A Smorgasbord of Inverse Problems a feast of applications

Roger Thelwell

Dept of Applied Math, UWash

Merriam-Webster Online Dictionary

smor \cdot gas \cdot bord:

Merriam-Webster Online Dictionary

smor \cdot gas \cdot bord:

Pronunciation: 'smor-g&s-"bOrd Function: noun Etymology: from Swedish smö rgås (open sandwich) + bord (table)

Merriam-Webster Online Dictionary

smor \cdot gas \cdot bord:

Pronunciation: 'smor-g&s-"bOrd Function: noun Etymology: from Swedish smö rgås (open sandwich) + bord (table)

- a luncheon or supper buffet offering a variety of foods and dishes (as hors d'oeuvres, hot and cold meats, smoked and pickled fish, cheeses, salads, and relishes)
- a heterogeneous mixture

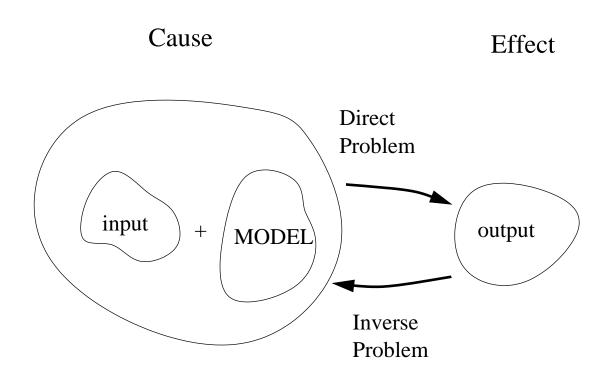
Merriam-Webster Online Dictionary

Introduction

We'll talk about two very basic inverse problems.

While the examples aren't hard, they make us aware of some common difficulties.

Examples



Inverse problems ask the following: Given some output, can we determine properties of the model and/or of the input?

A simple idea

Given $f(x) = x^3 + 3x - 1$.

A simple idea

Given
$$f(x) = x^3 + 3x - 1$$
.

Direct problem: For x = 0, what is f(x)?

A simple idea

Given
$$f(x) = x^3 + 3x - 1$$
.

Direct problem: For x = 0, what is f(x)?

Inverse Problems:

- If f(x) = 3, what is x?
- If f(x) = 10, what is x?

Well-Posedness:

Most inverse problems share the feature being not well-posed. Well-posedness is a concept developed by Hadamard (in the early 1900's).

A well-posed problem in one in which:

there exists a unique solution that depends continuously on the data.

Now for (just a little) math!

Suppose: rate of change of pressure with respect to depth in a column of fluid is constant Let P(z) represent pressure at depth z.

$$\frac{dP}{dz} = \alpha, \qquad P(0) = \beta.$$

Suppose: rate of change of pressure with respect to depth in a column of fluid is constant Let P(z) represent pressure at depth z.

$$\frac{dP}{dz} = \alpha, \qquad P(0) = \beta.$$

In the direct problem, α and β are known, and we want to find P(z). Then

$$P(z) = \alpha z + \beta.$$

In the inverse problem, we have $\{(z_1, P_1), ..., (z_n, P_n)\}$ and want to find α and β .

• n=1: Not enough info to find both α and β

In the inverse problem, we have $\{(z_1, P_1), ..., (z_n, P_n)\}$ and want to find α and β .

- n=1: Not enough info to find both α and β
- n=2: Maybe enough info find α and β

In the inverse problem, we have $\{(z_1, P_1), ..., (z_n, P_n)\}$ and want to find α and β .

- n=1: Not enough info to find both α and β
- n=2: Maybe enough info find α and β
- n>2: Probably enough info to approximate α and β

We find α , β by solving the system of *n* equations:

$$\alpha z_1 + \beta = P_1$$
$$\alpha z_2 + \beta = P_2$$
$$\vdots = \vdots$$
$$\alpha z_n + \beta = P_n$$

The accuracy of the inverse solution depends on several components.

- The data
- Sensitivity to the data
- (sometimes) the inversion method

Usually these are hard questions to answer.

Population

Consider the growth equation with constant rate r.

$$\frac{d}{dt}Q(t) = rQ(t)$$

Given initial population Q_0 and growth rate r, find Q(t). The solution:

$$Q(t) = Q_0 \exp(rt)$$

This process is relatively stable.

Population

Consider the growth equation with variable rate r(t).

$$\frac{d}{dt}Q(t) = r(t)Q(t)$$

Given initial population Q_0 and growth rate r(t), find Q(t). The solution:

$$Q(t) = Q_0 \exp\left(\int_0^t r(s) \ ds\right)$$

This process is relatively stable.

But ...

Inverse Problem - given

$$\frac{d}{dt}Q(t) = r(t)Q(t),$$

can we find r(t) given some measured Q(t)?

But ...

Inverse Problem - given

$$\frac{d}{dt}Q(t) = r(t)Q(t),$$

can we find r(t) given some measured Q(t)? Sure!

$$r(t) = \frac{1}{Q(t)} \frac{d}{dt} Q$$

But if there is even a small measurement error in Q, then $\frac{1}{Q}$ can change a lot! It's an *ill-posed* problem.

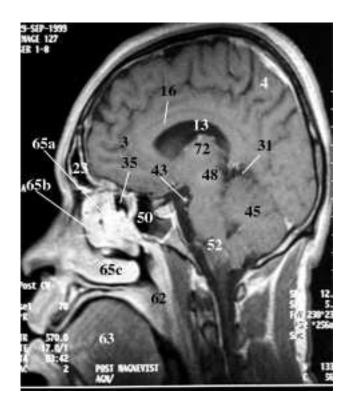
Examples

Inverse problems naturally occur in many areas. Many are related to *tomography*. Tomography uses external measurement to recover internal information.

a scattering problem!

info.med.yale.edu

Magnetic Resonance Image



www.cis.rit.edu/htbooks/mri

Ray Tracing

www.math.psu.edu/dmh/FRG/

EIT

Electrical Impedence Tomography (EIT): part 1

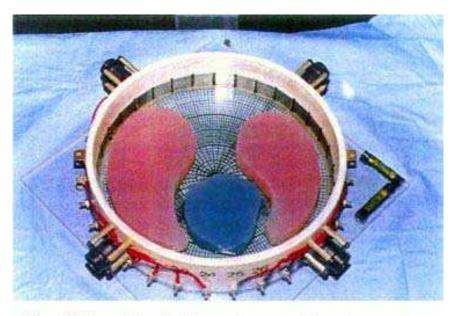
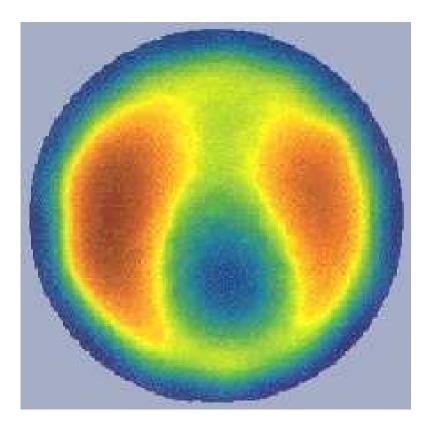


Figure A1. The two-dimensional phantom thorax with pink agar lungs, blue agar heart and black skin in saline. The electrodes are stainless steel, 2.54 x 2.54 cm. The resistivity of the heart is 150 ohm-cm, and that of the lungs is 1000 ohm-cm.

www.math.colostate.edu/~mueller/index.html

Electrical Impedence Tomography (EIT), part 2



www.math.colostate.edu/~mueller/index.html

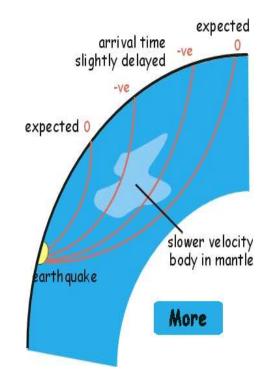
Domain

Domain Recovery

www.livescience.com/forcesofnature/050712 rip currents.html

Geophysics

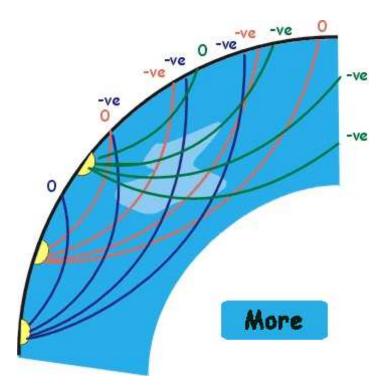
Earth Tomography



earth.leeds.ac.uk/dynamicearth/internal/tomography

Geophysics

Earth Tomography



earth.leeds.ac.uk/dynamicearth/internal/tomography

Conclusions

- Many practical applications
- Even problems that seem simple can be pretty hard
- Existence is usually implied
- Uniqueness of solution harder
- Difficult to know even the dimension of the problem
- Or if it is well-posed

THANKS!!

