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Abstract

Isaac Newton’s pioneering work with infinite series laid the framework
for solving and analyzing differential equations. Newton utilized series to
approximate functions to solve complex problems, demonstrating their
utility in representing and manipulating mathematical expressions that
describe physical phenomena. But series methods are all too often con-
sidered historic and unwieldy, while the numerical methods to which they
gave rise are viewed as the future.

Though simple automatic transformations, highly nonlinear ODE sys-
tems can be easily analyzed and efficiently solved via power series. …We
will show that series implementations are often a magnitude of order
faster than Matlab’s ode45 in run time, more accurate than ode89 and
ode15s, avoid interpolation error, and allow powerful symbolic analysis.
Best of all, the technique and theory is accessible to all with rudimentary
coding skill and knowledge of Calculus II.
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(Young) Newton

By 1665, Newton had found a way to expand

(a + b)m/n

as a infinite series – the generalized binomial expansion (pg 168-171
Correspondence of Isaac Newton, Turnbull (ed))

Orginally presented as a mechanism to compute the area under a specific
curve (”lines wch could be squared”), Newton recognized the immense
power of ”reducing” expressions to infinite series, which then allowed him
access to a wide range of algebraic techinques.

The reduction of difficult functions to ”simple” infinite series, when
combined with the ”method of fluxions,” fueled the birth of calculus.
“By their help, analysis reaches, I might almost say, to all problems.”
(Newton, De Analys)

thelwerj@jmu.edu (JMU) Power Series and ODEs January 5, 2025 4 / 42



(Young) Newton

By 1665, Newton had found a way to expand

(a + b)m/n

as a infinite series – the generalized binomial expansion (pg 168-171
Correspondence of Isaac Newton, Turnbull (ed))

Orginally presented as a mechanism to compute the area under a specific
curve (”lines wch could be squared”), Newton recognized the immense
power of ”reducing” expressions to infinite series, which then allowed him
access to a wide range of algebraic techinques.
The reduction of difficult functions to ”simple” infinite series, when
combined with the ”method of fluxions,” fueled the birth of calculus.
“By their help, analysis reaches, I might almost say, to all problems.”
(Newton, De Analys)

thelwerj@jmu.edu (JMU) Power Series and ODEs January 5, 2025 4 / 42



Example 1: y ′ = y(1− y)

Consider the inital value ODE:

d
dx y = y(1− y), y(0) = y0

the logistic equation.
I usually ask my students what they think the solution of

d
dx y = y(1− y), y(0) = y0

might look like.

Phase portraits?
Integration??
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Exact solution

They often try to solve d
dx y = y(1− y) by integrating directly.

d
dx y = y(1− y)

1

y(1− y)
d
dx y = 1∫

1

y(1− y) dy =

∫
1 dy

thelwerj@jmu.edu (JMU) Power Series and ODEs January 5, 2025 6 / 42



Exact solution

Lets solve d
dx y = y(1− y) by integrating directly.

d
dx y = y(1− y)

1

y(1− y)
d
dx y = 1∫

1

y(1− y) dy =

∫
1 dy∫ A

y +
B

1− y dy =

∫
1 dy

thelwerj@jmu.edu (JMU) Power Series and ODEs January 5, 2025 6 / 42



Exact solution

Lets solve d
dx y = y(1− y) by integrating directly.

d
dx y = y(1− y)

1

y(1− y)
d
dx y = 1∫

1

y(1− y) dy =

∫
1 dy∫

1

y +
1

1− y dy =

∫
1 dy

ln(y)− ln(1− y) = x + C ,

thelwerj@jmu.edu (JMU) Power Series and ODEs January 5, 2025 6 / 42



Exact solution
Lets solve d

dx y = y(1− y) by integrating directly.

d
dx y = y(1− y)

1

y(1− y)
d
dx y = 1∫

1

y(1− y) dy =

∫
1 dy∫

1

y +
1

1− y dy =

∫
1 dy

ln(y)− ln(1− y) = x + C ,

so y
1− y = exp(x + C) = K exp(x)

y(x) = 1

1 + K exp(−x) with K =
1− y0

y0
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aside: Newton?
”... all kinds of complicated terms ... may be reduced to
the class of simple quantities, i.e., to an infinite series of
fractions whose numerators and denominators are simple
terms, which will thus be freed from those difficulties
that in their original form seem’d almost insuperable.”
(pg n21, Isaac Newton, Derek Whiteside, ed:)

Newton had realized that algebra on (convegent) power
series is easy... add, subtract, differentiate, and integrate term-by-term!

Differentiate?

If A =
∑
n=0

anxn, what is A′? Just write it out...

A = a0 + a1x + a2x2 + a3x3 + . . .

A′ = a1 + 2a2x + 3a3x2 + . . .

A′ =
∞∑

j=1

j · ajx j−1 =
∞∑

n=0

(n + 1)an+1xn
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aside: manipulating power series

Multiplication? If A =
∑
n=0

anxn and B =
∑
n=0

bnxn, what is A · B?

The Cauchy Product:

(a0+a1x + a2x2 + a3x3 + . . .) · (b0 + b1x + b2x2 + b3x3 + . . .)

= (a0 + b0) + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x2 . . .

+ (a0b3 + a1b2 + a2b1 + a3b0)x3 + . . .

=
∑
n=0

[ n∑
i=0

aibn−i

]
xn,

with the nth component of A · B given by
∑n

i=0 aibn−i .
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Ex 1 (again): y ′ = y(1− y)

We have the tools, so let’s “solve” d
dx y = y(1− y) using power series.

Assume

y(x) =
∞∑

n=0

ynxn.

Substituting,

∞∑
n=0

(n + 1)yn+1xn =

( ∞∑
n=0

ynxn

)
·

(
1−

∞∑
n=0

ynxn

)
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aside: Matlab

In Matlab,
n∑

i=0

aibn−i

is

function cn = cauchy_product(avec,bvec,degree)
% find nth degree coefficient of product a*b = c
cn = 0;
for i = 1:degree+1

j = degree-i+1;
cn = cn + avec(i)*bvec(j);

end

or even simpler: avec(1:n+1)*bvec(n+1:-1:1).'
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Putting it together...
We now have:

∞∑
n=0

(n + 1)yn+1xn =

( ∞∑
n=0

ynxn

)
·

(
1−

∞∑
n=0

ynxn

)

=

∞∑
n=0

ynxn −
∞∑

n=0

n∑
i=0

yiyn−ixn)

=

∞∑
n=0

(yn −
n∑

i=0

yiyn−i︸ ︷︷ ︸
cn

)xn

where cn is the result of the Cauchy product y · y .

Equating powers of xn

allows us to recover a simple recurrence relation:

(n + 1)yn+1 = yn −
n∑

i=0

yiyn−i

and it easy to find yn+1 in terms of lower order coefficients...
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Matlab?

And Matlab makes it easy. If y(0) = y0, we have

yn+1 =
1

n + 1

(
yn −

n∑
i=0

yiyn−i

)

function y = solve_logistic(y0,degree)
y(1) = y0;
for n =1:degree

c(n) = cauchy_product(y,y,n);
y(n+1) = 1/(n+1) * ( y(n) - c(n) );

end
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Example 1: y ′ = Kyα

Consider the IVODE

y ′ = Kyα, y(x0 = 0) = y0

Why?

Because we have an analytic solution!

y(x) =
((

Kx − Kαx + y01−α
)(α−1)−1

)−1
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Example 2: y ′ = Kyα

First represent y(x) =
∑∞

n=0 yn(x − x0)n,.
Since

y ′(x) =
∞∑

n=0

(n + 1) yn+1(x − x0)n =

∞∑
n=0

(n + 1) yn+1 xn,

We would have a simple recursion to recover coefficients yn if we can
compute the an coefficients for

yα =

∞∑
n=0

an(x − x0)n =

∞∑
n=0

an xn,

For example:

(n + 1) · yn+1 = Kan means yn+1 =
1

n + 1
Kan

We could be stubborn and push this through, but the coefficients of (an)
′

are a little bit easier to compute.
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Example 2: y ′ = Kyα

Option A

We have
y ′ = Kyα, y(0) = y0,

and consider the following change of variables:
x1 = y , x2 = Kyα, and x3 = y−1.

Then,

x ′
1 = y ′ = x2 x1(0) = y0,

x ′
2 = Kαyα−1y ′ = αK yα

y y ′ = αx2
2 x3 x2(0) = Kyα

0 , (1)

x ′
3 = −y−2y ′ = −(y−1)2y ′ = −x2

3 x2 x3(0) = y−1
0 .

Is there an even simpler system?
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Example 2: y ′ = Kyα

Option B

Yes! Let w = yα−1.

Then,

y ′ = Kyα y(0) = y0
= Kyyα−1

= Kyw ,

w ′ = (α− 1)yα−2y ′ w(0) = yα−1
0

= (α− 1)yα−2Kyα

= (α− 1)Ky2α−2

= (α− 1)K(yα−1)2

= (α− 1)Kw2,
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Example 2: y ′ = Kyα

A comparison
Using a degree 4 power series...

Figure: Error when using a fixed step Runge-Kutta on [0,2] with h = .05 and
y0 = 1,K = 1, α = e/2 + i/π.

More accurate??
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Example 3: Other nonlinearities?

What about other types of nonlinearities, or nonlinear systems? Once
again, a series ansatz often leds to an easy to implement recurrence
relations.
As a simple example, consider the (non-dimensionalized) nonlinear
pendulum

y ′′ = − sin(y) y(t0) = y0, y ′(t0) = y1 (2)

If we let

x0 = y , x1 = y ′, U1 = sin(y), and U2 = cos(y) (3)

we get a polynomial system.
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Example 3a: y ′′ = − sin(y)

Taking x0 = y , x1 = y ′, U1 = sin(y) and U2 = cos(y), then

x ′
0 = y ′ = −x1 x0(t0) = y0

x ′
1 = sin(y) = U1 x1(t0) = y1

U ′
1 = cos(y) · y ′ = U2 · x1 U1(t0) = sin(y0) (4)

U ′
2 = − sin(y) · y ′ = −U1 · x1 U2(t0) = cos(y0)

Solve this system iteratively! But setting up these systems is getting
tedious...

Can we automate the process?
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Example 3a: auto-generated code?

There are several packages that produce numerical ODEs solutions
throught auto-generated code. Nearly all grew from the AD community.

ATOMFT (Fortran: Chang & Corliss) 1982
TAYLOR (C: Jorba & Zou) 2001
The Taylor Center (Delphi: Gofen) 2006
DAETS (C++: Pryce & Nedialkov) 2007
TIDES (Mathematica engine: Abad, Barrio, Blesa, Rodriquez) 2010
QBee (python: Bychkov & Pogudin) 2021
ODEPSM(Matlab: Neidinger) 2023
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ODEPSM

Rich Neidinger started to develop ODEPSM in 2016 while on sabattical
at JMU. His current version is availible on GitHub, which includes his
pre-print as (recently!) submitted to ACM-TOMS.
(https://github.com/rineidinger/psm4odes)

The syntax for ODEPSM mimic solvers of Matlab’s ODEsuite. The
ODEPSM auto-generates a function to generate a series based approximate
IVODe solution. Adaptive or fixed step numerical, variable precision, and
symbolic evaluation of arbitrary degree taylor series coefficients may be
returned.

Thanks to Rich and his ODEPSM tool, we can finally get this talk
moving!
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Example 3a: ODEPSM
> f = @(t,y) [y(2); -sin(y(1)] > odepsmJZ(f,[0,1],[1;1],1e-1);
function coefs = fseries(t0, y0, deg)
% FSERIES finds series coefs soln of y' = f(t,y) about t0 to deg
Y(:,1) = y0

U(1,1) = sin(Y(1,1));
U(2,1) = cos(Y(1,1,));
% Update Y linear coefficeint by y' = f(t,y)
Y(1,2) = Y(2,1);
Y(2,2) = -U(1,1);

% Now recurrence rules for each operation in evaluation of f
for j = 1:deg

tempprime = ( Y(1,2:j) .* (1:(j-1)) ).';
U(1,j) = ( U(2,(j-1):-1:1) * tempprime)/(j-1);
U(1,j) = -( U(1,(j-1):-1:1) * tempprime)/(j-1);
% update Y next coeffient using y' = f(t,y)
Y(1,j+1) = Y(2,j)/j;
Y(2,j+1) = -U(1,j)/j;

end
coefs = Y;

ODEPSMJZ generates this subfunction, calls a stepper routine on it,
calculates an effective local time step, evaluates (using horner’s
algorithm), and re-initializes for the next step in the global time interval.
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The three body problem
By 1687 in the Principia (I.66), Newton presented a geometric approach
to analyze the motion of the moon.

His analysis of lunar motion was essentially a clever perturbation method,
one unfortunately hampered by the choice of coordinates and the
approximations that were made.

In 1887, Hill’s produced ”On the Part of the Motion of the Lunar Perigee
which is a Function of the Mean Motions of the Sun and the Moon”
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Hill’s Lunar equations

Hill’s 1877 ”On the Part of the Motion of the Lunar Perigee which is a
Function of the Mean Motions of the Sun and the Moon”
Key features:

earth-centric coordinate frame
sun massive, infinitely far away.
moon as point mass in rotating coordinate, one axis towards sun.
looked for a periodic orbit of a perturbed system
not a systematic perturbation theory, but thoughtful expansion of
variables

For much more detail, see survey by:
Martin C. Gutzwiller, Moon-Earth-Sun: The oldest three-body problem, Rev.
Mod. Phys. 1998 [4]
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Hill’s Lunar equations

From [Waldvogel, 1997] in geocentric cartesian (x , y):

ẍ − 2ẏ = 3x − xr−3 (5)
ÿ + 2ẋ = + yr−3 (6)

with a conserved quantity h = 1
2

(
ẋ2 + ẏ2

)
− 3

2x2 − 1
r , r =

√
x2 + y2
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Hill’s Lunar equations: How to integrate?

Power series?

Power series methods may provide effectively symplectic integration of
conservative systems through a (numerically) faithful algorithm.

function dYdt = fhill3_xy(t,Y)

recipr3 = 1/(Y(1)^2 + Y(3)^2)^(3/2);

dYdt = [ Y(2);
2*Y(4) + 3*Y(1) - Y(1)*recipr3;
Y(4);
-2*Y(2) - Y(3)*recipr3];

end
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Hill’s Lunar equations: PSM (x,y)

A system of recurrence relations as auto-generated by odepsm [?]
>> analyze(fhill3_xy,0,[1;0;0;1])

'Definition Series recur *=CP '
'u1 = y1 * y1 u1 = y1 * y1 '
'u2 = y3 * y3 u2 = y3 * y3 '
'u3 = u1 + u2 '
'u4 = u3^1.5 u3 * u4' = 1.5 u4 * u3' solve for u4(k)'
'u5 = 1 / u4 1 = u5 * u4 solve for u5(k) '
'u6 = 2 * y4 '
'u7 = 3 * y1 '
'u8 = u6 + u7 '
'u9 = y1 * u5 u9 = y1 * u5 '
'u10 = u8 - u9 '
'u11 = -2 * y2 '
'u12 = y3 * u5 u12 = y3 * u5 '
'u13 = u11 - u12 '
' y1' = y2 '
' y2' = u10 '
' y3' = y4 '
' y4' = u13 '
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Example 4: Non-stiff

e = 0.1

method ode89D psm89D ode45H ode89H psmJZH
Run Time: 1.84E-01 1.45E-01 1.66E-01 1.16E-01 3.38E-02
Steps: 985 272 159077 12729 165
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Example 4: Non-stiff

e = 0.3

method ode89D psm89D ode45H ode89H psmJZH
Run Time: 3.86E-03 1.52E-02 1.20E-01 2.46E-02 2.50E-02
Steps: 985 272 159829 12753 164
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Example 4: Non-stiff

e = 0.9

method ode89D psm89D ode45H ode89H psmJZH
Run Time: 3.64E-03 1.34E-02 1.23E-01 3.05E-02 2.67E-02
Steps: 993 274 161577 12825 161
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Example 5: Stiff ODEs?

What is a “stiff” ODE? Wikipedia says that it is an ODE where:
.... certain numerical methods for solving the equation are numer-
ically unstable, unless the step size is taken to be extremely small.
It has proven difficult to formulate a precise definition of stiffness,
but the main idea is that the equation includes some terms that
can lead to rapid variation in the solution.

Can PSM help explain this?

We don’t know.. 🥴
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Example 5a: Flame

The description below is directly from
https://www.mathworks.com/company/newsletters/articles/stiff-differential-equations.html

... When you light a match, the ball of flame grows rapidly until it reaches
a critical size. Then it remains at that size because the amount of oxygen
being consumed by the combustion in the interior of the ball balances the
amount available through the surface. The simple model is

dy
dt = y2 − y3, y(0) = δ 0 < t <

2

δ

The scalar variable y(t) represents the radius of the ball. The y2 and y3

terms come from the surface area and the volume. The critical parameter
is the initial radius, δ , which is ”small.” We seek the solution over a length
of time that is inversely proportional to δ.
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Example 5: Flame

when delta = 1e-7, ode45 and ode23 struggle:

>> tic; [t45,y45] = ode45(FF,[0 2/delta],delta);toc
Elapsed time is 6.557995 seconds.
>> tic; [t23,y23] = ode23(FF,[0 2/delta],delta);toc
Elapsed time is 3.811527 seconds.

Terrible! But PSM is even worse!

>> tic; [tpsm,ypsm,deg] = odepsmJZ(FF,[0 2/delta],delta,1e-6);toc
Elapsed time is 37.443010 seconds.

PSM attempts to construct a degree 8 approximation over 2147686 time
steps!
Hmmmm.....
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Example 5a: Flame

What if we ask for a more precise solution?

>> tic; [tpsm,ypsm] = odepsmJZ(@fflame,[0,endt],y0,1e-14);toc
Elapsed time is 0.011421 seconds.

This is a degree 18 approximation over 93 time steps.

How do Matlab’s stiff solvers handle this?

>> tic; [t23s,y23s] = ode15s(@fflame,[0,endt],y0);toc
Elapsed time is 0.200175 seconds. (using 140 steps)

>> tic; [t23s,y23s] = ode23s(@fflame,[0,endt],y0);toc
Elapsed time is 0.072760 seconds. (in 77 steps)
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Example 5a: Flame

What about accuracy?

We can compute the residual error from our
continuous PSM solution, which is something that we can NOT do with
solutions from discrete solvers.

>>k = 1;
>> for y0 = ypsm

coefs(k,:) = fflameseries(0,y0,30); k = k+1;
end

>> flame_res = abs(coefs(:,2) - (ypsm.^2 - ypsm.^3));
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Example 5a: y ′ = y2 − y3

Question: Why does raising the tolerance seem to work in this case?
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Conclusions
Our Power Series Methods (PSM) methods rely on the use of auxiliary
variables to build a system of polynomial IVODEs. Once the system is
polynomial, series methods allow remarkably direct analysis. We
demonstrated features of PSM:

Flexible and fast
Arbitrarily high order
Adaptive in time and order
Compact and efficient data footprint
Simple to apply thanks to auto generated code
Generate piecewise polynomials - either numerically or symbolically
Continuous, so no interpolation needed
Allow detailed analysis

These techniques apply to a broad range of highly nonlinear ODE. And
something we didn’t talk about - PSM has an error bound!
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Thank you

Thanks!

Questions?

thelwerj@jmu.edu

JMU PSM GROUP: J.S. Sochacki+, G.E. Parker+, D.C. Carothers+, S.K.
Lucas, J.D. Rudmin, A. Tongen, D.A. and P.G. Warne
and S. Colafranceschi (EMU), R.D. Neidinger+ (Davidson College)

(+ emeritus)

ODEPSM: https://github.com/rineidinger/psm4odes
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