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Introduction
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The story begins in 1835. M. Henri Darcy was commissioned to

enlarge and modernize the town water works of Dijon, France. He

utilized large sand filters. In an effort to determine the correct

capacity of these filters, he designed an experiment to provide the

required information. In doing so, he gave birth to ground-water

hydrology.
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Figure 1: Darcy’s Experiment
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Darcy’s superb experimental technique and design allowed him to

realize his famous Law:

q = −κ
(h1 − h0)

z1 − z0
,

the mathematical statement that the flux in a soil column is

proportional to the difference in head pressures at two points in the

column divided by vertical difference between this points.
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A conservation of mass statement for water content Θ(h) is given

by

∂tΘ + ∂xq = 0.

But Darcy’s law describes q, and so we have ...
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Richards Equation - here describing a vertical flow situation.

∂t(Θ(h)) − ∂z(κ(∂zh− 1)) = 0.
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Assuming the soil to be homogeneous, unsaturated, and neglecting

hysteresis, we write

∂tΘ(h) − ∂z(K(h)(∂zh− 1)) = 0,

C(h)∂th− ∂z(K(h)(∂zh− 1)) = 0

where C(h) = dΘ/dh represents soil capacity and K(h) hydraulic

conductivity. This is called the 1d capacity conductivity form of

the Richards equation.
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The Richards equation is perhaps the most widely applied model in

porous media flow - in areas including ground-water flow and

contaminant transport.

In general, a complete model requires

• state inputs - initial and/or boundary data

• structure inputs - coefficients, source terms related to physical

properties of the system.

We call these ingredients.
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In this talk, we focus on the determination of the unknown

ingredients C and K of the Richards Equation. We do so using a

novel adjoint equation approach, utilizing over-determined

boundary measurements in the recovery.

Integral expressions are presented which relate changes in the

unknown coefficients to corresponding changes in the measured

output.
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Other methods have been developed to reconstruct parameter

information from over-determined boundary methods. The most

well known is the method of Output Least Squares (OLS), while

another is the Equation Error Method (EEM). However, general

information about an input to output mapping is not readily

available from these methods.

In contrast, the adjoint approach offers a nearly transparent view

of the recovery process.
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What does a typical solution to the Richards Equation look like?

We solve

C(h)∂th(z, t) − ∂z(K(h)(∂zh(z, t) − 1)) = 0,

h(z, 0) = 0,

∂zh(0, t) − 1 = 0 h(L, t) = g(t)

Let’s visualize one ...
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We would like to use boundary measurements in order to gain

information about the coefficients. These measurement look like

Figure 2: Data and coefficients with α = 1 and β = 2
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We use an approach based on adjoint versions of the direct

problems to derive equations explicitly relating changes in inputs

(coefficients) to changes in outputs (measured data).
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We will often be considering terms that take the form

a(h(z, t))∂zh(z, t)

If we let

A(h(z, t)) =

∫ h(z,t)

0

a(s)

then

a(h)∂zh = ∂z(A(h(z, t)) and a(h)∂th = ∂tA(h(z, t))
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We begin the discussion by introducing a mapping Φ. This is the

solution map for the PDE. Under certain restrictions on the

coefficients, we are able to write

Φ : W (J) −→ L2[0, T ]

Φ[C,K] = h(z, t)

with W (J) representing the class of admissible coefficients.

We define the the projection map Γ, which takes h and generates:

• p = h(0, t), a state quantity

• q = K(h(L, t))(∂zh(L, t) − 1), the flux
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Now we consider the pair of IVBPs

∂tai(hi) = ∂z(Ki(hi)(∂zhi − 1))

hi(z, 0) = 0

∂zhi(0, t) − 1 = 0 hi(1, t) = 0

for i = 1 and 2.
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We have two pairs of coefficients, (C1, K1) and (C2, K2). One pair

we consider to represent the physical system, the other an

approximation to the physical system.

We also can generate two pairs of observable quantities (p1, q1) and

(p2, q2)
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Now subtract, and multiply the result by a smooth function φ and

integrate (almost all) terms by parts. In doing so, we notice that

by choosing φ to satisfy the associated adjoint problem

C∗

1∂tφ(z, t) +K∗

1∂zzφ(z, t) +K
′
∗

1 (z, t)∂zφ(z, t) = 0

hi(z, 0) = 0

K∗

1 (0, t)∂zφ(0, t) = P ∗(t), φ(L, t) = Q∗(t)

We control P ∗ and Q∗, and denote the solution via the map Φ∗,

where Φ∗[P ∗, Q∗] = φ
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To ease notation, let

∆K(h) = K1(h) −K2(h),

∆C(h) = C1(h) − C2(h),

∆q(t) = q1(t) − q2(t) and

∆p(t) = p1(t) − p2(t).
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And a miracle occurs ...
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The problem reduces to the integral identity - relating changes in

input to changes in output.

∫ T

0

∫ L

0

∆C(h2)∂th2φ(z, t)dz dt

+

∫ T

0

∫ L

0

∆K(h2)(∂zh2 − 1)∂zφ(z, t)dz dt

=
∫ T

0
∆qQ∗(t) dt+

∫ T

0
∆pP ∗(t)dt,

This the the general integral identity.
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If φ = Φ∗[P ∗, 0] then the general identity becomes

∫ T

0

P ∗(t)[p(t) − p2(t)] dt =
∫ T

0

∫ L

0
∆K(h2))∂zφ(∂zh2 − 1) dx dt

+
∫ T

0

∫ L

0
∆C(h2)∂th2φ dt dx,

which we refer to as the p-integral identity, and
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If ψ = Φ∗[0, Q∗], the identity becomes

∫ T

0

Q∗(t)[q(t) − q2(t)] dt =
∫ T

0

∫ L

0
∆K(h2))∂zψ(∂zh2 − 1) dx dt

+
∫ T

0

∫ L

0
∆C(h2)∂th2ψ dt dx

which we call the q-integral identity.
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Since the pressure is monotone in time, we consider an

approximation of the coefficients in a piecewise linear basis {Λ(h)},

which naturally follows from a time discretization.
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Here we have forced a nodal break at h = −0.8 or, alternatively, at

t = 1.
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We now have a linear system, relating changes in the coefficients

(∆C and ∆K) to changes in the boundary observations (∆p and

∆q). The explicit relation is:




M11 M12

M21 M22









∆K

∆C



 =





b1

b2



 (1)
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Where

M11 =
∫ T

0

∫ L

0
Λ(∂zh2 − 1)∂zφ dt dx

M21 =
∫ T

0

∫ L

0
Λ(∂zh2 − 1)∂zψ dt dx

M12 =
∫ T

0

∫ L

0
Λ(∂th2)φ dt dx

M22 =
∫ T

0

∫ L

0
Λ(∂th2)ψ dt dx

b1 =
∫ T

0
∆pP ∗(t)dt

b2 =
∫ T

0
∆qQ∗(t)dt
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We now have a foundation for a numerical scheme!

• choose nodes for coefficient basis - either time, state or some

combination.

• Build approximation to coefficients C and K.

• Solve linear system to compute updates to C and K , and

apply them.

The work is in the third step.
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The Bad News

1. Dual solution requires knowledge of true coefficient. We don’t

know this.

2. We only approximate the integrals numerically.
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But now, the Good News ...
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The algorithm seems to work!
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A few details

• All PDEs were discretized in space using Finite Difference.

• All PDEs were numerically integrated by a Matlab ODE suite

solver.

• C∗ and K∗ were approximated by constants.

• Trapezoidal integration was used.
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We looked at several features of the recovery

• Iteration

• Dimension of Nodal Basis

• Boundary Control

• Scaling of Inversion

• Dual Data

• Scaling of C to K

• Noise
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Here we iterated - by repeatedly computing C and K over a single

time strip.
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We considered the dimension the nodal basis.
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A summary of the dimension error experiments.
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We also considered the influence of several boundary functions,
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which generated the pressure profiles
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And with another set of coefficients
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What happened to the recovery process?
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Scaling of the entries of the matrix M
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Scaling of C to K
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An (unphysical) example
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Recovered Data observations
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Now for some van Genuchten functions ...
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Finally, we added some noise...
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First the data
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and then the recovery
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Hydrus data
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Conclusions

• Adjoint methods allow effective means of exploring

input/output mapping

• Provides both analytic and numeric information

In addition, it appears

• robust under noise

• identification possible with more work
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Future Work

• Apply to lab data

• Explore experimental parameters

• Cumulative flux formulation

• Nonlinear scaling possibilities

• Examine van Genuchten coupling

• Adaptive nodal basis

• OLS comparison
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