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History

Like interpolation methods and unlike Runge-Kutta methods,
the power series method permits computation of the truncation
error along with the actual integration. This is fundamental to
an automatic step size control [and leads to a method that is] far
more accurate than the Runge-Kutta-Nystrom method.

...

[Though] differential equations of the [appropriate form] . . .
are generally not encountered in practice . . . a given system can
in many cases be transformed into a system of [appropriate form]
through the introduction of suitable auxiliary functions, thus
allowing solution by power series expansions.

Fehlberg, in 1964 [1]
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History

1830s Cauchy & Weierstrass

1964: Fehlberg

1980: Rall

1982: Chang and Corliss

1989: Lohner

1989 : Parker and Sochacki and Picard iteration
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EXAMPLE: ROOTFINDING
The Problem

Consider

f (x) = e−
√
x sin(x ln(1 + x2)), (1)

Neidinger’s 2010 SIAM article. [2]
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EXAMPLE: ROOTFINDING
Neidinger’s Newton

Neidinger: Define valder, a Matlab OOP class and overload functions
to handle the class. For example:

function h = sin(u)

h = valder(sin(u.val), cos(u.val)*u.der);

end

and then evaluate as needed...

function vec = fdf(a)

x = valder(a,1);

y = exp(-sqrt(x))*sin(x*log(1+x^2));

vec = double(y);
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EXAMPLE: ROOTFINDING
TAPENADE’s SCT for Newton

From

Y = EXP(-SQRT(x))*SIN(x*LOG(1+x**2))

to the preprocessed

result1 = SQRT(x)

arg1 = 1 + x**2

arg2 = x*LOG(arg1)

y = EXP(-result1)*SIN(arg2)
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EXAMPLE: ROOTFINDING
TAPENADE’s SCT for Newton

And then (tangent) mode

result1d = xd/(2.0*SQRT(x))

result1 = SQRT(x)

arg1d = 2*x*xd

arg1 = 1 + x**2

arg2d = xd*LOG(arg1) + x*arg1d/arg1

arg2 = x*LOG(arg1)

yd = EXP(-result1)*arg2d*COS(arg2) -

+ result1d*EXP(-result1)*SIN(arg2)

y = EXP(-result1)*SIN(arg2)
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EXAMPLE: ROOTFINDING
Roots as IVODE

Roots of f coincide with the roots of

g(x) =
1

2
〈f (x), f (x)〉.

Since g(x) is non-negative and g(x) = 0 if and only if f (x) = 0, we want

d

dt
g(x) < 0.
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EXAMPLE: ROOTFINDING
Root conditions

If

g(x) =
1

2
〈f (x), f (x)〉.

then

d

dt
g(x) = 〈 ddt f (x), f (x)〉 (2)

= 〈Df (x)x ′(t), f (x)〉 (3)

= 〈x ′(t),Df (x)T f (x)〉. (4)
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EXAMPLE: ROOTFINDING
Option A

From
d

dt
g(x) = 〈Df (x)x ′(t), f (x)〉

g ′(x) < 0 if
x ′(t) = −(Df (x))−1f (x). (5)

Approximating x ′ with forward Euler (and ∆t = 1) yields

xt+1 = xt − (Df (xt))−1f (xt),

Newton’s Method!
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EXAMPLE: ROOTFINDING
Option B

From
d

dt
g(x) = 〈x ′(t),Df (x)T f (x)〉

we see g ′(x) < 0 if
x ′(t) = −Df (x)T f (x). (6)

Again approximating x ′ with forward Euler (this time with arbitrary ∆t)...

xt+∆t = xt −∆t(Df (xt))T f (xt),

Steepest Descent - and easily applied in higher dimensions!
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EXAMPLE: ROOTFINDING
Newton as polynomial ODE

To recast
x ′(t) = −(Df (x))−1f (x). (7)

in polynomial form, first introduce x2 = (Df (x))−1.
Then

x ′(t) =− x2f (x) and (8)

x ′2(t) =x3
2 f (x)f ′′(x), (9)

to handle the reciprocal. Of course, f ′ and f ′′ might be messy...
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EXAMPLE: ROOTFINDING
IVODE approach to Newton

for f (x) = e−
√
x sin(x ln(1 + x2)) we’ll need...

x4 = ln(1 + x2)
x5 = (1 + x2)−1

x6 = x ∗ x4

x7 = sin(x6)
x8 = cos(x6)

x9 = x1/2

x10 = x−1/2

x11 = e−x9
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EXAMPLE: A SIMPLE ODE
The problem

Consider
y ′ = sin(y) y(t0) = y0 (10)

If we let

x1 = y , x2 = sin(y), and x3 = cos(y) (11)

we get a polynomial system.
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EXAMPLE: A SIMPLE ODE
The polynomial system

Taking x1 = y , x2 = sin(y) and x3 = cos(y), then

x ′1 = 1 · y ′ = x2 x1(t0) = y0

x ′2 = x3 · y ′ = x2 x3 and x2(t0) = sin(y0) (12)

x ′3 = −x2 · y ′ = −x2
2 x3(t0) = cos(y0)

We can solve this system with series recursion.

But, we can also consider
the geometry....
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EXAMPLE: A SIMPLE ODE
The Geometry
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EXAMPLE: A SIMPLE ODE
What about AD?

Calling TAYLOR, (or ATOMFT, or ...)

$ taylor -main -o simple_ex.c simple_ex.in

we get (a differential equation) AND the final variable list...

v_008 (state variable)

v_022 = sin(v_008) (1 0)

v_023 = cos(v_008) (2 0)

which is exactly our change of variables!
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EXAMPLE: ANOTHER ODE
The problem

Consider the IVODE

y ′ = Kyα, y(x0 = 0) = y0 (13)

Why?

Because we have an analytic solution!

y(x) =

((
Kx − Kαx + y0

1−α)(α−1)−1
)−1
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EXAMPLE: ODEs
Recurrent power series

First represent y(x) =
∑∞

j=0 yj(x − x0)j ,.
Since

y ′(x) =
∞∑
j=1

j yj(x − x0)j−1,

and yα =
∑∞

j=0 aj(x − x0)j , where

an =
1

ny0

n−1∑
j=1

(nα− j (α + 1)) yn−jaj , (14)

it’s a simple recursion to recover coefficients yj .

Just like Lara in the 1990s. Or Steffensen in the 1950s. Or Cauchy in
1830s?
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EXAMPLE: ODEs
some AD ODE tools

ATOMFT (Chang & Corliss)

TAYLOR (Jorba & Zou)

The Taylor Center (Gofen)

TIDES (Abad, Barrio, Blesa, Rodriguez)
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EXAMPLE: ODEs
Option A

Consider the following change of variables:
x1 = y , x2 = yα, and x3 = y−1.

Then,

x ′1 = −x2 x1(0) = y0,

x ′2 = −αx2
2 x3 x2(0) = yα0 , (15)

x ′3 = x2 x2
3 x3(0) = y−1

0 .
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EXAMPLE: ODEs
Option B

Or, better yet, let w = yα−1.

Then,

y ′ = Kyw , y(0) = y0

w ′ = (α− 1)Kw 2, w(0) = yα−1
0 , (16)
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EXAMPLE: ODEs
A comparison

Figure: Error when using a fixed step Runge-Kutta on [0,2] with h = .05 and
y0 = 1,K = 1, α = e/2 + i/π.
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EXAMPLE: INVERSE FUNCTIONS

Series representations of inverse functions are easy. From

f (f −1(t)) = t,

differentiate to obtain f ′(x1)x ′1 = 1, where x1 = f −1(t).
To cast in polynomial form, let x2 = [f ′(x1)]−1, and x3 = x2

2 to obtain

x ′1 =
1

f ′(x1)
= [f ′(x1)]−1 = x2 (17)

x ′2 =− x2
2 f ′′(x1)x ′1 = −x3f ′′(x1)x ′1. (18)

x ′3 =2x2x ′2 (19)
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THEORY
Projectively Polynomial class

xi is Projectively Polynomial if

x′(t) = h (x(t)) where x(a) = b,

where h is polynomial.
Projectively polynomial family contains the elementary functions:

1 polynomials

2 exp and ln

3 Trig funcs: sin, cos, tan
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THEORY
Projectively Polynomial class

xi is Projectively Polynomial if

x′(t) = h (x(t)) where x(a) = b,

where h is polynomial.
The class is closed under:

1 +, -, *, /

2 Functional composition and inverse
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THEORY
Decoupling

Carothers et. al. 2005 [3]

Theorem

A function u is the solution to an arbitrary component of a polynomial
system of differential equations if and only if for some n there is a
polynomial Q in n + 1 variables so that Q(u, u′, · · · , u(n)) = 0.
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THEORY
Decoupling

Carothers et. al. 2005 [3]

Theorem

A function u is the solution to an arbitrary component of a polynomial
system of differential equations if and only if for some n there is a
polynomial Q in n + 1 variables so that Q(u, u′, · · · , u(n)) = 0.

This implies that the motion of one of the two masses in a double
pendulum may be described completely without reference to the second
mass.
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THEORY
Error Bound

Warne et. al. 2006 [1]

If we have (at a = 0) a system x′(t) = h(x(t)), x(0) = b. then∥∥∥∥∥x(t)−
n∑

k=0

xktk

∥∥∥∥∥
∞

≤
‖b‖∞ |Kt|n+1

1− |Mt|
for m ≥ 2 (20)

Where the parameters K and M depend on immediately observable
quantities of the original system;

M is the largest row sum of coefficients, and K = (m − 1)cm−1, where
c = max{1, ||b||∞} and m = deg(h).
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QUESTIONS

Efficiency

Links in Structure and Parsing

Intuition

Other connections between PSM and AD
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CONCLUSION

AD is predominately applied to problems involving differentiation, while
PSM began as a tool in the ODE setting. There are numerous benefits to
sharing the tool-sets of recursive computation of Taylor coefficients
between these two communities. Some are:

Easily compute arbitrarily high order Taylor coefficients

The tools can solve highly nonlinear and stiff problems

Semi-analytic methods and

interpolation free to machine capability (error and calculation)
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