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History

Like interpolation methods and unlike Runge-Kutta methods,
the power series method permits computation of the truncation
error along with the actual integration. This is fundamental to
an automatic step size control [and leads to a method that is] far
more accurate than the Runge-Kutta-Nystrom method.
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History

Like interpolation methods and unlike Runge-Kutta methods,
the power series method permits computation of the truncation
error along with the actual integration. This is fundamental to
an automatic step size control [and leads to a method that is] far
more accurate than the Runge-Kutta-Nystrom method.

[Though] differential equations of the [appropriate form] ...
are generally not encountered in practice ... a given system can
in many cases be transformed into a system of [appropriate form]
through the introduction of suitable auxiliary functions, thus
allowing solution by power series expansions.

Fehlberg, in 1964 [1]
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@ 1830s Cauchy & Weierstrass
o 1964: Fehlberg

@ 1989 : Parker and Sochacki and Picard iteration
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1830s Cauchy & Weierstrass
1964: Fehlberg

1982: Chang and Corliss

1989 : Parker and Sochacki and Picard iteration

Roger Thelwell (JMU) Power Series and AD AD2012 4 /32



History

1830s Cauchy & Weierstrass

1964: Fehlberg

1980: Rall

1982: Chang and Corliss

1989: Lohner

1989 : Parker and Sochacki and Picard iteration
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EXAMPLE: ROOTFINDING
The Problem
Consider

f(x) = e V¥sin(x In(1 + x?)), (1)
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Neidinger's 2010 SIAM article. [2]
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EXAMPLE: ROOTFINDING

Neidinger's Newton

Neidinger: Define valder, a MATLAB OOP class and overload functions
to handle the class. For example:

function h = sin(u)
h = valder(sin(u.val), cos(u.val)*u.der);
end

and then evaluate as needed...

function vec = fdf(a)

x = valder(a,1);

y = exp(-sqrt(x))*sin(x*log(1+x~2));
vec = double(y);
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EXAMPLE: ROOTFINDING

TAPENADE's SCT for Newton

From
Y = EXP(-SQRT(x))*SIN(x*LOG(1+x**2))
to the preprocessed

resultl = SQRT(x)

argl = 1 + x**2

arg2 = x*xL0G(argl)

y = EXP(-resultl)*SIN(arg2)
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EXAMPLE: ROOTFINDING

TAPENADE's SCT for Newton

And then (tangent) mode

resultld = xd/(2.0%SQRT(x))
resultl = SQRT(x)
argld = 2*x*xd
argl = 1 + x*x*2
arg2d = xd*L0G(argl) + x*argld/argl
arg2 = x*L0G(argl)
yd = EXP(-resultl)*arg2d*C0S(arg2) -
+ result1d*EXP(-resultl)*SIN(arg2)
y = EXP(-resultl)*SIN(arg2)
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EXAMPLE: ROOTFINDING

Roots as IVODE

Roots of f coincide with the roots of

£(0) = S (7). F(x).

Since g(x) is non-negative and g(x) = 0 if and only if f(x) = 0, we want

d
Eg(x) <0.
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EXAMPLE: ROOTFINDING

Root conditions

If
£() = 5 (7). F())
then
d
g0 = (0, F) ©)
= (DR (), F() 3)
= (), DI TAX)). (4)
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EXAMPLE: ROOTFINDING

Option A
From d

() = (DFGX (1), ()
g'(x)<0if

X' (t) = —(DF(x)) " (x). (5)

Approximating x” with forward Euler (and At = 1) yields

Xer1 = xe — (DF(xe)) " (xe),
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EXAMPLE: ROOTFINDING

Option A
From d
2 8(x) = (DF()X (1), /(%)
g'(x)<0if
X() = ~(DF(x) " (x). )

Approximating x” with forward Euler (and At = 1) yields

Xer1 = xe — (DF(xe)) " (xe),

Newton's Method!
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EXAMPLE: ROOTFINDING

Option B

From
< g(x) = (¢(1), DF()TF(x)

we see g'(x) < 0 if

X' (t) = —=DFf(x)Tf(x). (6)
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EXAMPLE: ROOTFINDING

Option B

From
< g(x) = (<(1), DF () ()

we see g'(x) < 0 if
X' (t) = —=DFf(x)Tf(x). (6)

Again approximating x” with forward Euler (this time with arbitrary At)...

Xt-l—At = Xt — At(Df(Xt))Tf(Xt),
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EXAMPLE: ROOTFINDING

Option B

From
d

s
we see g'(x) < 0 if

(x) = (X'(t), DF () TF(x))

X' (t) = —=DFf(x)Tf(x). (6)

Again approximating x” with forward Euler (this time with arbitrary At)...

Xt+At = Xt — At(Df(Xt))Tf(Xt),

Steepest Descent - and easily applied in higher dimensions!
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EXAMPLE: ROOTFINDING

Newton as polynomial ODE

To recast
X'(t) = =(Df (x)) " (x). (7)

in polynomial form, first introduce x» = (Df(x))~L.
Then

X'(t) = — xf(x) and (8)
x5(t) =x3 ()" (x), (9)

to handle the reciprocal. Of course, ' and f” might be messy...
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EXAMPLE: ROOTFINDING

IVODE approach to Newton

for £(x) = e~ VXsin(x In(1 4 x?)) we'll need...

xq = In(1 + x?)
x5 = (1 +x?)71
X6 = X * Xa

x7 = sin(xg)

xg = cos(xg)

xo = x1/2

x10 = x /2
x11=e
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EXAMPLE: A SIMPLE ODE

The problem

Consider
y'=sin(y)  y(to) = yo

If we let

x1 =y, Xxy=sin(y), and x3=cos(y)

we get a polynomial system.

Roger Thelwell (JMU) Power Series and AD

AD2012

15 / 32



EXAMPLE: A SIMPLE ODE

The polynomial system

Taking x1 =y, xx=sin(y) and x3 = cos(y), then

x| = 1y =x x1(to) = yo
Xy = x3-y' = x3 and  xx(to) = sin(yo) (12)
Xé — —Xp - y, = —X22 X3(t0) = Cos(yo)

We can solve this system with series recursion.
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EXAMPLE: A SIMPLE ODE

The polynomial system

Taking x1 =y, x2x =sin(y) and

x| = 1.y =x

/ /

Xp = X3y = Xo X3
/ ! 2
X3 = X2y = 7X

We can solve this system with series recursion.

the geometry....

x3 = cos(y), then

and

Roger Thelwell (JMU) Power Series and AD

x1(to) = yo
x2(to) = sin(yo) (12)
x3(to) = cos(yo)

But, we can also consider

AD2012 16 / 32



EXAMPLE: A SIMPLE ODE

The Geometry

cos(x(1))

sin(x(t))
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EXAMPLE: A SIMPLE ODE

What about AD?

Calling TAYLOR, (or ATOMFT, or ...)
$ taylor -main -o simple_ex.c simple_ex.in
we get (a differential equation) AND the final variable list...

v_008 (state variable)
v_022 = sin(v_008) 10
v_023 = cos(v_008) (2 0)

which is exactly our change of variables!
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EXAMPLE: ANOTHER ODE
The problem

Consider the IVODE

y' = Ky“,

y(xo=0)=yo
o Why?

(13)
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EXAMPLE: ANOTHER ODE

The problem

Consider the IVODE

Y =Ky, y(xo=0)=yo

o Why?

@ Because we have an analytic solution!

-1
_ 11
y(x) = ((Kx — Kax +y017a)(a 2 )
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EXAMPLE: ODEs

Recurrent power series

First represent y(x) = > 724 yj(x — xo),.
Since

o0
Ye) =Y iylx P,
j=1
and y* = Zfio aj(x — Xo)j, where

1 n—1

an=——% (na—j(a+1))ynja,
nyo ‘4

it's a simple recursion to recover coefficients y;.
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EXAMPLE: ODEs

Recurrent power series

First represent y(x) = > 724 yj(x — xo),.
Since

Y=Y iyl —x)
j=1

and y® =3 aj(x — xo), where

1 n—1

2= =3 (n0 = (0 1) yo (14)
j=1

it's a simple recursion to recover coefficients y;.

Just like Lara in the 1990s. Or Steffensen in the 1950s. Or Cauchy in
1830s?
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EXAMPLE: ODEs

some AD ODE tools

o ATOMFT (Chang & Corliss)
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EXAMPLE: ODEs

some AD ODE tools

o ATOMFT (Chang & Corliss)
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EXAMPLE: ODEs

some AD ODE tools

o ATOMFT (Chang & Corliss)
e TAYLOR (Jorba & Zou)
@ The Taylor Center (Gofen)
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EXAMPLE: ODEs

some AD ODE tools

ATOMFT (Chang & Corliss)

TAYLOR (Jorba & Zou)

The Taylor Center (Gofen)

TIDES (Abad, Barrio, Blesa, Rodriguez)
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EXAMPLE: ODEs

Option A

Consider the following change of variables:

x1=y,x =y% and x3 = y’l.

Then,
x| = —Xp x1(0) = yo,
Xp = —axj x3 x2(0) = yg', (15)
X3 = X2 X3 x3(0) = yp .
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EXAMPLE: ODEs

Option B

Then,

Roger Thelwell (JMU)

Or, better yet, let w =y

a—1

y' = Kyw,

w' = (a —1)Kw?,
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EXAMPLE: ODEs

A comparison

magnitude of the error

107 : : . ‘
107°F E
********%9&***
Sk
107"k A * % .
* ARk
o AR %
*** *ii++
107 L *** ;ﬁ‘t{" J
** **+++ RK4 w/ 1 egn
* **ij RK4 w/ 2 egn
* **++ RK4 w/ 3 eqn
1 04 L **-)t-++ AD |
aoe*++ PS
*+
100 L= . . . .
(o] 0.5 1 1.5 2 2.5

Figure: Error when using a fixed step Runge-Kutta on [0,2] with h = .05 and

yo=1,K=1La=e¢e/2+i/m.
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EXAMPLE: INVERSE FUNCTIONS

Series representations of inverse functions are easy. From

differentiate to obtain f'(x1)x{ = 1, where x; = f~1(t).
To cast in polynomial form, let x, = [f'(x1)]~, and x3 = x3 to obtain

1

/ — — f/ —1 — 1
X1 f/(Xl) [ (Xl)] X2 ( 7)
X = — x22f"(x1)x{ = —x3f"(x1)x]. (18)
Xé —2X2X2 (19)
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THEORY

Projectively Polynomial class

x; is Projectively Polynomial if

X'(t) =h(x(t)) where x(a)=h,

where h is polynomial.

Projectively polynomial family contains the elementary functions:
@ polynomials
@ exp and 1n

© Trig funcs:  sin, cos, tan
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THEORY

Projectively Polynomial class

x; is Projectively Polynomial if

x'(t) =h(x(t)) where x(a)=b,

where h is polynomial.
The class is closed under:

Qo+ - %/

@ Functional composition and inverse
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THEORY

Decoupling

Carothers et. al. 2005 [3]

Theorem

A function u is the solution to an arbitrary component of a polynomial
system of differential equations if and only if for some n there is a
polynomial Q in n+ 1 variables so that Q(u, u’,--- ,u(™) = 0.
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THEORY

Decoupling

Carothers et. al. 2005 [3]

Theorem

A function u is the solution to an arbitrary component of a polynomial
system of differential equations if and only if for some n there is a
polynomial Q in n+ 1 variables so that Q(u, u’,--- ,u(™) = 0.

This implies that the motion of one of the two masses in a double

pendulum may be described completely without reference to the second
mass.
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THEORY

Error Bound

Warne et. al. 2006 [1]

If we have (at a = 0) a system x'(t) = h(x(t)), x(0) = b. then

n

x(t) — Zxktk

k=0

1
bl [KE™

f > 2 2
S T M or m> (20)

Where the parameters K and M depend on immediately observable
quantities of the original system;

M is the largest row sum of coefficients, and K = (m — 1)c™1, where
c = max{1,||b||} and m = deg(h).
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QUESTIONS

o Efﬁciency
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QUESTIONS

o Efficiency

@ Links in Structure and Parsing
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QUESTIONS

o Efficiency

@ Links in Structure and Parsing

@ Intuition
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QUESTIONS

Efficiency

Links in Structure and Parsing

Intuition

Other connections between PSM and AD
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CONCLUSION

AD is predominately applied to problems involving differentiation, while
PSM began as a tool in the ODE setting. There are numerous benefits to
sharing the tool-sets of recursive computation of Taylor coefficients
between these two communities. Some are:

@ Easily compute arbitrarily high order Taylor coefficients
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CONCLUSION

AD is predominately applied to problems involving differentiation, while
PSM began as a tool in the ODE setting. There are numerous benefits to
sharing the tool-sets of recursive computation of Taylor coefficients
between these two communities. Some are:

Easily compute arbitrarily high order Taylor coefficients

The tools can solve highly nonlinear and stiff problems

Semi-analytic methods and

interpolation free to machine capability (error and calculation)
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