedicated hardware

- **1** Intel Cyclone V for preliminary testing
- ² Exploiting the heterogeneous framework oneAPI (by Intel) to bridge CPU/FPGA (and also GPU)
- **3** The compiler takes care of most of the complexity

Different parts of PSM were rewritten in VHDL to be synthetized in hardware to study the behavior and the performance of the new dedicated hardware

- **1** Intel Cyclone V for preliminary testing
- ² Exploiting the heterogeneous framework oneAPI (by Intel) to bridge CPU/FPGA (and also GPU)
- **3** The compiler takes care of most of the complexity

but.....
Heterogenous system: challenges (so far)

- oneAPI support (getting better and better) was/is somewhat limited for different hardware (Cyclone family)
- Machine setup/libraries/dependencies quite complex (not fully supported yet by Linux)
- Several errors/difficult debugging due to limited documentation and knowledge base

◂**◻▸ ◂⁄** ▸

 QQQ

Heterogenous system: Looking ahead

- Finalizing oneAPI approach for PSM/n-body problems so that it can seamlessly/easily compile on a diverse hardware; FPGA+CPU to start with (GPU in the future)/
- online n-body webapp that is hardware accelerated with a dedicated performance benchmark.

 QQQ

Heterogenous system: Goal Orbital Motion!

重

 298

イロト イ部 トイヨ トイヨト

Heterogenous system: Goal

Orbital Motion!

from <https://www.youtube.com/watch?v=gpXAACF5eOI>

Þ