Trailers

l've worked in several areas:

- Atmospheric Science
- Porous Media
- Multiphysics
- Nonlinear Waves

Atmospheric Science

(Cyclonic) Flows

Atmospheric Science

(Cyclonic) Flows

GOAL:
Recover wind velocity from pressure gradient.

Porous Media

Parameter discovery

$$
\partial_{t} u-\partial_{x}\left(D(u) \partial_{x} u\right)=0
$$

Porous Media

Parameter discovery

Porous Media

Parameter discovery

GOAL:
Given some output measurements of this system, recover $D(u)$.

Porous Media

Methane

System

Porous Media

Methane

System
GOAL:
Understand methane dynamics over a wide range of ecological setting.

Multiphysics

Fluid flow with heating

Multiphysics

Fluid flow with heating

GOAL:
How is stability of flow affected by temperature dependent viscosity?

Nonlinear waves

Domain Recovery

Nonlinear waves

Domain Recovery

GOAL:
What does the bottom topography look like?

Main Event

Now, sit back and enjoy the main event!

Spectral Stability
 or: Can we find stable wave forms?

Roger Thelwell

Department of Applied Math
University of Washington

thelwell@amath.washington.edu

Acknowledgments

This work is in collaboration with

- John Carter (Seattle U),
- Bernard Deconinck (UW) and

The National Science Foundation is acknowledged for its support (NSF-DMS 0139093).

Introduction

We'll talk about computing the spectra of linear operators, including the associated eigenfunctions.
Why is this important?

- Spectral Stability Given an equilibrium solution, we can see if it is stable under perturbation

Patterns in waves

www.amath.washington.edu/ bernard

Soliton interaction

www.math.h.kyoto-u.ac.jp/images/soliton-big.jpg

More patterns

www.math.psu.edu/dmh/FRG

What I do

Use a simple numerical method to examine the spectral stability of solutions of various models:

- NLS (deep water,....)
- KP (shallow water)
- Euler

Spectral Stability

Consider the evolution system

$$
u_{t}=N(u)
$$

with an equilibrium solution u_{e} :

$$
N\left(u_{e}\right)=0 .
$$

Is this solution stable or unstable?
Linear analysis: let

$$
u=u_{e}+\epsilon \psi .
$$

Substitute in and retain first-order terms in ϵ :

$$
\psi_{t}=\mathcal{L}\left[u_{e}(x)\right] \psi .
$$

Eigenfunction expansion

Separation of variables: $\psi(x, t)=e^{\lambda t} \phi(x)$:

$$
\mathcal{L}\left[u_{e}(x)\right] \phi=\lambda \phi .
$$

- This is a spectral problem.
- If $\Re(\lambda) \leq 0$ for all bounded $\phi(x)$, then u_{e} is spectrally stable.

Application

Our starting point is

$$
\mathcal{L} \phi=\lambda \phi
$$

with

$$
\mathcal{L}=\sum_{k=0}^{M} f_{k}(x) \partial_{x}^{k}, \quad f_{k}(x+L)=f_{k}(x)
$$

We want to find

- Spectrum $\sigma(\mathcal{L})=\{\lambda \in \mathbb{C}:\|\phi\|<\infty\}$.
- Corresponding eigenfunctions $\phi(\lambda, x)$?

NLS

I've been looking at solutions of the 2-D cubic nonlinear Schrödinger (NLS) equation, given by

$$
i \phi_{t}+\alpha \phi_{x x}+\beta \phi_{y y}+\gamma|\phi|^{2} \phi=0 .
$$

The NLS equation arises in many models:

- Bose-Einstein condensates $(\alpha \beta>0)$
- Deep water models $(\alpha \beta<0)$
- Optics $(\alpha \beta>0)$

NLS

Consider

$$
i \psi_{t}+\alpha \psi_{x x}+\beta \psi_{y y}+|\psi|^{2} \psi=0
$$

This equation has exact 1-D traveling wave solutions of the form

$$
\psi(x, t)=\phi(x) e^{i \omega t+i \theta(x)}
$$

where ϕ and θ are real-valued functions and ω is a real constant.

- If $\theta(x)=$ constant then the solution has trivial phase (TP).
- if $\theta(x) \neq$ constant the solution has nontrivial phase (NTP).

NLS

More exactly,

$$
\psi(x, t)=\phi(x) e^{i \omega t+i \theta(x)}
$$

where

$$
\begin{aligned}
\phi^{2}(x) & =\alpha\left(-2 k^{2} \operatorname{sn}^{2}(x, k)+B\right) \\
\theta(x) & =c \int_{0}^{x} \phi^{-2}(\tau) d \tau \\
\omega & =\frac{1}{2} \alpha\left(3 B-2\left(1+k^{2}\right)\right), \quad \text { and } \\
c^{2} & =-\frac{\alpha^{2}}{2} B\left(B-2 k^{2}\right)(B-2)
\end{aligned}
$$

k and B are free parameters and $\mathrm{sn}(x, k)$ is the Jacobi elliptic sine function.

Focusing

NLS is focusing or attractive in the x dimension if $\alpha>0$. To make ϕ real in this case, we choose B in $\left[2 k^{2}, 2\right]$.

Defocusing

NLS is defocusing or repulsive if $\alpha<0$. To make ϕ real in this case, we choose $B \leq 0$.

Linearized TP spectral problem

Now consider the (modulus and phase) perturbed TP solution of the form

$$
\psi_{p}=(\phi+\epsilon u+i \epsilon v) e^{i \omega t}
$$

Linearizing and considering real and imaginary contributions yields the system

$$
\begin{aligned}
\omega u-3 \phi^{2} u-\beta u_{y y}-\alpha u_{x x} & =-v_{t} \\
\omega v-\phi^{2} v-\beta v_{y y}-\alpha v_{x x} & =u_{t}
\end{aligned}
$$

Linearized TP spectral problem

Let $u(x, y, t)=U(x) e^{i p y+\lambda t}$ and $v(x, y, t)=V(x) e^{i \rho y+\lambda t}$.
Then

$$
\begin{aligned}
\omega u-3 \phi^{2} u-\beta u_{y y}-\alpha u_{x x} & =-v_{t} \\
\omega v-\phi^{2} v-\beta v_{y y}-\alpha v_{x x} & =u_{t}
\end{aligned}
$$

becomes

$$
\begin{aligned}
\omega U-3 \phi^{2} U+\beta \rho^{2} U-\alpha U_{x x} & =-\lambda V \\
\omega V-\phi^{2} V+\beta \rho^{2} V-\alpha V_{x x} & =\lambda U
\end{aligned}
$$

Linearized TP spectral problem

We write

$$
\begin{aligned}
\omega U-3 \phi^{2} U+\beta \rho^{2} U-\alpha U_{x x} & =-\lambda V \\
\omega V-\phi^{2} V+\beta \rho^{2} V-\alpha V_{x x} & =\lambda U
\end{aligned}
$$

as

$$
\mathcal{L}\left[\begin{array}{l}
U \\
V
\end{array}\right]:=\left[\begin{array}{cc}
0 & L_{-} \\
-L_{+} & 0
\end{array}\right]\left[\begin{array}{l}
U \\
V
\end{array}\right]=\lambda\left[\begin{array}{l}
U \\
V
\end{array}\right]
$$

where

$$
L_{+}=\omega-3 \phi^{2}+\beta \rho^{2}-\partial_{x x}
$$

and

$$
L_{-}=\omega-\phi^{2}+\beta \rho^{2}-\partial_{x x}
$$

This is our linearized TP spectral problem. The coefficients are periodic.

Floquet's Theorem

Consider

$$
\begin{equation*}
\varphi_{x}=A(x) \varphi, \quad A(x+L)=A(x) . \tag{*}
\end{equation*}
$$

Floquet's theorem states that the fundamental matrix Φ for this system has the decomposition

$$
\Phi(x)=P(x) e^{R x},
$$

with $P(x+L)=P(x)$ and R constant.

Floquet's Theorem

Consider

$$
\begin{equation*}
\varphi_{x}=A(x) \varphi, \quad A(x+L)=A(x) . \tag{*}
\end{equation*}
$$

Floquet's theorem states that the fundamental matrix Φ for this system has the decomposition

$$
\Phi(x)=P(x) e^{R x},
$$

with $P(x+L)=P(x)$ and R constant.
Conclusion: All bounded solutions of ($*$) are of the form

$$
\varphi=e^{i \mu x} \sum_{n=-\infty}^{\infty} \hat{\varphi}_{n} e^{i 2 \pi n x / L},
$$

with $\mu \in[0,2 \pi / L)$.

Eigenfunctions

The periodic eigenfunctions can be expanded as

$$
\varphi=e^{i \mu x} \sum_{n=-\infty}^{\infty} \hat{\varphi}_{n} e^{i \pi n x / L}
$$

with $\mu \in[0, \pi / L)$

Substitute in the equation and cancel $e^{i \mu x}$.

The Floquet parameter μ only appears in derivative terms.

Hill's method

- Find Fourier coefficients of all functions
- Choose a number of μ values μ_{1}, μ_{2}, \ldots
- For all chosen μ values, construct $\hat{\mathcal{L}}_{N}(\mu)$
- Use favorite eigenvalue/vector solver

Recall

We can finally consider the spectral stability of the periodic coefficient linear problem

$$
\mathcal{L}\left[\begin{array}{l}
U \\
V
\end{array}\right]:=\left[\begin{array}{cc}
0 & L_{-} \\
-L_{+} & 0
\end{array}\right]\left[\begin{array}{l}
U \\
V
\end{array}\right]=\lambda\left[\begin{array}{l}
U \\
V
\end{array}\right]
$$

where

$$
L_{+}=\omega-3 \phi^{2}+\beta \rho^{2}-\partial_{x x}
$$

and

$$
L_{-}=\omega-\phi^{2}+\beta \rho^{2}-\partial_{x x}
$$

We now build the matrix $\hat{L}_{-}(\mu)$. The same method generates $\hat{L}_{+}(\mu)$.

Fourier coefficients

We could compute Fourier coefficients, but ...

Fourier coefficients

We could compute Fourier coefficients, but ... thanks to Jacobi, we have an exact form:

$$
\operatorname{sn}^{2}(x, k)=\frac{1}{k^{2}}\left(1-\frac{E}{K}\right)-\frac{2 \pi^{2}}{k^{2} K^{2}} \sum_{n=1}^{\infty} \frac{n q^{n}}{1-q^{2 n}} \cos \left(\frac{n \pi x}{K}\right),
$$

with

$$
\begin{aligned}
k^{\prime} & =\sqrt{1-k^{2}} \\
K(k) & =\int_{0}^{\pi / 2}\left(1-k^{2} \sin ^{2} x\right)^{-1 / 2} d x, \\
E(k) & =\int_{0}^{\pi / 2}\left(1-k^{2} \sin ^{2} x\right)^{1 / 2} d x, \\
q & =e^{-\pi K\left(k^{\prime}\right) / K(k)} .
\end{aligned}
$$

Construct $\hat{L}_{-}(\mu)$

Since

$\hat{\sin }^{2}(x)=\left(\ldots,-\frac{\pi^{2}}{k^{2} K^{2}} \frac{q}{1-q^{2}}, \frac{1}{k^{2}}\left(1-\frac{E}{K}\right),-\frac{\pi^{2}}{k^{2} K^{2}} \frac{q}{1-q^{2}}, \ldots\right)$
and

$$
\hat{\phi}^{2}(k, B)=\alpha\left(-2 k^{2} \hat{\sin }^{2}(k)+B\right),
$$

we write

$$
\hat{L}_{-}=\underbrace{\omega-\hat{\phi}^{2}+\beta \rho^{2}}_{\left(\ldots, \hat{q}_{-1}, \hat{q}_{0}, \hat{q}_{1}, \ldots\right)}-\left(i \mu+\frac{i 2 \pi n}{P L}\right)^{2}
$$

Construct $\hat{L}_{-}(\mu)$

The Fourier coefficients ...

Construct $\hat{L}_{-}(\mu)$

The partial operator ...

Construct $\hat{L}_{-}(\mu)$

Combining these, we get

SN plus

In the literature, you might find graphs for spectra associated to periodically perturbed TP solutions.

SN plus

We can now compute "all" unstable modes.

Conclusions

We now have a simple method that we can use to understand spectral stability. The method is great. It is:

- Simple to implement

Conclusions

We now have a simple method that we can use to understand spectral stability. The method is great. It is:

- Simple to implement
- Faster than many methods

Conclusions

We now have a simple method that we can use to understand spectral stability. The method is great. It is:

- Simple to implement
- Faster than many methods
- Provides eigenfunction information

Conclusions

We now have a simple method that we can use to understand spectral stability. The method is great. It is:

- Simple to implement
- Faster than many methods
- Provides eigenfunction information

But it has some problems, too:
Operator is NOT COMPACT!!

Thanks!!!

