Connections between Power Series and Automatic Differentiation

D.C. Carothers, S. Lucas, G. E. Parker, J.D. Rudmin, J.S. Sochacki,
R.J. Thelwell, A. Tongen \& P. G. Warne

James Madison University, VA
6th International Conference on Automatic Differentiation

Outline

(1) History
(2) Rootfinding
(3) ODEs

- $y^{\prime}=\sin (y)$
- $y^{\prime}=y^{\alpha}$

4. Inverse Functions
(5) Theory
(6) Conclusion

History

Like interpolation methods and unlike Runge-Kutta methods, the power series method permits computation of the truncation error along with the actual integration. This is fundamental to an automatic step size control [and leads to a method that is] far more accurate than the Runge-Kutta-Nystrom method.

History

Like interpolation methods and unlike Runge-Kutta methods, the power series method permits computation of the truncation error along with the actual integration. This is fundamental to an automatic step size control [and leads to a method that is] far more accurate than the Runge-Kutta-Nystrom method.
[Though] differential equations of the [appropriate form] ... are generally not encountered in practice . . . a given system can in many cases be transformed into a system of [appropriate form] through the introduction of suitable auxiliary functions, thus allowing solution by power series expansions.

Fehlberg, in 1964 [1]

History

- 1989 : Parker and Sochacki and Picard iteration

History

- 1964: Fehlberg
- 1989 : Parker and Sochacki and Picard iteration

History

- 1830s Cauchy \& Weierstrass
- 1964: Fehlberg
- 1989 : Parker and Sochacki and Picard iteration

History

- 1830s Cauchy \& Weierstrass
- 1964: Fehlberg
- 1982: Chang and Corliss
- 1989: Parker and Sochacki and Picard iteration

History

- 1830s Cauchy \& Weierstrass
- 1964: Fehlberg
- 1980: Rall
- 1982: Chang and Corliss
- 1989: Lohner
- 1989 : Parker and Sochacki and Picard iteration

EXAMPLE: ROOTFINDING

The Problem

Consider

$$
\begin{equation*}
f(x)=e^{-\sqrt{x}} \sin \left(x \ln \left(1+x^{2}\right)\right) \tag{1}
\end{equation*}
$$

Neidinger's 2010 SIAM article. [2]

EXAMPLE: ROOTFINDING

Neidinger's Newton

Neidinger: Define valder, a Matlab OOP class and overload functions to handle the class. For example:

```
function h = sin(u)
h = valder(sin(u.val), cos(u.val)*u.der);
end
```

and then evaluate as needed...

```
function vec = fdf(a)
x = valder(a,1);
y = exp(-sqrt(x))*sin(x*log(1+x^2));
vec = double(y);
```


EXAMPLE: ROOTFINDING

TAPENADE's SCT for Newton

From

$$
\mathrm{Y}=\operatorname{EXP}(-\operatorname{SQRT}(\mathrm{x})) * \operatorname{SIN}(\mathrm{x} * \operatorname{LOG}(1+\mathrm{x} * * 2))
$$

to the preprocessed

$$
\begin{aligned}
& \text { result1 }=\operatorname{SQRT}(\mathrm{x}) \\
& \arg 1=1+\mathrm{x} * * 2 \\
& \arg 2=\mathrm{x} * \operatorname{LOG}(\arg 1) \\
& \mathrm{y}=\operatorname{EXP}(-\mathrm{resul} 1) * \operatorname{SIN}(\arg 2)
\end{aligned}
$$

EXAMPLE: ROOTFINDING

TAPENADE's SCT for Newton

And then (tangent) mode

```
result1d = xd/(2.0*SQRT(x))
result1 = SQRT(x)
arg1d = 2*x*xd
arg1 = 1 + x**2
arg2d = xd*LOG(arg1) + x*arg1d/arg1
arg2 = x*LOG(arg1)
yd = EXP(-result1)*arg2d*COS(arg2) -
    result1d*EXP(-result1)*SIN(arg2)
y = EXP(-result1)*SIN(arg2)
```


EXAMPLE: ROOTFINDING

Roots as IVODE

Roots of f coincide with the roots of

$$
g(x)=\frac{1}{2}\langle f(x), f(x)\rangle .
$$

Since $g(x)$ is non-negative and $g(x)=0$ if and only if $f(x)=0$, we want

$$
\frac{d}{d t} g(x)<0
$$

EXAMPLE: ROOTFINDING

Root conditions

If

$$
g(x)=\frac{1}{2}\langle f(x), f(x)\rangle
$$

then

$$
\begin{align*}
\frac{d}{d t} g(x) & =\quad\left\langle\frac{d}{d t} f(x), f(x)\right\rangle \tag{2}\\
& =\left\langle D f(x) x^{\prime}(t), f(x)\right\rangle \tag{3}\\
& =\left\langle x^{\prime}(t), D f(x)^{T} f(x)\right\rangle \tag{4}
\end{align*}
$$

EXAMPLE: ROOTFINDING

Option A

From

$$
\frac{d}{d t} g(x)=\left\langle D f(x) x^{\prime}(t), f(x)\right\rangle
$$

$g^{\prime}(x)<0$ if

$$
\begin{equation*}
x^{\prime}(t)=-(D f(x))^{-1} f(x) . \tag{5}
\end{equation*}
$$

Approximating x^{\prime} with forward Euler (and $\Delta t=1$) yields

$$
x_{t+1}=x_{t}-\left(D f\left(x_{t}\right)\right)^{-1} f\left(x_{t}\right),
$$

EXAMPLE: ROOTFINDING

Option A

From

$$
\frac{d}{d t} g(x)=\left\langle D f(x) x^{\prime}(t), f(x)\right\rangle
$$

$g^{\prime}(x)<0$ if

$$
\begin{equation*}
x^{\prime}(t)=-(D f(x))^{-1} f(x) . \tag{5}
\end{equation*}
$$

Approximating x^{\prime} with forward Euler (and $\Delta t=1$) yields

$$
x_{t+1}=x_{t}-\left(D f\left(x_{t}\right)\right)^{-1} f\left(x_{t}\right),
$$

Newton's Method!

EXAMPLE: ROOTFINDING

Option B

From

$$
\frac{d}{d t} g(x)=\left\langle x^{\prime}(t), D f(x)^{T} f(x)\right\rangle
$$

we see $g^{\prime}(x)<0$ if

$$
\begin{equation*}
x^{\prime}(t)=-D f(x)^{T} f(x) \tag{6}
\end{equation*}
$$

EXAMPLE: ROOTFINDING

Option B

From

$$
\frac{d}{d t} g(x)=\left\langle x^{\prime}(t), D f(x)^{T} f(x)\right\rangle
$$

we see $g^{\prime}(x)<0$ if

$$
\begin{equation*}
x^{\prime}(t)=-D f(x)^{T} f(x) . \tag{6}
\end{equation*}
$$

Again approximating x^{\prime} with forward Euler (this time with arbitrary Δt)...

$$
x_{t+\Delta t}=x_{t}-\Delta t\left(D f\left(x_{t}\right)\right)^{T} f\left(x_{t}\right)
$$

EXAMPLE: ROOTFINDING

Option B

From

$$
\frac{d}{d t} g(x)=\left\langle x^{\prime}(t), D f(x)^{T} f(x)\right\rangle
$$

we see $g^{\prime}(x)<0$ if

$$
\begin{equation*}
x^{\prime}(t)=-D f(x)^{T} f(x) . \tag{6}
\end{equation*}
$$

Again approximating x^{\prime} with forward Euler (this time with arbitrary Δt)...

$$
x_{t+\Delta t}=x_{t}-\Delta t\left(D f\left(x_{t}\right)\right)^{T} f\left(x_{t}\right)
$$

Steepest Descent - and easily applied in higher dimensions!

EXAMPLE: ROOTFINDING

Newton as polynomial ODE

To recast

$$
\begin{equation*}
x^{\prime}(t)=-(D f(x))^{-1} f(x) \tag{7}
\end{equation*}
$$

in polynomial form, first introduce $x_{2}=(\operatorname{Df}(x))^{-1}$.
Then

$$
\begin{align*}
& x^{\prime}(t)=-x_{2} f(x) \quad \text { and } \tag{8}\\
& x_{2}^{\prime}(t)=x_{2}^{3} f(x) f^{\prime \prime}(x), \tag{9}
\end{align*}
$$

to handle the reciprocal. Of course, f^{\prime} and $f^{\prime \prime}$ might be messy...

EXAMPLE: ROOTFINDING

IVODE approach to Newton for $f(x)=e^{-\sqrt{x}} \sin \left(x \ln \left(1+x^{2}\right)\right)$ we'll need...

$$
\begin{aligned}
& x_{4}=\ln \left(1+x^{2}\right) \\
& x_{5}=\left(1+x^{2}\right)^{-1} \\
& x_{6}=x * x_{4} \\
& x_{7}=\sin \left(x_{6}\right) \\
& x_{8}=\cos \left(x_{6}\right) \\
& x_{9}=x^{1 / 2} \\
& x_{10}=x^{-1 / 2} \\
& x_{11}=e^{-x_{9}}
\end{aligned}
$$

EXAMPLE: A SIMPLE ODE

The problem

Consider

$$
\begin{equation*}
y^{\prime}=\sin (y) \quad y\left(t_{0}\right)=y_{0} \tag{10}
\end{equation*}
$$

If we let

$$
\begin{equation*}
x_{1}=y, \quad x_{2}=\sin (y), \quad \text { and } \quad x_{3}=\cos (y) \tag{11}
\end{equation*}
$$

we get a polynomial system.

EXAMPLE: A SIMPLE ODE

The polynomial system

Taking $x_{1}=y, \quad x_{2}=\sin (y) \quad$ and $\quad x_{3}=\cos (y)$, then

$$
\begin{array}{lrl}
x_{1}^{\prime}= & 1 \cdot y^{\prime}=x_{2} & x_{1}\left(t_{0}\right)=y_{0} \\
x_{2}^{\prime}= & x_{3} \cdot y^{\prime}=x_{2} x_{3} & \text { and } \tag{12}\\
x_{3}^{\prime}= & -x_{2} \cdot y^{\prime}=-x_{2}^{2} & \\
x_{2}\left(t_{0}\right)=\sin \left(y_{0}\right) \\
x_{3}\left(t_{0}\right)=\cos \left(y_{0}\right)
\end{array}
$$

We can solve this system with series recursion.

EXAMPLE: A SIMPLE ODE

The polynomial system

Taking $x_{1}=y, \quad x_{2}=\sin (y) \quad$ and $\quad x_{3}=\cos (y)$, then

$$
\begin{array}{lcl}
x_{1}^{\prime}= & 1 \cdot y^{\prime}=x_{2} & x_{1}\left(t_{0}\right)=y_{0} \\
x_{2}^{\prime}= & x_{3} \cdot y^{\prime}=x_{2} x_{3} & \text { and } \tag{12}\\
x_{3}^{\prime}= & -x_{2} \cdot y^{\prime}=-x_{2}^{2} & \\
x_{2}\left(t_{0}\right)=\sin \left(y_{0}\right) \\
x_{3}\left(t_{0}\right)=\cos \left(y_{0}\right)
\end{array}
$$

We can solve this system with series recursion. But, we can also consider the geometry....

EXAMPLE: A SIMPLE ODE

The Geometry

EXAMPLE: A SIMPLE ODE

What about AD?

Calling TAYLOR, (or ATOMFT, or ...)
\$ taylor -main -o simple_ex.c simple_ex.in
we get (a differential equation) AND the final variable list...

$$
\begin{align*}
& \text { v_008 (state variable) } \\
& \text { v_022 }=\text { sin(v_008) } \tag{array}\\
& \text { v_023 }=\text { cos }\left(v_{-} 008\right) \tag{array}
\end{align*}
$$

which is exactly our change of variables!

EXAMPLE: ANOTHER ODE

The problem

Consider the IVODE

$$
\begin{equation*}
y^{\prime}=K y^{\alpha}, \quad y\left(x_{0}=0\right)=y_{0} \tag{13}
\end{equation*}
$$

- Why?

EXAMPLE: ANOTHER ODE

The problem

Consider the IVODE

$$
\begin{equation*}
y^{\prime}=K y^{\alpha}, \quad y\left(x_{0}=0\right)=y_{0} \tag{13}
\end{equation*}
$$

- Why?
- Because we have an analytic solution!

$$
y(x)=\left(\left(K x-K \alpha x+y_{0}^{1-\alpha}\right)^{(\alpha-1)^{-1}}\right)^{-1}
$$

EXAMPLE: ODEs

Recurrent power series

First represent $y(x)=\sum_{j=0}^{\infty} y_{j}\left(x-x_{0}\right)^{j}$,
Since

$$
y^{\prime}(x)=\sum_{j=1}^{\infty} j y_{j}\left(x-x_{0}\right)^{j-1}
$$

and $y^{\alpha}=\sum_{j=0}^{\infty} a_{j}\left(x-x_{0}\right)^{j}$, where

$$
\begin{equation*}
a_{n}=\frac{1}{n y_{0}} \sum_{j=1}^{n-1}(n \alpha-j(\alpha+1)) y_{n-j} a_{j} \tag{14}
\end{equation*}
$$

it's a simple recursion to recover coefficients y_{j}.

EXAMPLE: ODEs

Recurrent power series

First represent $y(x)=\sum_{j=0}^{\infty} y_{j}\left(x-x_{0}\right)^{j}$, .
Since

$$
y^{\prime}(x)=\sum_{j=1}^{\infty} j y_{j}\left(x-x_{0}\right)^{j-1}
$$

and $y^{\alpha}=\sum_{j=0}^{\infty} a_{j}\left(x-x_{0}\right)^{j}$, where

$$
\begin{equation*}
a_{n}=\frac{1}{n y_{0}} \sum_{j=1}^{n-1}(n \alpha-j(\alpha+1)) y_{n-j} a_{j} \tag{14}
\end{equation*}
$$

it's a simple recursion to recover coefficients y_{j}. Just like Lara in the 1990s. Or Steffensen in the 1950s. Or Cauchy in 1830s?

EXAMPLE: ODEs

some AD ODE tools

- ATOMFT (Chang \& Corliss)

EXAMPLE: ODEs

some AD ODE tools

- ATOMFT (Chang \& Corliss)
- TAYLOR (Jorba \& Zou)

EXAMPLE: ODEs

some AD ODE tools

- ATOMFT (Chang \& Corliss)
- TAYLOR (Jorba \& Zou)
- The Taylor Center (Gofen)

EXAMPLE: ODEs

some AD ODE tools

- ATOMFT (Chang \& Corliss)
- TAYLOR (Jorba \& Zou)
- The Taylor Center (Gofen)
- TIDES (Abad, Barrio, Blesa, Rodriguez)

EXAMPLE: ODEs

Option A

Consider the following change of variables:
$x_{1}=y, x_{2}=y^{\alpha}$, and $x_{3}=y^{-1}$.
Then,

$$
\begin{array}{ll}
x_{1}^{\prime}=-x_{2} & x_{1}(0)=y_{0} \\
x_{2}^{\prime}=-\alpha x_{2}^{2} x_{3} & x_{2}(0)=y_{0}^{\alpha} \tag{15}\\
x_{3}^{\prime}=x_{2} x_{3}^{2} & x_{3}(0)=y_{0}^{-1}
\end{array}
$$

EXAMPLE: ODEs

Option B

Or, better yet, let $w=y^{\alpha-1}$.
Then,

$$
\begin{align*}
y^{\prime} & =K y w, & y(0) & =y_{0} \\
w^{\prime} & =(\alpha-1) K w^{2}, & w(0) & =y_{0}^{\alpha-1}
\end{align*}
$$

EXAMPLE: ODEs

A comparison

Figure: Error when using a fixed step Runge-Kutta on [0,2] with $h=.05$ and $y_{0}=1, K=1, \alpha=e / 2+i / \pi$.

EXAMPLE: INVERSE FUNCTIONS

Series representations of inverse functions are easy. From

$$
f\left(f^{-1}(t)\right)=t
$$

differentiate to obtain $f^{\prime}\left(x_{1}\right) x_{1}^{\prime}=1$, where $x_{1}=f^{-1}(t)$.
To cast in polynomial form, let $x_{2}=\left[f^{\prime}\left(x_{1}\right)\right]^{-1}$, and $x_{3}=x_{2}^{2}$ to obtain

$$
\begin{align*}
& x_{1}^{\prime}=\frac{1}{f^{\prime}\left(x_{1}\right)}=\left[f^{\prime}\left(x_{1}\right)\right]^{-1}=x_{2} \tag{17}\\
& x_{2}^{\prime}=-x_{2}^{2} f^{\prime \prime}\left(x_{1}\right) x_{1}^{\prime}=-x_{3} f^{\prime \prime}\left(x_{1}\right) x_{1}^{\prime} . \tag{18}\\
& x_{3}^{\prime}=2 x_{2} x_{2}^{\prime} \tag{19}
\end{align*}
$$

THEORY

Projectively Polynomial class

$\mathbf{x}_{\mathbf{i}}$ is Projectively Polynomial if

$$
\mathbf{x}^{\prime}(t)=\mathbf{h}(\mathbf{x}(t)) \quad \text { where } \quad \mathbf{x}(a)=\mathbf{b},
$$

where \mathbf{h} is polynomial.
Projectively polynomial family contains the elementary functions:
(1) polynomials
(2) exp and \ln
(3) Trig funcs: sin, cos, tan

THEORY

Projectively Polynomial class

$\mathbf{x}_{\mathbf{i}}$ is Projectively Polynomial if

$$
\mathbf{x}^{\prime}(t)=\mathbf{h}(\mathbf{x}(t)) \quad \text { where } \quad \mathbf{x}(a)=\mathbf{b}
$$

where \mathbf{h} is polynomial.
The class is closed under:
(1),,+- , $/$
(2) Functional composition and inverse

THEORY

Decoupling

Carothers et. al. 2005 [3]

Theorem

A function u is the solution to an arbitrary component of a polynomial system of differential equations if and only if for some n there is a polynomial Q in $n+1$ variables so that $Q\left(u, u^{\prime}, \cdots, u^{(n)}\right)=0$.

THEORY

Decoupling

Carothers et. al. 2005 [3]
Theorem
A function u is the solution to an arbitrary component of a polynomial system of differential equations if and only if for some n there is a polynomial Q in $n+1$ variables so that $Q\left(u, u^{\prime}, \cdots, u^{(n)}\right)=0$.

This implies that the motion of one of the two masses in a double pendulum may be described completely without reference to the second mass.

THEORY

Error Bound

Warne et. al. 2006 [1]
If we have (at $a=0$) a system $\mathbf{x}^{\prime}(t)=\mathbf{h}(\mathbf{x}(t)), \mathbf{x}(0)=\mathbf{b}$. then

$$
\begin{equation*}
\left\|\mathbf{x}(t)-\sum_{k=0}^{n} \mathbf{x}_{k} t^{k}\right\|_{\infty} \leq \frac{\|\mathbf{b}\|_{\infty}|K t|^{n+1}}{1-|M t|} \quad \text { for } \quad m \geq 2 \tag{20}
\end{equation*}
$$

Where the parameters K and M depend on immediately observable quantities of the original system;
M is the largest row sum of coefficients, and $K=(m-1) c^{m-1}$, where $c=\max \left\{1,\|\mathbf{b}\|_{\infty}\right\}$ and $m=\operatorname{deg}(\mathbf{h})$.

QUESTIONS

- Efficiency

QUESTIONS

- Efficiency
- Links in Structure and Parsing

QUESTIONS

- Efficiency
- Links in Structure and Parsing
- Intuition

QUESTIONS

- Efficiency
- Links in Structure and Parsing
- Intuition
- Other connections between PSM and AD

CONCLUSION

AD is predominately applied to problems involving differentiation, while PSM began as a tool in the ODE setting. There are numerous benefits to sharing the tool-sets of recursive computation of Taylor coefficients between these two communities. Some are:

- Easily compute arbitrarily high order Taylor coefficients

CONCLUSION

AD is predominately applied to problems involving differentiation, while PSM began as a tool in the ODE setting. There are numerous benefits to sharing the tool-sets of recursive computation of Taylor coefficients between these two communities. Some are:

- Easily compute arbitrarily high order Taylor coefficients
- The tools can solve highly nonlinear and stiff problems

CONCLUSION

AD is predominately applied to problems involving differentiation, while PSM began as a tool in the ODE setting. There are numerous benefits to sharing the tool-sets of recursive computation of Taylor coefficients between these two communities. Some are:

- Easily compute arbitrarily high order Taylor coefficients
- The tools can solve highly nonlinear and stiff problems
- Semi-analytic methods and

CONCLUSION

AD is predominately applied to problems involving differentiation, while PSM began as a tool in the ODE setting. There are numerous benefits to sharing the tool-sets of recursive computation of Taylor coefficients between these two communities. Some are:

- Easily compute arbitrarily high order Taylor coefficients
- The tools can solve highly nonlinear and stiff problems
- Semi-analytic methods and
- interpolation free to machine capability (error and calculation)

References

E. Fehlberg

Numerical integration of differential equations by power series expansions, illustrated by physical examples. Technical Report NASA-TN-D-2356, NASA, 1964.
睩 R.D. Neidinger
Introduction to automatic differentiation and Matlab object-oriented programming.
SIAM Review, 52(3):545-563, 2010.
围 David Carothers et. al.
Some properties of solutions to polynomial systems of differential equations.
Electronic Journal of Differential Equations, 2005:1-18, 2005.

References

㞒 P. G. Warne et. al.
Explicit a-priori error bounds and adaptive error control for approximation of nonlinear initial value differential systems.
Comput. Math. Appl., 52(12):1695-1710, 2006.

SUMMARY of PSM

围 James Sochacki
Polynomial ordinary differential equations - examples, solutions, properties.
Neural Parallel \& Scientific Computations, 18(3-4):441-450, 2010.

