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Abstract

We present an approach to recast non-polynomial IVODEs into polynomial
differential systems which exploit auxiliary variables, and provide several
examples using the Power Series Method (PSM). We review an a priori
error bound for the solution to IVODES of polynomial form. We apply this
approach to Hill’s Restricted Three Body Problem of celestial mechanics
to demonstrate that PSM is effectively symplectic. If we have time, we will
offer some novel conservation expressions for this system, and a general
approach to generate others.
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Act I

Act I:
Power series
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y ′ = αy2

We start with a toy problem...

y ′ = αy2 y(0) = y0

An analytic solution to this one is easy:

y(t) = − y0
αy0t − 1
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y ′ = αy2: series solution

What happens if we try (formal, for now) series?

Let

y(t) =
∞∑

k=0

yktk

then
∞∑

k=0

(k + 1)yk+1tk = α

∞∑
k=0

i+j=k∑
i,j≥0

yiyj

 tk

so we equate coefficients to get

yk+1 =
α

k + 1

∑
i+j=k

yiyj
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y ′ = αy2: Maple

Or, with MAPLE:

> ODE1 := diff(y(t),t) = alpha*y(t)^2;
> IC := y(0) = y0;
> y1 := dsolve({ODE1,IC},y(t))

and

> Y1 := dsolve({ODE1,IC},y(t),series);
Y1 := 1+2*alpha*t*y0+3*alpha^2*y0^2*t^2+...
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y ′ = αy2 : Error

What about the error?

> alpha := 1; y0 := 2; plot(abs(Y1-y1),t=0..0.5);

Can we quantify this?

Let’s take a little diversion...
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y ′ = αym: important aside
The solution to the constant coefficient nonlinear IVODE

y ′ = αym y(0) = y0

is messy:
y(t) =

(
(α− αm)t + y1−m

0

)−(m−1)−1

.

But the ratio y ′

y isn’t!

y ′

y =
α

(α− αm)t + y1−m
0

and we see that
y ′(t) = α

(α− αm)t + y1−m
0︸ ︷︷ ︸

K(t)

y(t),

is a non-constant coefficient LINEAR ode.
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y ′ = αym: important aside

So
y ′(t) = α

(α− αtm)t + y1−m
0︸ ︷︷ ︸

K(t)

y(t),

has solution
y(t) = y0exp

(∫ t

0
K(τ)dτ

)
or, via series,

Yk+1 =
α(1 + (m − 1)k)

y1−m
0 (k + 1)

Yk
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y ′ = αym: important aside

From
Yk+1 =

α(1 + (m − 1)k)
y1−m
0 (k + 1)

Yk

and for m ≥ 2,

Yk+1 ≤ α(m − 1)|y0|m−1Yk ≤ αC∞Yk .

This leads directly to a geometric series bounding y(t):

y(t) ≤ |y0α|
1− C∞t = |y0α|

∑
k=0

(C∞t)k

Now for the bound...
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y ′ = αy2: back to error

From
y(t) ≤ |y0α|

1− C∞t = |y0α|
∑
k=0

(C∞t)k

we see that the absolute error is

|Y 1− y1| ≤ |y0α|
∞∑

k=n+1

C∞|t|k ≤ |y0α|Cn+1
∞

1− C∞|t|

where C∞ = |y0α|.
An ERROR bound!
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y ′ = αy2: error plots

> ee := abs(Y1-y1);
> m := 2; Cinf := y0*alpha;
> EE := N -> abs(y0)*(Cinf*t)^(N+1)/( 1 - Cinf*abs(t));
> plot({ee,EE(5)},t=0..0.3);
> plot({ee-EE(5)},t=0..0.2);
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y ′ = 2y2, y(0) = 1: radius of convergence?

>plot({ee-EE(5)},t=0..0.48);

Hmmmm....

�
y(t) = − y0

αy0t − 1
with α = 2
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y ′ = 2y2, y(0) = 1: radius of convergence?
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y ′ = αy2: radius of convergence

But what if we only have this form?

> Y20 := dsolve({ODE1,IC},y(t),series);
Y20 := 1+2*alpha*t*y0+3*alpha^2*y0^2*t^2+...

Approximate using the root or ratio test. Or calculate the Padé
approximant.
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y ′ = 2y2, y(0) = 1: radius of convergence?

> Order := 20: alpha := 2; y0 := 1;
> Y20 := rhs(dsolve({ODE1,IC},y(t),series)):
> Ycoeff := [seq(coeff(convert(Y20,polynom),t,i),i=1..20)];
> RatioT := i -> abs(a[i+1]/a[i]): RootT := i -> abs(a[i])^(1/i):
> RootEst := [seq(1/RootT(i),i=1..Order)]: RatioEst := [seq(1/RatioT(i),i=1..Order)]:
> plot ....
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Act II

Act II
Hill’s Lunar 3 body
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Timeline

The Sun, the Earth, and the Moon
1000 B.C.E Babylonians
200 B.C.E Greeks
(1543-1609) Copernicus to Kepler
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Timeline

The Sun, the Earth, and the Moon
1000 B.C.E Babylonians
200 B.C.E Greeks
(1543-1609) Copernicus to Kepler
1687 Newton (I.66)
1740-55 Clairaut, Euler, and d’Alembert
1767 Euler
1860-67 Delaunay
1877-1878 Hill
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Hill’s Lunar equations

Hill’s 1877 ”On the Part of the Motion of the Lunar Perigee which is a
Function of the Mean Motions of the Sun and the Moon”
Key features:

earth-centric coordinate frame
sun massive, infinitely far away.
moon as point mass in rotating coordinate, one axis towards sun.
looked for a periodic orbit of a perturbed system
not a systematic perturbation theory, but thoughtful expansion of
variables

For much more detail, see survey by:
Martin C. Gutzwiller, Moon-Earth-Sun: The oldest three-body problem, Rev.
Mod. Phys. 1998 [4]
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Hill’s Lunar equations

From [Waldvogel, 1997] in geocentric cartesian (x , y):

ẍ − 2ẏ = 3x − xr−3 (1)
ÿ + 2ẋ = + yr−3 (2)

Or, in conjugate momenta (q, p), with
q1 = x , q2 = y , p1 = q̇1 − q2, and p2 = q̇2 + q1,

q̇1 = p1 + q2 (3)
q̇2 = p2 − q1 (4)
ṗ1 = p2 + 2q1 − q1r−3 (5)
ṗ2 = −p1 − q2 − q2r−3, (6)

with a conserved quantity h = 1
2

(
ẋ2 + ẏ2

)
− 3

2x2 − 1
r , r =

√
x2 + y2 or

H(q, p) = 1
2 (p

2
1 + p2

2) + p1q2 − p2q1 − q2
1 +

1
2q2

2 − 1
r , r =

√
q2
1 + q2

2 .
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Symplectic integrator?
Powerful symplectic tools are available, such as:

Martin Hairer’s GNI package (link here)
SymInt package (link here )
Velocity Verlet (one link here)

Unfortunately, these general integrators are for canonical second order
system. They require that

~U ′′ = F (t, ~U),

or

~U ′ = ~V (7)
~V ′ = F (t, ~U), (8)

where U is position and V is velocity.
We have a velocity-dependent force.
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Symplectic integrator

What to do? Several authors have constructed special formulations to
handle non-symmetry in Hills three body, which include:

[Waldvogel, 1997] ‘Symplectic Integrator’s for Hill’s Lunar Problem‘
[Quinn, 2010] ‘A Symplectic Integrator for Hill’s Equations’

Both of these require gymnastics: finding a canonical transform to build
new Hamiltonian K(u, v) = K1(u, v) + K2(u), such that K1 and K2 are
both integrable.
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Hill’s Lunar equations: Symplectic integrator?

Power series?

Power series methods may provide effectively symplectic integration of
conservative systems through a (numerically) faithful algorithm.

function dYdt = fhill3_xy(t,Y)

recipr3 = 1/(Y(1)^2 + Y(3)^2)^(3/2);

dYdt = [ Y(2);
2*Y(4) + 3*Y(1) - Y(1)*recipr3;
Y(4);
-2*Y(2) - Y(3)*recipr3];

end
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Hill’s Lunar equations: PSM (x,y)

>> analyze(fhill3_xy,0,[1;0;0;1])
'Definition Series recur *=CP '
'u1 = y1 * y1 u1 = y1 * y1 '
'u2 = y3 * y3 u2 = y3 * y3 '
'u3 = u1 + u2 '
'u4 = u3^1.5 u3 * u4' = 1.5 u4 * u3' solve for u4(k)'
'u5 = 1 / u4 1 = u5 * u4 solve for u5(k) '
'u6 = 2 * y4 '
'u7 = 3 * y1 '
'u8 = u6 + u7 '
'u9 = y1 * u5 u9 = y1 * u5 '
'u10 = u8 - u9 '
'u11 = -2 * y2 '
'u12 = y3 * u5 u12 = y3 * u5 '
'u13 = u11 - u12 '
' y1' = y2 '
' y2' = u10 '
' y3' = y4 '
' y4' = u13 '
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Hill’s Lunar equations: PSM (q,p)

>> analyze(fhill3_pq,0,[1;0;0;1])

'Definition Series recur *=CP '
'u1 = y1 * y1 u1 = y1 * y1 '
'u2 = y2 * y2 u2 = y2 * y2 '
'u3 = u1 + u2 '
'u4 = u3^1.5 u3 * u4' = 1.5 u4 * u3' solve for u4(k)'
'u5 = 1 / u4 1 = u5 * u4 solve for u5(k) '
'u6 = y3 + y2 '
'u7 = y4 - y1 '
'u8 = 2 * y1 '
'u9 = y4 + u8 '
'u10 = y1 * u5 u10 = y1 * u5 '
'u11 = u9 - u10 '
'u12 = -2 * y4 '
'u13 = u12 - y2 '
'u14 = y2 * u5 u14 = y2 * u5 '
'u15 = u13 - u14 '
' y1' = u6 '
' y2' = u7 '
' y3' = u11 '
' y4' = u15 '
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Hill’s Lunar equations: 3 body

e = 0.1
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Hill’s Lunar equations: 3 body

e = 0.3
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Hill’s Lunar equations: 3 body

e = 0.5
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Hill’s Lunar equations: 3 body

e = 0.9

Hmmmm..... Can we do better?
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Hill’s Lunar equations: 3 body

What do the coefficients look like?

e = 0.9
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Hill’s Lunar equations: 3 body

Refine step?

Back to e = 0.9 with refined step.

Hmmmmm....... 🥴
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Hill’s Lunar equations: 3 body
What if we raise degree?

Back to e = 0.9 with higher degree.

😂 🔥
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Conclusions

Our PSM methods rely on the use of auxiliary variables to build a system
of polynomial IVODEs. Once the system is polynomial, series methods
allow remarkably direct analysis. We made a small study of Hill’s 3 body
lunar problem and demonstrated:

Effectively symplectic
Easy to apply
Easy error BOUND
Transparent information

These techniques should apply to a broad range of highly nonlinear ODE.
And something we didn’t talk about - PSM techniques can be used to
identify numerically conserved quantities for validation.
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Thank you

Thanks!

Questions?

thelwerj@jmu.edu

Collaborators: J.S. Sochacki, G.E. Parker, D.C. Carothers, S.K. Lucas,
J.D. Rudmin, A. Tongen, D.A. and P.G. Warne, R.D. Neidinger

thelwerj@jmu.edu (JMU & EMU) Hill’s Problem January 6, 2024 35 / 50



References: Hill, and history

George William Hill.
On the part of the motion of the lunar perigee which is a function of
the mean motions of the sun and moon.
1886.
George William Hill.
Researches in the lunar theory.
American journal of Mathematics, 1(1):5–26, 1878.

Siegfried Bodenmann.
The 18th-century battle over lunar motion.
Physics Today, 63(1):27–32, 2010.

Martin C Gutzwiller.
Moon-earth-sun: The oldest three-body problem.
Reviews of Modern Physics, 70(2):589, 1998.

thelwerj@jmu.edu (JMU & EMU) Hill’s Problem January 6, 2024 36 / 50



References: Symplectic methods
J Waldvogel.
Symplectic integrators for hill’s lunar problem.
In The Dynamical Behaviour of our Planetary System: Proceedings of
the Fourth Alexander von Humboldt Colloquium on Celestial
Mechanics, pages 291–305. Springer, 1997.

Thomas Quinn, Randall P Perrine, Derek C Richardson, and Rory
Barnes.
A symplectic integrator for hill’s equations.
The Astronomical Journal, 139(2):803, 2010.

Robert I McLachlan and G Reinout W Quispel.
Geometric integrators for odes.
Journal of Physics A: Mathematical and General, 39(19):5251, 2006.

Brett Gladman, Martin Duncan, and Jeff Candy.
Symplectic integrators for long-term integrations in celestial
mechanics.
Celestial Mechanics and Dynamical Astronomy, 52:221–240, 1991.

thelwerj@jmu.edu (JMU & EMU) Hill’s Problem January 6, 2024 37 / 50



References: PSM

E. Fehlberg
Numerical integration of differential equations by power series
expansions, illustrated by physical examples.
Technical Report NASA-TN-D-2356, NASA, 1964.

David Carothers et. al.
Some properties of solutions to polynomial systems of differential
equations.
Electronic Journal of Differential Equations, 2005:1–18, 2005.

P. G. Warne et. al.
Explicit a-priori error bounds and adaptive error control for
approximation of nonlinear initial value differential systems.
Comput. Math. Appl., 52(12):1695–1710, 2006.

thelwerj@jmu.edu (JMU & EMU) Hill’s Problem January 6, 2024 38 / 50



Conserved quantities in a polynomial system
Start with

x ′
1 = x2

x ′
2 = 2x4 + 3x1 − x1x3

5

x ′
3 = x4

x ′
4 = −2x2 − x3x3

5

x ′
5 = −x1x2x3

5 − x3x4x3
5

r ′ = x1x2x5 + x3x4x5
Then

x2x ′
2 = 2x2x4 + 3x1x2 − x1x2x3

5 and x4x ′
4 = −2x2x4 − x3x4x3

5 ,

so
x ′
5 − x2x ′

2 − x4x ′
4 = −3x1x2 = −3x1x ′

1.

And we have a conserved (Jacobi) constant:

2h = 2x5 − x2
2 − x2

4 + 3x2
1 .

thelwerj@jmu.edu (JMU & EMU) Hill’s Problem January 6, 2024 39 / 50



Act III

Act III
The 4 Body Problem
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Hill’s Lunar 4 body equations

Point-masses, with space-craft orbiting binary asteroids in mutual orbit
about a massive sun.
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Hill’s Lunar 4 body equations
[Scheeres, 1998]
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Hetrogenenous system:

Combining different types of processors, accelerators, and specialized
hardware to work together.

CPU
GPU
FPGA
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Hetrogeneous system: Why?

Performance Boost:
- Leveraging specialized processors for specific tasks leads to enhanced

overall performance.

Energy Efficiency:
- Optimal utilization of resources, reducing power consumption.

Parallel Processing
- Simultaneous execution of tasks, accelerating complex computations.
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Hetrogeneous system: Why?

Performance Boost:
- Leveraging specialized processors for specific tasks leads to enhanced

overall performance.
Energy Efficiency:

- Optimal utilization of resources, reducing power consumption.
Parallel Processing

- Simultaneous execution of tasks, accelerating complex computations.
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Heterogenous system: considerations

Programming complexity usually is a barrier, decision about which code
would run where (calculating overheads and data ”movements” across
diverse hardware)

Specialized hardware (fpga/gpu) is more costly than general purpose
(cpu), benchmarking for specific application drives the development
But....
Heterogeneous computing “done right” is a powerful paradigm for
improving performance and efficiency in a wide range of applications.
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Heterogenous system: so far

Different parts of PSM were rewritten in VHDL to be synthetized in
hardware to study the behavior and the performance of the new dedicated
hardware

1 Intel Cyclone V for preliminary testing
I CPU/FPGA on the same silicon, handy memory sharing but limited

FPGA logic elements)
I Acceptable number of logic elements but somewhat complex memory

sharing via PCIe
I Limited number of hardware wires to submit the large number of

inputs/arrays required by an n-body problem
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Heterogenous system: so far

Different parts of PSM were rewritten in VHDL to be synthetized in
hardware to study the behavior and the performance of the new dedicated
hardware

1 Intel Cyclone V for preliminary testing
2 Exploiting the heterogeneous framework oneAPI (by Intel) to bridge

CPU/FPGA (and also GPU)
I No need to struggle with memory mapping
I No need to port to VHDL, C++ code
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Heterogenous system: challenges (so far)

oneAPI support (getting better and better) was/is somewhat limited
for different hardware (Cyclone family)
Machine setup/libraries/dependencies quite complex (not fully
supported yet by Linux)
Several errors/difficult debugging due to limited documentation and
knowledge base
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Heterogenous system: Looking ahead

Finalizing oneAPI approach for PSM/n-body problems so that it can
seamlessly/easily compile on a diverse hardware; FPGA+CPU to start
with (GPU in the future)/
online n-body webapp that is hardware accelerated with a dedicated
performance benchmark.
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Heterogenous system: Goal
Orbital Motion!

from https://www.youtube.com/watch?v=gpXAACF5eOI
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