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A general ODE system

Consider the ODE system

ẋ = F(x) with x(0) = x0.

and let
φ(t; x0)

represent the flow of this system through the initial point x0.

Then the ratio
||φ(t; y0)− φ(t; x0)||

||y0 − x0||
quantifies the rate at which trajectories spread.

thelwerj@jmu.edu (JMU) Lyapunov Stability January 9, 2016 4 / 1



A general ODE system

Consider the ODE system
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Calculating sensitivity...

isn’t so easy.

We want to understand the divergence of two nearby
trajectories:

φ(t; y0)− φ(t; x0) ≈ Dxφ(t; x0)(y0 − x0),

but Dxφ(t; x0) is usually hard to compute!

For any curve of initial conditions xs , define

v(t) = ∂sφ(t; xs)
∣∣
s=0

,

then v(t) satisfies the first variation equation

v̇ = DxF(φ(t; x)
∣∣
x0
v0 with v0 = ∂sxs .

It is v(t) that will ultimately give us our growth rate.
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The Lyapunov exponent

The Lyapunov exponent, λ(t), is the exponential growth rate measuring
sensitivity to initial conditions. It is classically computed as:

||v(t)|| ≈ exp(λ · t)||v0||,

But what happens if we use power series approach?
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Ex 1: y ′ = α(t)y
With Maple

>> restart:

>> Order := 4:

>> alpha := t -> sum(a[k]*t^k,k=0..Order):

>> GROWTH := diff(y(t),t) = alpha(t)*y(t):

>> Yseries := dsolve({GROWTH,y(0)=y[0]},y(t),type=’series’);

y (t) =y0 + a0 y0t +
(
1/2 a0

2 y0 + 1/2 a1 y0
)
t2+(

1/6 a0
3 y0 + 1/2 a1 a0 y0 + 1/3 a2 y0

)
t3 + O

(
t4
)

which we can check

>> SOLN1 := y[0] * exp(int(alpha(tau),tau=0..t));

>> check := taylor(SOLN1,t=0) - Yseries;
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Why?

From

y (t) =y0 + a0 y0t +
(
1/2 a0

2 y0 + 1/2 a1 y0
)
t2+(

1/6 a0
3 y0 + 1/2 a1 a0 y0 + 1/3 a2 y0

)
t3 + O

(
t4
)

we can find

∂y0y(t) =1 + a0t +
(
1/2 a0

2 + 1/2 a1
)
t2+(

1/6 a0
3 + 1/2 a1 a0 + 1/3 a2

)
t3 + O

(
t4
)

Sensitivity to initial conditions!

Which we can easily compute...

>> Yy0 := taylor(diff(Yseries,y_0),t=0);
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The Lyapunov exponent

We have

∂y0y (t) =
∞∑
n=0

fn(y0, . . . , yn−1)tn

and so λ(t) is easy to compute:
>> simplify(taylor(ln(Yy0))/t);

λ(t) = a0 + 1/2a1t + 1/3a2t
2 + O(t3)

For our problem, a direct calculation verifies this:

1

t

∫ t

0
α(τ)dτ).

This time average is the mean coefficient on [0, t]
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Ex: A 2D planar system

Consider the system:

x ′ = −y + x(1− x2 − y2)

y ′ = x + y(1− x2 − y2)

which can be recast (and decoupled!) as

r ′ = r(1− r2)

θ′ = 1

with a stable orbit at r = 1.
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Ex: A 2D planar system: exponents?

With ṙ = r(1− r2) and θ̇ = 1, the variational problem is simple...

v̇ =

[
1− 3r2 0

0 0

]
r=1

v0

Remember that it’s v that we need to find, and it provides an
(approximate) basis of Dxφ.

So vr = exp(−2t)v0, and the lyapunov exponent is -2 in the radial
direction (and 0 in the tangential direction).
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Ex: A 2D planar system: series

We can use power series to explore the original cartesian system.

>> restart:

>> Order := 2:

>> F1 := (x,y) -> -y+x*(1-x^2-y^2);

>> F2 := (x,y) -> x+y*(1-x^2-y^2);

>> Planar := [diff(x(t),t) = F1(x(t),y(t)) , ...

diff(y(t),t) = F2(x(t),y(t))];

>> ART := dsolve(Planar,[x(t),y(t)],type = ’series);

>> BOB := convert(subs({x(0)=x,y(0)=y},ART),polynom);

>> JacP := {x,y} -> Jacobian(BOB,[x,y]);

>> SingularValues(JacP(1,0));
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Ex: A 2D planar system: series

We were able to compute singular values as a time series,

>> check := SingularValues(JacP(1,0));

>> plot( ln(check[1](t))/t , t=0..0.0001);

exp(λ1t) ≈
√

3 ∗ t2 + 1− 2 ∗ t + 2 ∗ t ∗
√

2 ∗ t2 − 2 ∗ t + 1

exp(λ2t) ≈
√

3 ∗ t2 + 1− 2 ∗ t − 2 ∗ t ∗
√

2 ∗ t2 − 2 ∗ t + 1

or evaluate the Jacobian at a specific time and then compute the singular
values. Either way:
at t = 1e-7, λ1 ≈ 0.00000005 and λ2 ≈ -2.000000015
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3D: Lorenz

And now for the real work...
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3D: Lorenz

With Maple and Matlab
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Ex: Lorenz

Uhoh....

Sprott gets: 0.966, 0,−14.6. At least our trace, 13.6667, is right.
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Ex: Lorenz
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The PROCESS

Generate a polynomial (quadratic) system.(Reverse Polish)

Compute analytic series approximation Y (t; ic)

Differentiate to find sensitivity to IC S(t; ic) := ∂icY (t; ic)

Build IC series y0(T ) ’on’ attractor.

Choose tau for local continuation length

20 WHILE T< Tmax

Evaluate D = svd(S(tau; y0(T ))

Compute λ(T ) (or mean) for local time interval

Advance: T = T + r

GOTO 20
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Questions?

The community typically evolves trajectory and linearized variational
problem for many time steps to accumulate growth, then
re-orthogonalizes.

Instead of answering questions, we now have many more:

A direct TNB frame calculation seems clunky, and the resulting power
series computation messy.

Is there a trick we can play to rotate our local SVD frame onto the
physical frame? It seems so, but ...

Another series approach might be to compute

||φ(t; x0)− φ(t; y0)||

directly using the analytic (approximate) integrator.
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Conclusions

Easy to find approximate solution operator as a function of IV.

Seems to provide information about local growth of variations.

No need to evolve tangent space (a la Wolf)?

Non-autonomous? No fear!

Non-linear? No problem!
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Thanks!

Questions?

(I sure have a lot!)
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