
Trailers

I’ve worked in several areas:

Atmospheric Science

Porous Media

Multiphysics

Nonlinear Waves
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Atmospheric Science

(Cyclonic) Flows

GOAL:
Recover wind velocity from pressure gradient.
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Porous Media

Parameter discovery

PSfrag replacements ∂tu− ∂x(D(u)∂xu) = 0

u(0, t) = f(t) ∂xu(1, t) = 0
GOAL:

Given some output measurements of this system, recover

D(u).
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Porous Media
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Consumption
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GOAL:
Understand methane dynamics over a wide range of

ecological setting.
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Multiphysics

Fluid flow with heating

GOAL:
How is stability of flow affected by temperature

dependent viscosity?
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Nonlinear waves

Domain Recovery

GOAL:
What does the bottom topography look like?
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Nonlinear waves

Domain Recovery

GOAL:
What does the bottom topography look like?
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Main Event

Now, sit back and enjoy the main event!
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Spectral Stability
or: Can we find stable wave forms?

Roger Thelwell

Department of Applied Math
University of Washington

thelwell@amath.washington.edu
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Introduction

We’ll talk about computing the spectra of linear operators,
including the associated eigenfunctions.
Why is this important?

Spectral Stability Given an equilibrium solution, we can
see if it is stable under perturbation
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Patterns in waves

www.amath.washington.edu/ bernard
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Soliton interaction

www.math.h.kyoto-u.ac.jp/images/soliton-big.jpg
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More patterns

www.math.psu.edu/dmh/FRG
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What I do

Use a simple numerical method to examine the spectral
stability of solutions of various models:

NLS (deep water,....)

KP (shallow water)

Euler
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Spectral Stability

Consider the evolution system

ut = N(u)

with an equilibrium solution ue:

N(ue) = 0.

Is this solution stable or unstable?
Linear analysis: let

u = ue + εψ.

Substitute in and retain first-order terms in ε:

ψt = L[ue(x)]ψ.
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Eigenfunction expansion

Separation of variables: ψ(x, t) = eλtφ(x):

L[ue(x)]φ = λφ.

This is a spectral problem.

If <(λ) ≤ 0 for all bounded φ(x), then ue is spectrally
stable.
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Application

Our starting point is
Lφ = λφ,

with

L =
M∑

k=0

fk(x)∂
k
x , fk(x+ L) = fk(x).

We want to find

Spectrum σ(L) = {λ ∈ C : ||φ|| <∞}.

Corresponding eigenfunctions φ(λ, x)?
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NLS

I’ve been looking at solutions of the 2-D cubic nonlinear
Schrödinger (NLS) equation, given by

iφt + αφxx + βφyy + γ |φ|2 φ = 0.

The NLS equation arises in many models:

Bose-Einstein condensates (αβ > 0)

Deep water models (αβ < 0)

Optics (αβ > 0)
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NLS

Consider
iψt + αψxx + βψyy + |ψ|2ψ = 0.

This equation has exact 1-D traveling wave solutions of the
form

ψ(x, t) = φ(x)eiωt+iθ(x),

where φ and θ are real-valued functions and ω is a real
constant.

If θ(x) = constant then the solution has trivial phase
(TP).

if θ(x) 6= constant the solution has nontrivial phase
(NTP).
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NLS

More exactly,

ψ(x, t) = φ(x)eiωt+iθ(x),

where

φ2(x) = α
(
−2k2sn2(x, k) +B

)
,

θ(x) = c

∫ x

0
φ−2(τ)dτ,

ω =
1

2
α(3B − 2(1 + k2)), and

c2 = −
α2

2
B(B − 2k2)(B − 2).

k and B are free parameters and sn(x, k) is the Jacobi
elliptic sine function.

Spectral Stability – p.20/35



Focusing

NLS is focusing or attractive in the x dimension if α > 0. To
make φ real in this case, we choose B in [2k2, 2].

k

B

2

0
0

cn

dn

stokes

soliton

1
PSfrag replacements
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Defocusing

NLS is defocusing or repulsive if α < 0. To make φ real in
this case, we choose B ≤ 0.

B

k
1

−1

0
0

dark
soliton

sn

stokes

solition
grey
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Linearized TP spectral problem

Now consider the (modulus and phase) perturbed TP
solution of the form

ψp = (φ+ εu+ iεv)eiωt

Linearizing and considering real and imaginary
contributions yields the system

ωu− 3φ2u− βuyy − αuxx = −vt

ωv − φ2v − βvyy − αvxx = ut
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Linearized TP spectral problem

Let u(x, y, t) = U(x)eiρy+λt

and v(x, y, t) = V (x)eiρy+λt.
Then

ωu− 3φ2u− βuyy − αuxx = −vt

ωv − φ2v − βvyy − αvxx = ut

becomes

ωU − 3φ2U + βρ2U − αUxx = −λV

ωV − φ2V + βρ2V − αVxx = λU
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Linearized TP spectral problem

We write

ωU − 3φ2U + βρ2U − αUxx = −λV

ωV − φ2V + βρ2V − αVxx = λU

as

L

[

U

V

]

:=

[

0 L−

−L+ 0

][

U

V

]

= λ

[

U

V

]

where
L+ = ω − 3φ2 + βρ2 − ∂xx

and
L− = ω − φ2 + βρ2 − ∂xx

This is our linearized TP spectral problem. The coefficients
are periodic.
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Floquet’s Theorem

Consider
ϕx = A(x)ϕ, A(x+ L) = A(x). (∗)

Floquet’s theorem states that the fundamental matrix Φ for
this system has the decomposition

Φ(x) = P (x)eRx,

with P (x+ L) = P (x) and R constant.

Conclusion: All bounded solutions of (∗) are of the form

ϕ = eiµx
∞∑

n=−∞

ϕ̂n e
i2πnx/L,

with µ ∈ [0, 2π/L).
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Eigenfunctions

The periodic eigenfunctions can be expanded as

ϕ = eiµx
∞∑

n=−∞

ϕ̂n e
iπnx/L,

with µ ∈ [0, π/L)

Substitute in the equation and cancel eiµx.

The Floquet parameter µ only appears in derivative terms.
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Hill’s method

Find Fourier coefficients of all functions

Choose a number of µ values µ1, µ2, . . .

For all chosen µ values, construct L̂N (µ)

Use favorite eigenvalue/vector solver
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Recall

We can finally consider the spectral stability of the periodic
coefficient linear problem

L

[

U

V

]

:=

[

0 L−

−L+ 0

][

U

V

]

= λ

[

U

V

]

where
L+ = ω − 3φ2 + βρ2 − ∂xx

and
L− = ω − φ2 + βρ2 − ∂xx

We now build the matrix L̂−(µ). The same method generates

L̂+(µ).
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Fourier coefficients

We could compute Fourier coefficients, but ...

thanks to Jacobi, we have an exact form:

sn2(x, k)=
1

k2

(

1−
E

K

)

−
2π2

k2K2

∞∑

n=1

nqn

1 − q2n
cos

(nπx

K

)

,

with

k′ =
√

1 − k2,

K(k) =

∫ π/2

0

(
1 − k2 sin2 x

)−1/2
dx,

E(k) =

∫ π/2

0

(
1 − k2 sin2 x

)1/2
dx,

q =e−πK(k′)/K(k).
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Construct L̂−(µ)

Since

ˆsn2(x) = (. . . ,−
π2

k2K2

q

1 − q2
,

1

k2

(

1−
E

K

)

,−
π2

k2K2

q

1 − q2
, . . .)

and

φ̂2(k,B) = α
(

−2k2ŝn2
(k) +B

)

,

we write

L̂− = ω − φ̂2 + βρ2

︸ ︷︷ ︸

(...,q̂−1,q̂0,q̂1,...)

−
(
iµ+ i2πn

PL

)2
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Construct L̂−(µ)

The Fourier coefficients ...

P 2P0
diagonal index

q −1

q 1q 0

V

V

V

1

−1

0

q 2

q −2
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Construct L̂−(µ)

The partial operator ...

row index

−N 0 N

V 0

VN

V−N

V−1

V
1PSfrag replacements

(i
µ
−

iπ
N

/
(L

))
2

(i
µ
)2

(i
µ
+

iπ
N

/
(L

))
2
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Construct L̂−(µ)

Combining these, we get

P 2P0
diagonal index

row index
−N 0 N

q −1

q 1q 0

V

V

V

−2

−1

0

q 2

q −2

V

V

V

−2

−1

0

PSfrag replacements

(i
µ
−

i2
π
N

/
(P

L
))

2

(i
µ
)2

(i
µ
+

i2
π
N

/
(P

L
))

2
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SN plus

In the literature, you might find graphs for spectra
associated to periodically perturbed TP solutions.
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SN plus

We can now compute “all” unstable modes.
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Conclusions

We now have a simple method that we can use to
understand spectral stability. The method is great. It is:

Simple to implement

Faster than many methods

Provides eigenfunction information

But it has some problems, too:

Operator is NOT COMPACT!!
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Thanks!!!
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