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The Butterfly

file://Users/faculty/Downloads/Lorenz.ogv.480p.webm

https://commons.wikimedia.org/wiki/File:Lorenz.ogv+

thelwerj@jmu.edu (JMU) Lyapunov Stability January 9, 2016 3/1


file://Users/faculty/Downloads/Lorenz.ogv.480p.webm

The Butterfly
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How do we measure the sensitivity to perturbation in
initial condition?
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A general ODE system

Consider the ODE system
x = F(x) with x(0) = xo.

and let

o(t; x0)

represent the flow of this system through the initial point xg.
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A general ODE system

Consider the ODE system
x = F(x) with x(0) = xo.
and let

9(t; %o)
represent the flow of this system through the initial point xg.
Then the ratio
||&(t; yo) — &(t; x0) ||

[lyo — ol

quantifies the rate at which trajectories spread.
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Calculating sensitivity...

isn't so easy.
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Calculating sensitivity...

isn't so easy. We want to understand the divergence of two nearby
trajectories:

¢(t:y0) — ¢(t:x0) = Dx¢(t;%0)(¥o — X0),
but Dx¢(t; xo) is usually hard to compute!
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Calculating sensitivity...

isn't so easy. We want to understand the divergence of two nearby
trajectories:

¢(t:y0) — ¢(t; x0) &~ Dyo(t; x0)(Yo — Xo),
but Dx¢(t; xo) is usually hard to compute!

For any curve of initial conditions xs, define

v(t) = O0sp(t; xs) ‘szoa

then v(t) satisfies the first variation equation

v = D,F(o(t; x)‘xOvo with  vg = OsXs.
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Calculating sensitivity...

isn't so easy. We want to understand the divergence of two nearby
trajectories:

¢(t:y0) — ¢(t; x0) &~ Dyo(t; x0)(Yo — Xo),
but Dx¢(t; xo) is usually hard to compute!

For any curve of initial conditions xs, define

v(t) = O0sp(t; xs) ‘szoa

then v(t) satisfies the first variation equation
v = D,F(o(t; x)‘xOvo with  vg = OsXs.

It is v(t) that will ultimately give us our growth rate.
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The Lyapunov exponent

The Lyapunov exponent, A(t), is the exponential growth rate measuring
sensitivity to initial conditions. It is classically computed as:

[v(8)[| = exp(X - t)]|voll,

But what happens if we use power series approach?
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Ex 1: y' = a(t)y
With MAPLE

>> restart:

>> Order := 4:

>> alpha := t -> sum(alk]*t"k,k=0..0rder):

>> GROWTH := diff(y(t),t) = alpha(t)x*y(t):

>> Yseries := dsolve({GROWTH,y(0)=y[0]},y(t),type=’series’);

y (t) =yo + a0 yot + (1/2a0% yo + 1/2 a1 yo) t°+
(1/6303)’0 +1/2a1a0y0 + 1/332y0) t24+0 (t4)
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Ex 1: y' = a(t)y
With MAPLE

>> restart:

>> Order := 4:

>> alpha := t -> sum(alk]*t"k,k=0..0rder):

>> GROWTH := diff(y(t),t) = alpha(t)*y(t):

>> Yseries := dsolve({GROWTH,y(0)=y[0]},y(t),type=’series’);

y (t) =yo + a0 yot + (1/2a0% yo + 1/2 a1 yo) t°+
(1/6 a0 yo +1/2a1 20 yo + 1/3 a2 o) £2 + O (%)

which we can check

>> SOLN1 := y[0] * exp(int(alpha(tau),tau=0..t));
>> check := taylor(SOLN1,t=0) - Yseries;
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Why?

From

y (t) =yo + a0 yot + (1/2 0% yo + 1/2 a1 yo) t°+
(1/6a0° yo+1/2a1a0y0 + 1/3 a2 y0) £ + O (t*)

we can find

Byoy(t) =1+ aot + (1/2a0> + 1/2 a1) >+
(1/6a0> +1/2a1 a0+ 1/3a2) £2 + O (t*)

Sensitivity to initial conditions!
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Why?

From

y (t) =yo + a0 yot + (1/2 0% yo + 1/2 a1 yo) t°+
(1/6a0 yo +1/2a1 a0 yo + 1/3 a2 y0) £ + O (t*)

we can find

Byoy(t) =1+ aot + (1/2a0> + 1/2 a1) >+
(1/6a0> +1/2a1 a0+ 1/3a2) £2 + O (t*)

Sensitivity to initial conditions! Which we can easily compute...

>> Yy0 := taylor(diff(Yseries,y_0),t=0);
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The Lyapunov exponent

We have
yoy Zf yO"'wyn—l)tn

and so A(t) is easy to compute:
>> simplify(taylor (1n(Yy0))/t);

At) = ap + 1/2a1t + 1/3a,t% + O(t%)

For our problem, a direct calculation verifies this:

% /O a(r)dr).

This time average is the mean coefficient on [0, t]
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Ex: A 2D planar system

Consider the system:

x'=—y+x(1-x2—-y?

/

Y= x+y(l-x*—y?)

which can be recast (and decoupled!) as

r'=r(1-r?
=1
with a stable orbit at r = 1.
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Ex: A 2D planar system: exponents?

With 7 = r(1 — r?) and § = 1, the variational problem is simple...

g 1-3r2 0 y
B ]

Remember that it's v that we need to find, and it provides an
(approximate) basis of Dy¢.
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Ex: A 2D planar system: exponents?

With 7 = r(1 — r?) and § = 1, the variational problem is simple...

g 1-3r2 0 y
B ]

Remember that it's v that we need to find, and it provides an
(approximate) basis of Dy¢.

So v, = exp(—2t)vp, and the lyapunov exponent is -2 in the radial
direction (and 0 in the tangential direction).
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Ex: A 2D planar system: series

We can use power series to explore the original cartesian system.

>> restart:

>> Order := 2:

>> Fl := (x,y) -> -y+x*x(1-x"2-y"2);

>> F2 = (x,y) —> xt+ty*(1-x"2-y72);

>> Planar := [diff(x(t),t) = F1(x(t),y(t)) ,
diff(y(t),t) = F2(x(t),y(t))];

>> ART := dsolve(Planar, [x(t),y(t)],type = ’series);

>> BOB := convert(subs({x(0)=x,y(0)=y},ART) ,polynom) ;

>> JacP := {x,y} -> Jacobian(BOB, [x,y]);

>> SingularValues(JacP(1,0));
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Ex: A 2D planar system: series

We were able to compute singular values as a time series,

>> check := SingularValues(JacP(1,0));
>> plot( 1n(check[1](t))/t , t=0..0.0001);

exp(/\lt)z\/3*t2+1—2*t+2*t*\/2*t2—2*t+1

exp(/\zt)%\/3*t2+1—2*t—2*t*\/2*t2—2*t+1
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Ex: A 2D planar system: series

We were able to compute singular values as a time series,

>> check := SingularValues(JacP(1,0));
>> plot( 1n(check[1](t))/t , t=0..0.0001);

exp(/\lt)%\/3*t2+1—2*t+2*t*\/2*t2—2*t+1

exp(/\zt)%\/3*t2+1—2*t—2*t>|<\/2*t2—2*t+1

or evaluate the Jacobian at a specific time and then compute the singular
values. Either way:

att = le-7, A1 = 0.00000005 and A\p &= -2.000000015
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3D: Lorenz

And now for the real work...
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3D: Lorenz

With MAPLE and MATLAB
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Ex: Lorenz

Uhoh....
20 T T

_7\1 = 41625
_7\2 =-2.2732
_i\g = -15.5560
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Sprott gets: 0.966,0, —14.6. At least our trace, 13.6667, is right.
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Ex: Lorenz

Local Growth Rate (x10) = (8*cloud - cloud
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The PROCESS

Generate a polynomial (quadratic) system.(Reverse Polish)
Compute analytic series approximation Y (t; ic)
Differentiate to find sensitivity to IC S(¢; ic) := 0ic Y (t; ic)
Build IC series yp(T) 'on’ attractor.
Choose tau for local continuation length
20 WHILE T< Tmax
Evaluate D = svd(S(tau; yo(T))
Compute A(T) (or mean) for local time interval
Advance: T =T +r
GOTO 20
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Questions?

The community typically evolves trajectory and linearized variational

problem for many time steps to accumulate growth, then
re-orthogonalizes.

Instead of answering questions, we now have many more:
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Questions?

The community typically evolves trajectory and linearized variational
problem for many time steps to accumulate growth, then
re-orthogonalizes.

Instead of answering questions, we now have many more:

A direct TNB frame calculation seems clunky, and the resulting power
series computation messy.

Is there a trick we can play to rotate our local SVD frame onto the
physical frame? It seems so, but ...
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Questions?

The community typically evolves trajectory and linearized variational
problem for many time steps to accumulate growth, then
re-orthogonalizes.

Instead of answering questions, we now have many more:

A direct TNB frame calculation seems clunky, and the resulting power
series computation messy.

Is there a trick we can play to rotate our local SVD frame onto the
physical frame? It seems so, but ...

Another series approach might be to compute

o (t: x0) — ¢(t; yo)|

directly using the analytic (approximate) integrator.
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Conclusions

Easy to find approximate solution operator as a function of IV.
Seems to provide information about local growth of variations.
No need to evolve tangent space (a la Wolf)?
Non-autonomous? No fear!

Non-linear? No problem!
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Thanks!

Questions?
(I sure have a lot!)

thelwerj@jmu.edu
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