
Stability Analysis via Hill’s method
or: Can we find stable wave forms?

Roger Thelwell

Department of Applied Math
University of Washington

thelwell@amath.washington.edu

Stability Analysis via Hill’s method – p.1/30



Acknowledgments

This work is in collaboration with

John Carter (Seattle U),

Bernard Deconinck (UW)

and soon ???

The National Science Foundation is acknowledged for its
support (NSF-DMS 0139093).

Stability Analysis via Hill’s method – p.2/30



Introduction

We’ll talk about computing the spectra of linear operators,
including the associated eigenfunctions.

Why is this important?

Spectral Stability: Given an equilibrium solution, is it stable
under perturbation? If so, it is a candidate for a solution of
permanent form.
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Patterns in waves

February, 2003 at Maalea Bay on Maui. Courtesy of Robert I. Odom, Applied

Physics Laboratory, University of Washinton
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More patterns

CERC harbor model (Source unknown)
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Spectral Stability

Consider the evolution system

ut = N(u)

with an equilibrium solution ue:

N(ue) = 0.

Is this solution stable or unstable?
Linear analysis: let

u = ue + εψ.

Substitute in and retain first-order terms in ε:

ψt = L[ue(x)]ψ.

Stability Analysis via Hill’s method – p.6/30



Eigenfunction expansion

Separation of variables: ψ(x, t) = eλtz(x):

L[ue(x)]z = λz.

This is a spectral problem.

If <(λ) ≤ 0 for all bounded z(x), then ue is spectrally
stable.
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Application

Our starting point is
Lz = λz,

with

L =
M
∑

k=0

fk(x)∂
k
x , fk(x+ L) = fk(x).

We want to find

Spectrum σ(L) = {λ ∈ C : ||z||∞ <∞}.

Corresponding eigenfunctions z(λ, x)?
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Floquet’s Theorem

Consider
ϕx = A(x)ϕ, A(x+ L) = A(x). (∗)

Floquet’s theorem states that the fundamental matrix Φ for
this system has the decomposition

Φ(x) = P (x)eRx,

with P (x+ L) = P (x) and R constant.

Conclusion: All bounded solutions of (∗) are of the form

ϕ = eiµx
∞
∑

n=−∞

ϕ̂n e
i2πnx/L,

with µ ∈ [0, 2π/L).
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Eigenfunctions

The periodic eigenfunctions can be expanded as

ϕ = eiµx
∞
∑

n=−∞

ϕ̂n e
iπnx/L,

with µ ∈ [0, π/L)

Substitute in the equation and cancel eiµx.

The Floquet parameter µ only appears in derivative terms.
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Hill’s method

Find Fourier coefficients of all functions

Choose a number of µ values µ1, µ2, . . .

For all chosen µ values, construct L̂N (µ)

Use favorite eigenvalue/vector solver

Reconstruct eigenfunctions corresponding to
eigenvalues
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NLS

I’ve been looking at solutions of the 2-D cubic nonlinear
Schrödinger (NLS) equation, given by

iφt + αφxx + βφyy + γ |φ|2 φ = 0.

The NLS equation arises in many models:

Bose-Einstein condensates (αβ > 0)

Deep water models (αβ < 0)

Optics (αβ > 0)
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NLS

Consider
iψt + αψxx + βψyy + |ψ|2ψ = 0.

This equation has exact 1-D traveling wave solutions of the
form

ψ(x, t) = φ(x)eiωt+iθ(x),

where φ and θ are real-valued functions and ω is a real
constant.

If θ(x) = constant then the solution has trivial phase
(TP).

if θ(x) 6= constant the solution has nontrivial phase
(NTP).
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NLS

More precisely,

ψ(x, t) = φ(x)eiωt+iθ(x),

where

φ2(x) = α
(

−2k2sn2(x, k) +B
)

,

θ(x) = c

∫ x

0
φ−2(τ)dτ,

ω =
1

2
α(3B − 2(1 + k2)), and

c2 = −
α2

2
B(B − 2k2)(B − 2).

k and B are free parameters and sn(x, k) is the Jacobi
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Focusing

NLS is focusing or attractive in the x dimension if α > 0. To
make φ real in this case, we choose B in [2k2, 2].
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Defocusing

NLS is defocusing or repulsive if α < 0. To make φ real in
this case, we choose B ≤ 0.
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Linearized TP spectral problem

Now consider the (modulus and phase) perturbed TP
solution of the form

ψp = (φ+ εu+ iεv)eiωt

Linearizing and considering real and imaginary
contributions yields the system

ωu− 3φ2u− βuyy − αuxx = −vt

ωv − φ2v − βvyy − αvxx = ut
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Linearized TP spectral problem

Let u(x, y, t) = U(x)eiρy+λt

and v(x, y, t) = V (x)eiρy+λt.

Then
ωu− 3φ2u− βuyy − αuxx = −vt

ωv − φ2v − βvyy − αvxx = ut

becomes

ωU − 3φ2U + βρ2U − αUxx = −λV

ωV − φ2V + βρ2V − αVxx = λU
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Linearized TP spectral problem

We write

ωU − 3φ2U + βρ2U − αUxx = −λV

ωV − φ2V + βρ2V − αVxx = λU

as

L

[

U

V

]

:=

[

0 L−

−L+ 0

][

U

V

]

= λ

[

U

V

]

where
L+ = ω − 3φ2 + βρ2 − ∂xx

and
L− = ω − φ2 + βρ2 − ∂xx

This is our linearized TP spectral problem. The coefficients
are periodic.
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Spectral Stability

We can finally consider the spectral stability of the periodic
coefficient linear problem

L

[

U

V

]

:=

[

0 L−

−L+ 0

][

U

V

]

= λ

[

U

V

]

where
L+ = ω − 3φ2 + βρ2 − ∂xx

and
L− = ω − φ2 + βρ2 − ∂xx

We now build the matrix L̂−(µ). The same method generates

L̂+(µ).
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SN plus

In the literature, you might find graphs for spectra
associated to periodically perturbed TP solutions.
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SN plus

But now we can compute “all” unstable modes.
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Linearized NTP spectral problem

Now consider the (modulus and phase) perturbed NTP
solution of the form

ψp = (φ+ εu+ iεv)eiλt+iθ

As in the TP case, we linearize, separate variables and
introduce transverse perturbation to generate the system

(ω − 3γφ2 + βρ2)U − αUxx = −λV

(ω − γφ2 + βρ2)V − αVxx = λU

What does this spectrum look like?
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Linearized NTP spectral problem

There are a lot of parameters: for each pair (±α,±β), we
can pick

k elliptic modulus)

B offset, (constrained by k)

ρ wavenumber of perturbation

µ Floquet parameter
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Linearized NTP spectral problem

For α = −β = 1 the spectrum might look like:

for k = 0.5, B = 1 and ρ = 0.
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Linearized NTP spectral problem

and the eigenfunction corresponding to dominate
eigenvalue:

where red = <(U), blue = =(U), green = <(V ) and black =

=(V ). Stability Analysis via Hill’s method – p.24/30



Linearized NTP spectral problem

α = β = 1

PP − contour
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Linearized NTP spectral problem

α = −β = 1

PM − contour
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Linearized NTP spectral problem

−α = β = 1

MP − contour
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Linearized NTP spectral problem

−α = −β = 1

MM − contour
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Conclusions

Samples suggest that:

All NTP solutions to the cubic NLS equation are unstable
with respect to perturbation.

Hill’s method:

Allows non-periodic eigenfunctions

Simple to implement
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Thanks!!!
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