# A Smorgasbord of Inverse Problems a feast of applications 

Roger Thelwell

Dept of Applied Math, UWash

## Definitions

Merriam-Webster Online Dictionary

## Definitions

## smor • gas • bord:

Merriam-Webster Online Dictionary

## Definitions

smor • gas • bord:
Pronunciation: 'smor-g\&s-"bOrd
Function: noun
Etymology: from Swedish
smö rgås (open sandwich) + bord (table)

Merriam-Webster Online Dictionary

## Definitions

smor - gas • bord:
Pronunciation: 'smor-g\&s-"bOrd
Function: noun
Etymology: from Swedish
smö rgås (open sandwich) + bord (table)

- a luncheon or supper buffet offering a variety of foods and dishes (as hors d'oeuvres, hot and cold meats, smoked and pickled fish, cheeses, salads, and relishes)
- a heterogeneous mixture

[^0]
## Introduction

We'll talk about two very basic inverse problems.

While the examples aren't hard, they make us aware of some common difficulties.

## Examples

## Cause

Effect


Inverse problems ask the following:
Given some output, can we determine properties of the model and/or of the input?

## A simple idea

Given $f(x)=x^{3}+3 x-1$.

## A simple idea

Given $f(x)=x^{3}+3 x-1$.

Direct problem:
For $x=0$, what is $f(x)$ ?

## A simple idea

Given $f(x)=x^{3}+3 x-1$.

Direct problem:
For $x=0$, what is $f(x)$ ?

Inverse Problems:

- If $f(x)=3$, what is $x$ ?
- If $f(x)=10$, what is $x$ ?


## Definition

Well-Posedness:
Most inverse problems share the feature being not well-posed. Well-posedness is a concept developed by Hadamard (in the early 1900's).

A well-posed problem in one in which:
there exists a unique solution that depends continuously on the data.

## Now for (just a little) math!

## Pressure

Suppose: rate of change of pressure with respect to depth in a column of fluid is constant
Let $P(z)$ represent pressure at depth $z$.

$$
\frac{d P}{d z}=\alpha, \quad P(0)=\beta .
$$

## Pressure

Suppose: rate of change of pressure with respect to depth in a column of fluid is constant
Let $P(z)$ represent pressure at depth $z$.

$$
\frac{d P}{d z}=\alpha, \quad P(0)=\beta
$$

In the direct problem, $\alpha$ and $\beta$ are known, and we want to find $P(z)$. Then

$$
P(z)=\alpha z+\beta .
$$

## Pressure

In the inverse problem, we have $\left\{\left(z_{1}, P_{1}\right), \ldots,\left(z_{n}, P_{n}\right)\right\}$ and want to find $\alpha$ and $\beta$.

- $\boldsymbol{n}=1$ : Not enough info to find both $\alpha$ and $\beta$


## Pressure

In the inverse problem, we have $\left\{\left(z_{1}, P_{1}\right), \ldots,\left(z_{n}, P_{n}\right)\right\}$ and want to find $\alpha$ and $\beta$.

- $\mathbf{n}=1$ : Not enough info to find both $\alpha$ and $\beta$
- $\mathbf{n}=2$ : Maybe enough info find $\alpha$ and $\beta$


## Pressure

In the inverse problem, we have $\left\{\left(z_{1}, P_{1}\right), \ldots,\left(z_{n}, P_{n}\right)\right\}$ and want to find $\alpha$ and $\beta$.

- $\mathrm{n}=1$ : Not enough info to find both $\alpha$ and $\beta$
- $\mathbf{n}=2$ : Maybe enough info find $\alpha$ and $\beta$
- $\mathrm{n}>2$ : Probably enough info to approximate $\alpha$ and $\beta$


## Pressure

We find $\alpha, \beta$ by solving the system of $n$ equations:

$$
\begin{aligned}
\alpha z_{1}+\beta & =P_{1} \\
\alpha z_{2}+\beta & =P_{2} \\
\vdots & =\vdots \\
\alpha z_{n}+\beta & =P_{n}
\end{aligned}
$$

## Pressure

The accuracy of the inverse solution depends on several components.

- The data
- Sensitivity to the data
- (sometimes) the inversion method

Usually these are hard questions to answer.

## Population

Consider the growth equation with constant rate $r$.

$$
\frac{d}{d t} Q(t)=r Q(t)
$$

Given initial population $Q_{0}$ and growth rate $r$, find $Q(t)$. The solution:

$$
Q(t)=Q_{0} \exp (r t)
$$

This process is relatively stable.

## Population

Consider the growth equation with variable rate $r(t)$.

$$
\frac{d}{d t} Q(t)=r(t) Q(t)
$$

Given initial population $Q_{0}$ and growth rate $r(t)$, find $Q(t)$. The solution:

$$
Q(t)=Q_{0} \exp \left(\int_{0}^{t} r(s) d s\right)
$$

This process is relatively stable.

## But ...

Inverse Problem - given

$$
\frac{d}{d t} Q(t)=r(t) Q(t)
$$

can we find $r(t)$ given some measured $Q(t)$ ?

## But ...

Inverse Problem - given

$$
\frac{d}{d t} Q(t)=r(t) Q(t)
$$

can we find $r(t)$ given some measured $Q(t)$ ? Sure!

$$
r(t)=\frac{1}{Q(t)} \frac{d}{d t} Q
$$

But if there is even a small measurement error in $Q$, then $\frac{1}{Q}$ can change a lot! It's an ill-posed problem.

## Examples

Inverse problems naturally occur in many areas. Many are related to tomography. Tomography uses external measurement to recover internal information.

## Xray

## a scattering problem!



Hand des Anatomen Geheimrath von Kölliker in Würzburg. ${ }_{2 m}$ Im Physikaliachen Instiut der Univenitur Worrburg

Professor Dr. W. C. Rontgen
info.med.yale.edu

## MRI

## Magnetic Resonance Image


www.cis.rit.edu/htbooks/mri

## Caustics

## Ray Tracing


www.math.psu.edu/dmh/FRG/

## EIT

## Electrical Impedence Tomography (EIT): part 1



Figure A1. The two-dimensional phantom thorax with pink agar lungs, blee agar heart and black skin in saline. The electrodes are stainless steel, $2.54 \times 2.54 \mathrm{~cm}$. The resistivity of the heart is 150 ohm- cm , and that of the lungs is $1000 \mathrm{ohm}-\mathrm{cm}$.
www.math.colostate.edu/~mueller/index.html

## EIT

## Electrical Impedence Tomography (EIT), part 2


www.math.colostate.edu/~mueller/index.html

## Domain

## Domain Recovery


www.livescience.com/forcesofnature/050712 rip currents.html

## Geophysics

## Earth Tomography


earth.leeds.ac.uk/dynamicearth/internal/tomography

## Geophysics

## Earth Tomography


earth.leeds.ac.uk/dynamicearth/internal/tomography

## Conclusions

- Many practical applications
- Even problems that seem simple can be pretty hard
- Existence is usually implied
- Uniqueness of solution harder
- Difficult to know even the dimension of the problem
- Or if it is well-posed


## THANKS!!




[^0]:    Merriam-Webster Online Dictionary

