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Series - a quick introduction

Power series show up first in Calculus, and then again in ODE courses.
Usually, they are used to solve linear ODEs like this one from Stewart:

y' =2ty +y=0 y(0)=0,y'(0)=1

with solution

y(t)=t+ Z:l 1-5 9(2n+1()4l’7 —3) ont1
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Ex 0: y' = ay

Consider J
Zy(t) = ay(1)

Let

oo
y(£) = yat",
n=0
plug it into the ODE and get

o0

[e.e]
D (n+1Dynat" =a)  yt"

n=0 n=0

and compare coefficients for each power of t, we see

Yn+1 =
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Ex 0: y' = ay

Since
o«
Yot = n+ 1y"
we have
o
1= TYO = aYo
2
_a _«a _a®y
2=y =Slaw) = -
and ...
an
Yn = _|}/0
n!

Noting that yp is the IV, we have y(t) = yoexp(at).
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Ex 1: y' = a(t)y

Now consider J
—_ = t =
g =ty y(0) =y

a non-autonomous IVODE, with solution

10) = e ( [ a(r)ar).

Assume - -
a(t) =) apt" and  y(t)=> yut"
n=0 n=0

and substitute:

D (n+ Dyt = <Z a,,t”> ~ (Zy,,t”)

n=0

n=0
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aside: Products

Power series are easy to add, subtract, differentiate and integrate - do it
term by term.

If A= Zant" and B = Z b,t", what is A- B?
n=0 n=0

(ag+art + axt® + azt3 +...) - (bo + byt + b2t> + b3t> +...)

= (ao + bo) + (aob1 + albo)t + (aob2 + ai1b; + azbo)t2
(aob3 + ai1by + axby + a3b0)t3 + ...

e[S ]

We'll call this the Cauchy Product
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Ex 1: y' = a(t)y
With MAPLE

>> restart:

>> Order := 4:

>> alpha := t -> sum(alk]*t"k,k=0..0rder):

>> GROWTH := diff(y(t),t) = alpha(t)*y(t):

>> Yseries := dsolve({GROWTH,y(0)=y[0]},y(t),type=’series’);

y (t) =yo+ a0 yot + (1/2a0° yo + 1/2 a1 yo) t2+
(1/6a0° yo +1/2a1 a0 yo + 1/3 a2 y0) t2 + O (t*)

which we can check

>> SOLN1 := y[0] * exp(int(alpha(tau),tau=0..t));
>> taylor (SOLN1,t=0);
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But why?

From

y(t) =yo + ao Yot + (1/2 302y0 + 1/2 alyo) t2-|-
(1/6a0®yo+1/2a1a0y0 + 1/3a2y0) £2 + O (t*)

we can find

Ayoy(t) =1+ aot + (1/2a0° + 1/2ay) t>+
(1/6a0> +1/2a1 a0 +1/3a5) t* + O (t*)

Sensitivity to initial conditions! Which we can verify...

>> Yp := taylor(diff(Yseries,y_0),t=0);

=1+ agt+ (1/220° +1/2a1) 2+
(1/6 20> +1/2a1a0 + 1/3 ) t* + O (t*)
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The Lyapunov exponent

The Lyapunov exponent, A(t), is the exponential growth rate measuring

sensitivity to initial conditions. It is classically computed as:
[ox(£)[| = exp(A(t) - t)[[0xoll,
where 0x is the (first) variation of trajectory x.

We can instead calculate A\(t) directly via:

Oyoy(t) = exp(A(t) - t)
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The Lyapunov exponent

We have

[e.o]

Oy (£) = faly0)t"

n=0
and so A(t) is easy to compute:
>> simplify(taylor(1n(Yp))/t);

Mt) = ap + 1/2a1t + 1/3a:t> + O(t3)

For our problem, a direct calculation verifies this:

% /O a(r)dr).

This time average is the mean coefficient.
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d
Ex 2: —y =y°
X dty y

Consider J
il — 3
() = 3(1),

Now let v(t) = y? and notice that

The variational problem for this would be

|V Yy
5W—[O 4V]5w

from which we find the exponents to be Ay = 1 [ v(7),Xo = 1 [ 4v(7).
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Stability

If y(0) = yo, then v(0) = y2, and our series solution is (from MAPLE)

y(£) =yo + y03t +3/2y0°t? + 5/2 07 t% + O (%)
v(t) =yg + 20"t + 4%t + 8y°t* + O (tY),

and we have complete stability information.
Ayey(t) = 1+ 33t + (15/2)yg t2 + (35/2)ySt> + O(t*)
with the corresponding exponent (A(t) = % In(0y,¥(t))),

At) = 8 + vt + (4/3)y8t? + O(%)

at any point in the flow!
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Ex 3: y' =sin(y)

Consider J
Zy(t) = sin(y)

and the auxiliary variables u = sin(y) and v = cos(y). Then

y'=1-u
uv=v-u
vV=—u-u

We can build a series solution of y(t) and compute stability as before.

ie. y(t) =Y falw)t"
n=0

thelwerj@jmu.edu (JMU) Power series, Nonlinear O.D.E., and stability January 11, 2015 14 /21



The PROCESS

Generate a polynomial (quadratic) system.(Reverse Polish)
Construct series solution Y (t; yp) using (yo, t).
Construct sensitivity to ICS M(t; yo) := 9y, Y(t; y0)
t = large value
20 WHILE T< Tmax
Evaluate Y(T) to generate IC
Evaluate M(T;IC)
Compute A(T) (or mean) for local time interval

(compute local radius of convergence, r?)
Advance: T=T +r
GOTO 20
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THEORY

Carothers et. al. 2005 [2]

Theorem

A function v is the solution to an arbitrary component of a polynomial
system of differential equations if and only if for some n there is a
polynomial Q in n+ 1 variables so that Q(v, V', - ,v(")) =0.

This implies that the motion of our moon may be described
without
reference to the earth, sun, or any other planets!
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THEORY

Error Bound

Warne et. al. 2006 [3]

If we have (at a = 0) a system y'(t) = f(y(t)), y(0) = b, then

n

y(t) - Z yxt"

k=0

1
bl K™
- 1—|Mt
oo

for m>2 (1)

Where the parameters K and M depend on immediately observable
quantities of the original system;

M is the largest row sum of coefficients, and K = (m — 1)c™1, where
¢ = max{1,||b||} and m = deg(f).
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Conclusions

Easy to find approximate solution operator as a function of IV.
Easy to compute stability and exponents (and spectrum?).
No need to evolve tangent space (a la Wolf).

Non-autonomous? No fear!

Non-linear? No problem!
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Questions??

thelwerj@jmu.edu
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