Differential Equations
 through the lens of power series

Roger Thelwell

James Madison University
October 27, 2014

Outline

(1) Introduction
(2) Example 1: $\frac{d y}{d x}=y$
(3) Example 2: $\frac{d}{d x} y=y(1-y)$
(4) Example 3: $\frac{d}{d x} y=\sin (y)$
(5) Example 4: $\frac{d}{d x} y=y \sin (y)$
(6) Theory
(7) Conclusion

What are series?

If you have a sequence $\left\{a_{n}\right\}$, then add the terms:

$$
a_{0}+a_{1}+a_{2}+a_{3}+\ldots=\sum_{n=0}^{\infty} a_{n}
$$

Sometimes it converges, sometimes it doesn't. We are usually interested in the series that coverge.

Examples

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots \\
& \sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{4}+\frac{1}{9}+\ldots \\
& \sum_{n=0}^{\infty} x^{n}=1+x^{1}+x^{2}+x^{3}+\ldots \\
& \sum_{n=0} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \\
& \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{(3)}(0)}{3!} x^{3}+\ldots
\end{aligned}
$$

And more examples

And series for some common functions:

$$
\begin{gathered}
\exp (x)=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n} \\
\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{(2 n+1)} \\
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
\end{gathered}
$$

Example 1

Consider

$$
\frac{d}{d x} y(x)=y(x) \quad y(0)=y_{0}
$$

Phase Portrait

What do you think the solutions of

$$
\frac{d}{d x} y(x)=y(x) \quad y(0)=y_{0}
$$

to look like?
Let's use a phase portrait to get some intuition about typical solutions.

An exact solution

We've got

$$
\frac{d y}{d x}=y
$$

Let's try to integrate it.

$$
\begin{aligned}
\frac{d y}{d x} & =y \\
\frac{1}{y} \frac{d y}{d x} & =1 \\
\int \frac{1}{y} \frac{d y}{d x} d x & =\int 1 d x \\
\int \frac{1}{y} d y & =\int 1 d x \\
\ln (y) & =x+C \quad \text { carefu!! } \\
\text { So } y(x) & =\exp (x+C)=K \exp (x) .
\end{aligned}
$$

A power series solution?

How do we solve using power series?
Find coefficients a_{n} so that

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

to satisfy

$$
\frac{d}{d x} y(x)=y(x)
$$

Power series

If

$$
y(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

then

$$
\begin{gathered}
\frac{d}{d x} y=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots=\sum_{n=0}^{\infty} ? ? ? x^{n} \\
\frac{d}{d x} y=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
\end{gathered}
$$

And substitute into

$$
\frac{d}{d x} y(x)=y(x)
$$

Power series

We get

$$
\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

If we compare coefficients for each power of x, we see

$$
(n+1) a_{n+1}=a_{n} \Longrightarrow a_{n+1}=\frac{1}{n+1} a_{n}
$$

So,

$$
\begin{aligned}
& a_{1}=\frac{1}{1} a_{0}=a_{0} \\
& a_{2}=\frac{1}{2} a_{1}=\frac{1}{2}\left(a_{0}\right)=\frac{a_{0}}{2!} \\
& a_{3}=\frac{1}{3} a_{2}=\frac{1}{3}\left(\frac{a_{0}}{2!}\right)=\frac{a_{0}}{3!}
\end{aligned}
$$

and ...

$$
a_{n}=\frac{1}{n!} a_{0}
$$

Power series

Since

$$
a_{n}=\frac{1}{n!} a_{0},
$$

then

$$
\begin{gathered}
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} a_{0} \frac{1}{n!} x^{n}=? ? ? \\
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} a_{0} \frac{1}{n!} x^{n}=a_{0} \exp (x)
\end{gathered}
$$

Again using $y(x=0)=y_{0}$, we see that $a_{0}=y_{0}$, and recover the exact solution

$$
y(x)=y_{0} \exp (x)
$$

Usually, though, the function is harder identify.

Example 2:

Now consider

$$
\frac{d}{d x} y=y(1-y)
$$

the logistic equation.

Phase Portrait

What do you think solutions of

$$
\frac{d}{d x} y=y(1-y) \quad y(0)=y_{0}
$$

to look like?
Let's use a phase portrait again to get some intuition about typical solutions.

Exact solution

Let's solve $\frac{d}{d x} y=y(1-y)$ by integrating directly.

$$
\begin{aligned}
\frac{d}{d x} y & =y(1-y) \\
\frac{1}{y(1-y)} \frac{d}{d x} y & =1 \\
\int \frac{1}{y(1-y)} d y & =\int 1 d y
\end{aligned}
$$

Lets solve $\frac{d}{d x} y=y(1-y)$ by integrating directly.

$$
\begin{aligned}
\frac{d}{d x} y & =y(1-y) \\
\frac{1}{y(1-y)} \frac{d}{d x} y & =1 \\
\int \frac{1}{y(1-y)} d y & =\int 1 d y
\end{aligned}
$$

Power series

Let's now solve $\frac{d}{d x} y=y(1-y)$ using power series. Again, assume

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

Substituting,

$$
\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}=\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \cdot\left(1-\sum_{n=0}^{\infty} a_{n} x^{n}\right)
$$

aside: Products

Power series are easy to add, subtract, differentiate and integrate - do it term by term.

If $A=\sum_{n=0} a_{n} x^{n}$ and $B=\sum_{n=0} b_{n} x^{n}$, what is $A \cdot B$?

$$
\begin{aligned}
\left(a_{0}+a_{1} x+\right. & \left.a_{2} x^{2}+a_{3} x^{3}+\ldots\right) \cdot\left(b_{0}+b_{1} x+b 2 x^{2}+b 3 x^{3}+\ldots\right) \\
= & \left(a_{0}+b_{0}\right)+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) x^{2} \ldots \\
& \quad+\left(a_{0} b_{3}+a_{1} b_{2}+a_{2} b_{1}+a_{3} b_{0}\right) x^{3}+\ldots \\
=\sum_{n=0} & {\left[\sum_{i=0}^{n} a_{i} b_{n-i}\right] x^{n} }
\end{aligned}
$$

We'll call this the Cauchy Product

aside: Matlab

```
In Matlab,
    \sum\mp@code{degree }}\mp@subsup{\sum}{n=0}{n}\mp@subsup{a}{i=0}{}\mp@subsup{b}{n-i}{
is
function cvec = cauchy_product(avec,bvec,degree)
for n = 1:degree + 1
    for i = 1:n
        j = n-i+1;
        cvec(n) = avec(i)*bvec(j)+cvec(n);
    end
end
```


Power series

Back to it:

$$
\begin{aligned}
\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n} & =\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \cdot\left(1-\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& \left.=\sum_{n=0}^{\infty} a_{n} x^{n}-\sum_{n=0}^{\infty} \sum_{i=0}^{n} a_{i} a_{n-i} x^{n}\right) \\
& =\sum_{n=0}^{\infty}\left(a_{n}-c_{n}\right) x^{n}
\end{aligned}
$$

where c_{n} is the result of the Cauchy product. We can again write a recursion relation:
or

$$
(n+1) a_{n+1}=a_{n}-\sum_{i=0}^{n} a_{i} a_{n-i}
$$

$$
a_{n+1}=\frac{1}{n+1}\left(a_{n}-\sum_{i=0}^{n} a_{i} a_{n-i}\right)
$$

MATLAB solution

Matlab makes it easy. Since $a_{0}=y_{0}$, we need

$$
a_{n+1}=\frac{1}{n+1}\left(a_{n}-\sum_{i=0}^{n} a_{i} a_{n-i}\right)
$$

function $\mathrm{a}=$ solve_logistic(a0, degree)
for $\mathrm{n}=1$: degree +1
$\mathrm{c}(\mathrm{n})=$ cauchy_product $(\mathrm{a}, \mathrm{a}, \mathrm{n})$;
$a(n+1)=1 /(n+1) *(a(n)-c(n))$;
end

Example 3

Let's explore

$$
\frac{d}{d x} y=\sin (y)
$$

Intuition

Consider

$$
\frac{d}{d x} y=\sin (y) \quad y(0)=y_{0}
$$

What do we expect?
Phase Portrait

Exact solution

$$
\begin{aligned}
& \frac{d}{d x} y=\sin (y) \\
& \int \frac{1}{\sin (y)} d y=\int 1 d x
\end{aligned}
$$

These are getting a little tedious:
Wolfram Alpha says: $y(x)=2 \operatorname{arccot}(\exp (C-x))$

$$
\begin{aligned}
\frac{d}{d x} y & =\sin (y) \\
\int \frac{1}{\sin (y)} d y & =\int 1 d x \\
\int \frac{\sin (y)}{1-\cos ^{2}(y)} d y & =\int 1 d x \\
\int \frac{-1}{1-u^{2}} d u & =\int 1 d x \\
\int \frac{A}{1-u}+\frac{B}{1+u} d u & =\int 1 d x \\
1 / 2 \ln ((1-u) /(1+u)) & =x+C \\
\frac{1-\cos (y)}{1+\cos (y)} & =K \exp (2 x)
\end{aligned}
$$

Power series

We have

$$
\frac{d}{d x} y=\sin (y) \quad y(0)=y_{0}
$$

We do have a series for $\sin (\bullet)$, but ...
Let's turn this into a polynomial system,
Let

$$
v_{1}(x)=y(x), \quad v_{2}(x)=\sin (y(x)), \quad \text { and } \quad v_{3}(x)=\cos (y(x))
$$

The polynomial system

Taking $v_{1}(x)=y, \quad v_{2}(x)=\sin (y) \quad$ and $\quad v_{3}(x)=\cos (y)$, then

$$
\begin{array}{rlr}
v_{1}^{\prime} & =1 \cdot y^{\prime} \\
& =v_{2} & \\
v_{2}^{\prime} & =v_{3} \cdot y_{1}^{\prime}(0)=y_{0} \\
& =v_{2} v_{3} & \\
v_{2}(0)=\sin \left(y_{0}\right) \\
v_{3}^{\prime} & =-v_{2} \cdot y^{\prime} \\
& =-v_{2}^{2} & \\
v_{3}(0)=\cos \left(y_{0}\right)
\end{array}
$$

We can solve this system with series recursion, just as before.
Wwe can also consider the geometry....

Geometry

Matlab allows us to see the structure.

Decoupling

Since $v_{1}(x)=y, \quad v_{2}(x)=\sin (y) \quad$ and $\quad v_{3}(x)=\cos (y)$,

$$
\begin{aligned}
v_{1}^{\prime \prime}=y^{\prime} & =v_{2} v_{3} \\
v_{1}^{\prime \prime \prime}=\left(v_{2} v_{3}\right)^{\prime} & =v_{2} v_{3}^{\prime}+v_{2}^{\prime} v_{3} \\
& =v_{2}\left(-v_{2}\right)^{2}+\left(v_{2} v_{3}\right) v_{3} \\
& =-v_{2}^{3}+v_{2} v_{3}^{2} \\
& =-v_{2}^{3}+v_{2}\left(1-v_{2}^{2}\right) \\
& =-2\left(v_{2}\right)^{3}+v_{2}
\end{aligned}
$$

but $v_{2}=v_{1}^{\prime}=y^{\prime}$, and we've recast

$$
y^{\prime}=\sin (y) \quad \text { as } \quad y^{\prime \prime \prime}-y^{\prime}+2\left(y^{\prime}\right)^{3}=0
$$

Gröbner basis theory says this can always be done.

Example 4

And one more to think about:

$$
\frac{d}{d x} y=y \sin (y)
$$

Intuition?

$$
\frac{d}{d x} y=y \sin (y)
$$

Analytic soln?

Maple
> dsolve(diff(y(x), $x)=y(x) * \sin (y(x))) ;$

Analytic soln?

Wolfram Alpha

Sample solution family:

(sampling $y(0)$)

Series?

Taking $v_{1}=y, v_{2}=y \sin (y), \quad v_{3}=? ? ? ?, v_{4}=? ? ? ?$,
Taking $v_{1}=y, v_{2}=y \sin (y), \quad v_{3}=\sin (y), v_{4}=\cos (y)$, then

$$
\begin{aligned}
v_{1}^{\prime} & =1 \cdot y^{\prime} & & \\
& =v_{2} & & v_{1}(0)=y_{0} \\
v_{2}^{\prime} & =(y \cos (y)+\sin (y)) \cdot y^{\prime} & & \\
& =\left(v_{1} v_{4}+v_{3}\right) v_{2} & & v_{2}(0)=y_{0} \sin \left(y_{0}\right) \\
v_{3}^{\prime} & =\cos (y) \cdot y^{\prime} & & \\
& =v_{2} v_{3} & & v_{3}(0)=\sin \left(y_{0}\right) \\
v_{4}^{\prime} & =-\sin (y) \cdot y^{\prime} & & \\
& =-v_{2}^{2} & & v_{4}(0)=\cos \left(y_{0}\right)
\end{aligned}
$$

Let $v_{5}=v_{1} v_{4}$ to reduce to a quadratic system.

THEORY

We've been able to recast EVERY ODE that we've considered as a polynomial system.

U\$D 50 CASH PRIZE to the first person to send me an ODE with analytic solution that CAN'T be recast as a polynomial system.

THEORY

Carothers et. al. 2005 [2]
Theorem
A function v is the solution to an arbitrary component of a polynomial system of differential equations if and only if for some n there is a polynomial Q in $n+1$ variables so that $Q\left(v, v^{\prime}, \cdots, v^{(n)}\right)=0$.

This implies that the motion of our moon may be described without
reference to the earth, sun, or any other planets!

THEORY

Error Bound

Warne et. al. 2006 [3]
If we have (at $a=0$) a system $\mathbf{x}^{\prime}(t)=\mathbf{h}(\mathbf{x}(t)), \mathbf{x}(0)=\mathbf{b}$, then

$$
\begin{equation*}
\left\|\mathbf{x}(t)-\sum_{k=0}^{n} \mathbf{x}_{k} t^{k}\right\|_{\infty} \leq \frac{\|\mathbf{b}\|_{\infty}|K t|^{n+1}}{1-|M t|} \quad \text { for } \quad m \geq 2 \tag{1}
\end{equation*}
$$

Where the parameters K and M depend on immediately observable quantities of the original system;
M is the largest row sum of coefficients, and $K=(m-1) c^{m-1}$, where $c=\max \left\{1,\|\mathbf{b}\|_{\infty}\right\}$ and $m=\operatorname{deg}(\mathbf{h})$.

Conclusions

- Easily compute arbitrarily high order Taylor coefficients
- The tools can solve highly nonlinear and stiff problems
- Semi-analytic methods and
- interpolation free to machine capability (error and calculation)

Thanks to all the faculty and students of

and in particular to LTC Dr. Chalishajar.

References

E. Fehlberg

Numerical integration of differential equations by power series expansions, illustrated by physical examples. Technical Report NASA-TN-D-2356, NASA, 1964.

固 David Carothers et. al.
Some properties of solutions to polynomial systems of differential equations.
Electronic Journal of Differential Equations, 2005:1-18, 2005.
围 P. G. Warne et. al.
Explicit a-priori error bounds and adaptive error control for approximation of nonlinear initial value differential systems.
Comput. Math. Appl., 52(12):1695-1710, 2006.

For more information

- James Sochacki

Polynomial ordinary differential equations - examples, solutions, properties.
Neural Parallel \& Scientific Computations, 18(3-4):441-450, 2010.

