Stability of Differential Equations through the lens of power series

Roger Thelwell \& Jim Sochacki

James Madison University
January 11, 2015

Outline

(1) Introduction
(2) Examples

- $\frac{d y}{d x}=\alpha y$
- $\frac{d}{d t} y=\alpha(t) y$
- $\frac{d}{d t} y=y^{3}$
- $\frac{d}{d t} y=\sin (y)$
(3) Theory

4) Conclusion

Series - a quick introduction

Power series show up first in Calculus, and then again in ODE courses. Usually, they are used to solve linear ODEs like this one from Stewart:

$$
y^{\prime \prime}-2 t y^{\prime}+y=0 \quad y(0)=0, y^{\prime}(0)=1
$$

with solution

$$
y(t)=t+\sum_{n=1}^{\infty} \frac{1 \cdot 5 \cdot 9 \cdot \ldots \cdot(4 n-3)}{(2 n+1)!} t^{2 n+1}
$$

$\mathrm{Ex} 0: y^{\prime}=\alpha y$
Consider

$$
\frac{d}{d t} y(t)=\alpha y(t)
$$

Let

$$
y(t)=\sum_{n=0}^{\infty} y_{n} t^{n}
$$

plug it into the ODE and get

$$
\sum_{n=0}^{\infty}(n+1) y_{n+1} t^{n}=\alpha \sum_{n=0}^{\infty} y_{n} t^{n}
$$

and compare coefficients for each power of t, we see

$$
y_{n+1}=\frac{\alpha}{n+1} y_{n}
$$

Ex 0: $y^{\prime}=\alpha y$

Since

$$
y_{n+1}=\frac{\alpha}{n+1} y_{n}
$$

we have

$$
\begin{aligned}
& y_{1}=\frac{\alpha}{1} y_{0}=\alpha y_{0} \\
& y_{2}=\frac{\alpha}{2} y_{1}=\frac{\alpha}{2}\left(\alpha y_{0}\right)=\frac{\alpha^{2} y_{0}}{2!}
\end{aligned}
$$

and ...

$$
y_{n}=\frac{\alpha^{n}}{n!} y_{0}
$$

Noting that y_{0} is the IV, we have $y(t)=y_{0} \exp (\alpha t)$.

Ex 1: $y^{\prime}=\alpha(t) y$

Now consider

$$
\frac{d}{d t} y=\alpha(t) y \quad y(0)=y_{0}
$$

a non-autonomous IVODE, with solution

$$
y(t)=y_{0} \exp \left(\int_{0}^{t} \alpha(\tau) d \tau\right)
$$

Assume

$$
\alpha(t)=\sum_{n=0}^{\infty} a_{n} t^{n} \quad \text { and } \quad y(t)=\sum_{n=0}^{\infty} y_{n} t^{n}
$$

and substitute:

$$
\sum_{n=0}^{\infty}(n+1) y_{n+1} t^{n}=\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right) \cdot\left(\sum_{n=0}^{\infty} y_{n} t^{n}\right)
$$

aside: Products

Power series are easy to add, subtract, differentiate and integrate - do it term by term.

If $A=\sum_{n=0} a_{n} t^{n}$ and $B=\sum_{n=0} b_{n} t^{n}$, what is $A \cdot B$?

$$
\begin{aligned}
\left(a_{0}+a_{1} t\right. & \left.+a_{2} t^{2}+a_{3} t^{3}+\ldots\right) \cdot\left(b_{0}+b_{1} t+b 2 t^{2}+b 3 t^{3}+\ldots\right) \\
=\left(a_{0}\right. & \left.+b_{0}\right)+\left(a_{0} b_{1}+a_{1} b_{0}\right) t+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) t^{2} \ldots \\
& +\left(a_{0} b_{3}+a_{1} b_{2}+a_{2} b_{1}+a_{3} b_{0}\right) t^{3}+\ldots \\
=\sum_{n=0} & {\left[\sum_{i=0}^{n} a_{i} b_{n-i}\right] t^{n} }
\end{aligned}
$$

We'll call this the Cauchy Product

Ex 1: $y^{\prime}=\alpha(t) y$

With Maple

>> restart:
>> Order := 4:
>> alpha := t -> sum(a[k]*t^k,k=0..Order):
>> GROWTH := diff(y(t),t) = alpha(t)*y(t):
>> Yseries := dsolve(\{GROWTH,y(0)=y[0]\},y(t),type='series');

$$
\begin{aligned}
y(t)= & y_{0}+a_{0} y_{0} t+\left(1 / 2 a_{0}^{2} y_{0}+1 / 2 a_{1} y_{0}\right) t^{2}+ \\
& \left(1 / 6 a_{0}^{3} y_{0}+1 / 2 a_{1} a_{0} y_{0}+1 / 3 a_{2} y_{0}\right) t^{3}+O\left(t^{4}\right)
\end{aligned}
$$

which we can check
>> SOLN1 := y[0] * exp(int(alpha(tau), tau=0..t));
>> taylor (SOLN1,t=0);

But why?

From

$$
\begin{aligned}
y(t)= & y_{0}+a_{0} y_{0} t+\left(1 / 2 a_{0}{ }^{2} y_{0}+1 / 2 a_{1} y_{0}\right) t^{2}+ \\
& \left(1 / 6 a_{0}^{3} y_{0}+1 / 2 a_{1} a_{0} y_{0}+1 / 3 a_{2} y_{0}\right) t^{3}+O\left(t^{4}\right)
\end{aligned}
$$

we can find

$$
\begin{aligned}
\partial_{y_{0}} y(t)= & 1+a_{0} t+\left(1 / 2 a_{0}^{2}+1 / 2 a_{1}\right) t^{2}+ \\
& \left(1 / 6 a_{0}^{3}+1 / 2 a_{1} a_{0}+1 / 3 a_{2}\right) t^{3}+O\left(t^{4}\right)
\end{aligned}
$$

Sensitivity to initial conditions! Which we can verify...
>> Yp := taylor(diff(Yseries,y_0),t=0);

$$
\begin{aligned}
& =1+a_{0} t+\left(1 / 2 a_{0}^{2}+1 / 2 a_{1}\right) t^{2}+ \\
& \quad\left(1 / 6 a_{0}^{3}+1 / 2 a_{1} a_{0}+1 / 3 a_{2}\right) t^{3}+O\left(t^{4}\right)
\end{aligned}
$$

The Lyapunov exponent

The Lyapunov exponent, $\lambda(t)$, is the exponential growth rate measuring sensitivity to initial conditions. It is classically computed as:

$$
\|\delta \mathbf{x}(t)\| \approx \exp (\lambda(t) \cdot t)\left\|\delta \mathbf{x}_{\mathbf{0}}\right\|,
$$

where $\delta \mathbf{x}$ is the (first) variation of trajectory \mathbf{x}.
We can instead calculate $\lambda(t)$ directly via:

$$
\partial_{y_{0}} y(t) \approx \exp (\lambda(t) \cdot t)
$$

The Lyapunov exponent

We have

$$
\partial_{y_{0}} y(t)=\sum_{n=0}^{\infty} f_{n}\left(y_{0}\right) t^{n}
$$

and so $\lambda(t)$ is easy to compute:
>> simplify(taylor(ln(Yp))/t);

$$
\lambda(t)=a_{0}+1 / 2 a_{1} t+1 / 3 a_{2} t^{2}+O\left(t^{3}\right)
$$

For our problem, a direct calculation verifies this:

$$
\left.\frac{1}{t} \int_{0}^{t} \alpha(\tau) d \tau\right)
$$

This time average is the mean coefficient.
$\operatorname{Ex} 2: \frac{d}{d t} y=y^{3}$

Consider

$$
\frac{d}{d t} y(t)=y^{3}(t)
$$

Now let $v(t)=y^{2}$ and notice that

$$
\begin{aligned}
& y^{\prime}=y^{3}=v \cdot y \\
& v^{\prime}=2 y \cdot y^{\prime}=2 v^{2}
\end{aligned}
$$

The variational problem for this would be

$$
\delta \mathbf{w}^{\prime}=\left[\begin{array}{cc}
v & y \\
0 & 4 v
\end{array}\right] \delta \mathbf{w}
$$

from which we find the exponents to be $\lambda_{1}=\frac{1}{t} \int_{0}^{t} v(\tau), \lambda_{2}=\frac{1}{t} \int_{0}^{t} 4 v(\tau)$.

Stability

If $y(0)=y_{0}$, then $v(0)=y_{0}^{2}$, and our series solution is (from MAPLE)

$$
\begin{aligned}
& y(t)=y_{0}+y_{0}^{3} t+3 / 2 y_{0}{ }^{5} t^{2}+5 / 2 y_{0}{ }^{7} t^{3}+O\left(t^{4}\right) \\
& v(t)=y_{0}^{2}+2 y_{0}^{4} t+4 y_{0}^{6} t^{2}+8 y_{0}^{8} t^{3}+O\left(t^{4}\right)
\end{aligned}
$$

and we have complete stability information.

$$
\partial_{y_{0}} y(t)=1+3 y_{0}^{2} t+(15 / 2) y_{0}^{4} t^{2}+(35 / 2) y_{0}^{6} t^{3}+O\left(t^{4}\right)
$$

with the corresponding exponent $\left(\lambda(t)=\frac{1}{t} \ln \left(\partial_{y_{0}} y(t)\right)\right)$,

$$
\lambda(t)=y_{0}^{2}+y_{0}^{4} t+(4 / 3) y_{0}^{6} t^{2}+O\left(t^{3}\right)
$$

at any point in the flow!

$\mathrm{Ex} 3: y^{\prime}=\sin (y)$

Consider

$$
\frac{d}{d t} y(t)=\sin (y)
$$

and the auxiliary variables $u=\sin (y)$ and $v=\cos (y)$. Then

$$
\begin{aligned}
y^{\prime} & =1 \cdot u \\
u^{\prime} & =v \cdot u \\
v^{\prime} & =-u \cdot u
\end{aligned}
$$

We can build a series solution of $y(t)$ and compute stability as before.

$$
\text { i.e. } \quad y(t)=\sum_{n=0}^{\infty} f_{n}\left(y_{0}\right) t^{n}
$$

The PROCESS

Generate a polynomial (quadratic) system.(Reverse Polish)
Construct series solution $Y\left(t ; y_{0}\right)$ using $\left(y_{0}, t\right)$.
Construct sensitivity to ICS $M\left(t ; y_{0}\right):=\partial_{y_{0}} Y\left(t ; y_{0}\right)$
$t=$ large value
20 WHILE T<Tmax
Evaluate $Y(T)$ to generate IC
Evaluate $M(T ; I C)$
Compute $\lambda(T)$ (or mean) for local time interval
(compute local radius of convergence, r ?)
Advance: $T=T+r$
GOTO 20

THEORY

Carothers et. al. 2005 [2]
Theorem
A function v is the solution to an arbitrary component of a polynomial system of differential equations if and only if for some n there is a polynomial Q in $n+1$ variables so that $Q\left(v, v^{\prime}, \cdots, v^{(n)}\right)=0$.

This implies that the motion of our moon may be described without
reference to the earth, sun, or any other planets!

THEORY

Error Bound

Warne et. al. 2006 [3]
If we have (at $a=0$) a system $\mathbf{y}^{\prime}(t)=\mathbf{f}(\mathbf{y}(t)), \mathbf{y}(0)=\mathbf{b}$, then

$$
\begin{equation*}
\left\|\mathbf{y}(t)-\sum_{k=0}^{n} \mathbf{y}_{k} t^{k}\right\|_{\infty} \leq \frac{\|\mathbf{b}\|_{\infty}|K t|^{n+1}}{1-|M t|} \quad \text { for } \quad m \geq 2 \tag{1}
\end{equation*}
$$

Where the parameters K and M depend on immediately observable quantities of the original system;
M is the largest row sum of coefficients, and $K=(m-1) c^{m-1}$, where $c=\max \left\{1,\|\mathbf{b}\|_{\infty}\right\}$ and $m=\operatorname{deg}(\mathbf{f})$.

Conclusions

- Easy to find approximate solution operator as a function of IV.
- Easy to compute stability and exponents (and spectrum?).
- No need to evolve tangent space (a la Wolf).
- Non-autonomous? No fear!
- Non-linear? No problem!

Questions??

thelwerj@jmu.edu

References

E. Fehlberg

Numerical integration of differential equations by power series expansions, illustrated by physical examples. Technical Report NASA-TN-D-2356, NASA, 1964.
固 David Carothers et. al.
Some properties of solutions to polynomial systems of differential equations.
Electronic Journal of Differential Equations, 2005:1-18, 2005.
围 P. G. Warne et. al.
Explicit a-priori error bounds and adaptive error control for approximation of nonlinear initial value differential systems.
Comput. Math. Appl., 52(12):1695-1710, 2006.

For more information

- James Sochacki

Polynomial ordinary differential equations - examples, solutions, properties.
Neural Parallel \& Scientific Computations, 18(3-4):441-450, 2010.

