
A Rough Overview of MATH 103 Van Wyk
Updated 25 August 2008

Chapter One: Logic and Set Theory

2 A proposition or statement is a sentence that is either true or false.

2 Given propositions p and q, compound propositions can be formed using the
following logical operations (each given by its defining truth table):

– negation (∼):
p ∼ p
T F
F T

– disjunction (∨):

p q p∨q
T T T
T F T
F T T
F F F

– conjunction (∧):

p q p∧q
T T T
T F F
F T F
F F F

– implication (⇒):

p q p⇒ q
T T T
T F F
F T T
F F T

– biconditional (⇔):

p q p⇔ q
T T T
T F F
F T F
F F T

2 Think of propositions p, q, r, etc. as “logical variables” that can take on the
“logical values” T and F. Compare this with the “real variables” x, y, z, etc. that
can take on any “real value.”

2 THE NEGATION OF AN IMPLICATION IS NOT AN IMPLICATION. In fact, the
negation of p⇒ q is p∧ (∼ q), as you can verify with a truth table.

2 DeMorgan’s Laws state that the negation of a conjunction is a disjunction and
vice-versa. More precisely, the negation of the proposition “p∨q” is the proposi-
tion “(∼ p)∧(∼ q)” and the negation of the proposition “p∧q” is the proposition
“(∼ p)∨ (∼ q).”
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2 Let p⇒ q be an implication. Its hypothesis is p, its conclusion is q, its converse
is q ⇒ p and its contrapositive is (∼ q) ⇒ (∼ p). An implication is logically
equivalent to its contrapositive. The negation of p⇒ q is p∧ (∼ q).

2 There are two quantifiers for logical variables:

– The universal quantifier, ∀, which is read “for each, “for all,” “for every,”
etc.

– The existential quantifier, ∃, which is read “for some,” “for at least one,”
“there exists,” etc.

The negation of a universal quantifier is an existential quantifier, and vice versa.
More precisely, the negation of the proposition ”∀x,P(x)” is the proposition
”∃x such that (∼ P(x))”, and the negation of the proposition ”∃x such that P(x)”
is the proposition ”∀x,(∼ P(x))”.

Example. The negation of

For all x, there exists a y such that xy > 0 or x≥ y.

is

There exists an x such that for all y, xy≤ 0 and x < y.

2 Analagous to the world of ”propositions and logical operations” is the world of
”sets and set operations.” (We will assume the notion of a set is familiar.) If A
and B are sets then A is a subset of B (A ⊆ B) if every element of A is also an
element of B. Generally, we can assume we are working inside a fixed universe
of discourse U.

2 Given sets A and B, we can form new sets using the following operations:

– complementation: A′ = {x ∈ U | x 6∈ A}.

– union: A∪B = {x | x ∈ A or x ∈ B}.

– intersection: A∩B = {x | x ∈ A and x ∈ B}.

– Cartesian product: A×B = {(x,y) | x ∈ A and y ∈ B}.

2 |A×B|= |A||B|.

Example. If U = {1,2, . . . ,99,100}, A = {33,34, . . . ,66}, and B = {50,51, . . . ,99,100},
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then

A∪B = {33,34, . . . ,99,100}
A∩B = {50,51, . . . ,65,66}

A′ = {1,2,3, . . . ,32,67,68, . . . ,99,100}
A×B = {(33,50),(33,51), . . . ,(33,100),

(34,50),(34,51), . . . ,(34,100),
(35,50),(35,51), . . . ,(35,100),
...
(66,50),(66,51), . . . ,(66,100)}

2 There is an analogy between the logical operations and the set operations above.
In particular,

Logical operation Set operation
∼ p A′

p∨q A∪B
p∧q A∩B

p⇒ q A⊆ B
p⇔ q A = B
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Chapter Two: Number Theory

2 An integer n divides an integer m, written n m, if there exists some integer k such
that nk = m.

2 A positive integer is prime if it has exactly two divisors. A positive integer is
composite if it has more than two divisors. Since 1 has only one divisor, it is
neither prime nor composite.

2 The Fundamental Theorem of Arithmetic states that any positive integer greater
than one can be written uniquely (except for the order of the prime factors) as a
product of primes.

2 n m if and only if for every prime power pk in the prime decomposition of n,
there is at least the same power of p in the prime decomposition of m.

2 Given two positive integers m and n, the greatest common divisor of m and n
(gcd(m,n)) and the least common multiple of m and n (lcm(m,n)) are defined in
the obvious ways. (Listen to the words: ”greatest common divisor” and ”least
common multiple.”) If you know the prime factorizations of m and n, then you
can get the prime factorization of gcd(m,n) by taking the smaller of the two
exponents on each prime. You can also get the prime factorization of lcm(m,n)
by taking the larger of the two exponents on each prime. Reminder: p0 = 1, so
if a prime is not there, it has an exponent of 0.

2 If n is a positive integer, then d(n) denotes the number of divisors of n. If the
prime factorization of n is

n = pk1
1 pk2

2 pk3
3 . . . pkr

r ,

then
d(n) = (k1 +1)(k2 +1)(k3 +1) . . .(kr +1).

Example. If m = 24 · 3 · 52 and n = 23 · 32 · 7, then gcd(m,n) = 23 · 3, lcm(m,n) = 24 · 32 ·
52 ·7, d(m) = (5)(2)(3) = 30, and d(n) = (4)(3)(2) = 24.

2 If a and b are an integers with b > 0, then the division algorithm states that there
exist integers q and r such that a = bq+ r with 0≤ r < b. (q is the quotient and
r is the remainder.)

Example. If a = 287 and b = 5, then 287 = 5 ·57+2, so q = 57 and r = 2.

2 Integers (and, in fact any numbers) can be written in base b for any integer b > 2.

(anan−1 . . .a2a1a0)b means

anbn +an−1bn−1 + · · ·+a2b2 +a1b+a0.
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Example. To convert 5032seven to base ten, just use the above definition:

5032seven = 5 ·73 +0 ·72 +3 ·7+2
= 5 ·343+21+2
= 1738ten

Example. If you wanted to count from one to twenty-five in base five, then you would write

1, 2, 3, 4, 10,
11, 12, 13, 14, 20,
21, 22, 23, 24, 30,
31, 32, 33, 34, 40,
41, 42, 43, 44, 100

Example. If you wanted to compute 3213three + 303three, just line up the two numbers and
add like you do in base ten, remembering that 4ten = 10four, 5ten = 11four, and
6ten = 12four:

1 1
3 2 1 3

3 0 3
1 0 1 2 2

Example. To convert 1738ten to base seven, you can do one of two things.

1. You can compute all the powers of 7 that are less than 1738: 70 = 1, 71 = 7,
72 = 49, and 73 = 343. (74 = 2401 is too big.)
Then see how the multiples of these powers add up to 1738:

– 343 goes into 1738 five times: 5 ·343 = 1715.
– You can’t add any multiples of 49 to this sum, since 1715 + 49 =

1764 > 1738, so 49 goes into this sum zero times.
– 7 goes into this sum only three times since 1715+0+21 = 1736, but

1715+0+28 = 1743 > 1738.
– 1 goes into this exactly two times, since 1715+0+21+2 = 1738.

Then since 1738 = 5 · 73 + 0 · 72 + 3 · 71 + 2 · 70, 1738ten = 5032seven by
definition.

2. You can also use the division algorithm repeatedly as follows, by repeatedly
dividing the quotient by 7 until you get a quotient of 0:

1738 = 7 ·248+2
248 = 7 ·35+3

35 = 7 ·5+0
5 = 7 ·0+5

Then write the remainders in reverse order to get 1738ten = 5032seven.
(This second method always works, but actually showing why it works is
cumbersome.)
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2 Converting between a base b and any power of that base bk – in particular, con-
verting between base two and base four, eight, or sixteen – can be done directly.

When converting from any base that is a power of two to binary, just rewrite each
digit in binary. To go the other way, reverse the process.

Example. To convert 39B4sixteen to base two, rewrite each of the four symbols 3,9,B,4 in
binary. Notice that 16 = 24, so we will need four binary digits for each symbol.
So, since three, nine, eleven, and four have binary representations 0011, 1001,
1011, and 0100, respectively, we have

39B4sixteen = 0011 1001 1011 0100two.

Example. To convert 11100001two to base eight, subdivide the digits into groups of three
(since 8 = 23), working right to left, and write the number 0–7 that corresponds
with each group. So

11100001two = 011 100 001two

= 341eight.
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Chapter Three: Probability

2 The sample space S of an experiment is the set of all possible outcomes. An
event E is a subset of S. The probability of E is

P(E) =
|E|
|S|

.

Example. Suppose your experiment is “roll a pair of dice” and your event E is “the sum
of the numbers on the dice is 6.” Then S = {1,2,3,4,5,6}× {1,2,3,4,5,6},
so |S| = 36. Also E = {(1,5),(2,4),(3,3),(4,2),(5,1)}, so |E| = 5. Therefore
P(E) = 5

36 .

2 Two events E and F are

– mutually exclusive if E∩F = /0. So, if E and F are mutually exclusive, then
P(E ∩F) = 0.

– independent if P(E ∩F) = P(E)P(F).

2 Axioms of probability include the following:

– For any event E, 0≤ P(E)≤ 1.

– P(E ′) = 1−P(E).

– If E and F are mutually exclusive, then P(E ∪F) = P(E)+P(F).

2 If E and F are any events in the same sample space, then

P(E ∪F) = P(E)+P(F)−P(E ∩F).

2 The Fundamental Counting Principle states that the number of ways to perform
k independent tasks is the product of the number of ways to perform each of the
tasks separately.

Example. Suppose you have to label chairs in a classroom with one letter and one integer
between 1 and 1000. Then there are 26 ·1000 = 26000 different labels.

Example. How many different numbers have a binary representation of ten digits? Well,
each of the ten digits has two possibilities (0 and 1), so there are 210 = 1024
different numbers.

2 If n is a natural number, then n factorial is the number

n! = (n)(n−1)(n−2) . . .(3)(2)(1).

By definition, 0! = 1.

Example. 6! = 6 ·5 ·4 ·3 ·2 ·1 = 720.

2 There are two ways to choose r objects from n objects without replacement.
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– If the order in which you choose doesn’t matter, then compute the number
of combinations of n things taken r at a time,

nCk =
n!

k!(n− k)!
.

– If the order in which you choose does matter, then compute the number of
permutations of n things taken r at a time,

nPk =
n!

(n− k)!
.

Example. A club has 15 members. The number of ways to pick a president, vice-president,
secretary, and treasurer is 15P4 = 15!

11! = 15 ·14 ·13 ·12 = 32760, while the num-
ber of ways to pick four members to serve on a committee is 15C4 = 15P4

4! =
15·14·13·12

4·3·2 = 1365.

Example. In a lottery, the goal is to choose a set of six numbers out of the numbers
1,2,3, . . . ,50. The number of possible ways to choose six numbers out of this
set is 50C6 = 50!

44!6! = 15,890,700. Since there is only one choice that wins the
lottery, the probability of winning this lottery is 1

15,890,700 , or about 0.000006%.
(Not too good.)
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Chapter Four: Geometry

2 There are four types of rigid motions of the plane (or just ”motions”): rotation
(about a point), reflection (about a line), translation (in a certain direction a cer-
tain distance), and glide reflection (a translation followed by a reflection about a
line parallel to the direction of the translation).

2 A symmetry of a plane figure is a motion that places the figure back onto itself.

2 The symmetry types of finite figures (those which encompass a finite area) are

– rotational or cyclic symmetry types:

C1,C2,C3, . . .

A figure of type Cn has a minimum rotation of 360
n degrees. (C1 has no

symmetry.)

– reflective or dihedral symmetry types:

D1,D2,D3, . . .

A figure of type Dn has n lines of symmetry. Since the product of two
reflections about lines that intersect is a rotation, types Dn for n ≥ 2 also
have rotational symmetry (with a minimum rotation of 360

n degrees, twice
the angle between two adjacent lines of reflection.)

Example. Here are four figures:

∃ ∂ §
N

∃ has a horizontal line of symmetry and no others, so it is type D1. ∂ has no
symmetry, so it is type C1. § has half-turn symmetry only, so it is type C2.

N
has exactly four lines of symmetry (horizontal, vertical, and both diagonals), so
it is type D4; notice it also has quarter-turn symmetry.

2 There are seven symmetry types of frieze patterns or border patterns. (The ad-
jective “certain” should be placed before all motions below. For example, when
it says “invariant under translations,” it means “invariant under certain transla-
tions.”)

– Type T , which is invariant under translations only. (Notice that all frieze
patterns are invariant under translations.)

– Type T H, which is invariant under translations and half-turns.

– Type T RT , which is invariant under translations and transverse reflections.

– Type T RL, which is invariant under translations and longitudinal reflec-
tions.

– Type T G, which is invariant under translations and glide-reflections.
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– Type T R2, which is invariant under translations, transverse reflections, and
longitudinal reflections (and hence half-turns and glide reflections).

– Type T RG, which is invariant under translations, transverse reflections, and
glide reflections (and hence half-turns).

Example. Here is an example of each type.

Type T : . . .∂ ∂ ∂ ∂ ∂ ∂ . . .
Type T H: · · · o o o o o o . . .
Type T RT : · · ·± ± ± ± ± ± . . .
Type T RL: · · ·< < < < < < .. .

Type T G:
. . . ⇁ ⇁ ⇁ .. .

⇀ ⇀ ⇀

Type T R2: . . .
N N N N N N

. . .

Type T RG:
. . . ± ± ± . . .

∓ ∓ ∓

2 A plane motion is direct if it preserves the sense (or orientation) of figures; it is
opposite if it reverses the sense of figures.

2 Direct (D) and opposite (O) motions “multiply” just like positive and negative
numbers:

D O
D D O
O O D

So a product of motions is direct if and only if there are an even number of
opposite motions; a product of motions is opposite if and only if there are an odd
number of opposite motions.

2 A fixed point of a plane motion is a point that is not moved by the motion. A
motion with no fixed points is called fixed-point free.

2 We have the following:

has fixed points fixed-point free
direct rotations translations

opposite reflections glide reflections

2 Every rigid motion of the plane can be written as a product of at most 3 reflec-
tions. So every rigid motion of the plane must be a rotation, reflection, transla-
tion, or glide reflection; there are no others. To determine which kind of motion
it is, answer two questions:
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1. Is the motion direct or opposite?

2. Does the motion have fixed points?

2 Determining if a motion is direct or opposite is easy; determining whether or not
it has fixed points can be hard. Here is a helpful way to determine which of the
four types of motion an unknown motion can be:

– Suppose the motion is direct.

∗ If all the points in the plane move the same distance in the same direc-
tion, then the motion must be a translation.

∗ If at least two points don’t move the same distance in the same direc-
tion, then the motion must be a rotation.
Furthermore, you can find the center of rotation by finding the point
of intersection of two perpendicular bisectors of “before” and “after”
points (say XX ′ and YY ′).

– Suppose the motion is opposite.

∗ If all the points in the plane move parallel to each other (either in the
same or opposite directions), then the motion must be a reflection.
Furthermore, you can construct the axis of reflection by connecting the
midpoints of two “before” and “after” points (say XX ′ and YY ′).

∗ If at least two points don’t move parallel to each other, then the motion
must be a glide reflection.
Furthermore, you can construct the glide axis by connecting the mid-
points of two “before” and “after” points (say XX ′ and YY ′).

Example. In the figure below, let H1 be a half-turn about point O1, let H2 be a half-turn
about point O2, and let H3 be a half-turn about point O3. What type of motion is
the product H1H2H3?

O1 O2

O3

s s
s

Since all three component motions are direct, the product H1H2H3 is direct, so it
must be either a translation or a rotation.

Also, the point X below is a fixed point of H1H2H3: H1 sends X to X1, H2 then
sends X1 to X2, and H3 then sends X2 to X3 = X . So H1H2H3 must be a rotation
about X .
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O1 O2

O3X = X3

X1

X2

s s
ss

s

s
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In fact, H1H2H3 is a half-turn about X . You can see this by following the point
O1 as you apply H1H2H3: it ends up directly above O1 on the other side of X (try
it), so the angle of rotation is 180◦.

2 A regular n-gon is a polygon with n sides for which all sides and all angles are
equal. The symmetry type of a regular n-gon is Dn, and each Dn is called a
dihedral group; it has 2n elements. Each element of Dn sends the n-gon back
onto itself.

Example. The symmetry group of the square is D4 = {I,S,S2,S3,R1,R2,R3,R4}, where Ri
is a reflection about the line `i below, S = R1R2 is a counterclockwise rotation of
90◦, and I is the “identity element” which represents doing nothing to the square.
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Notice the rotations I, S, S2, S3 are all direct motions while the reflections R1,
R2, R3, and R4 are all opposite motions. So, the product of two rotations must be
a rotation, the product of two reflections must be a rotation, and the product of a
rotation and a reflection (in either order) must be a reflection.

You can compute all 64 possible products of elements of D4 by hand. For ex-
ample, the following diagram shows that the product R2S3 has the same result as
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the single motion R1, so R2S3 = R1. (Note: the numbers are to keep track of the
square.)

1 4

3

1

R_1
S^3

R_2

4 2

4

2

3

1

3

2

Below is the entire table for D4, which contains all 64 possible products of its el-
ements. You always do the elements down the left column first, and the elements
along the top row second. For example, R1R2 is S, while R2R1 is S3. Notice
R1R2 6= R2R1, so the order you do these products in can effect the outcome.

I S S2 S3 R1 R2 R3 R4
I I S S2 S3 R1 R2 R3 R4
S S S2 S3 I R4 R1 R2 R3
S2 S2 S3 I S R3 R4 R1 R2
S3 S3 I S S2 R2 R3 R4 R1
R1 R1 R2 R3 R4 I S S2 S3

R2 R2 R3 R4 R1 S3 I S S2

R3 R3 R4 R1 R2 S2 S3 I S
R4 R4 R1 R2 R3 S S2 S3 I

Also notice the four basic types of products from the table:

(rotation)(rotation) = rotation,

(rotation)(reflection) = reflection,

(reflection)(rotation) = reflection, and
(reflection)(reflection) = rotation.
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Chapter Five: Group Theory

2 A binary operation ∗ on a set S is a rule that assigns to each ordered pair (x,y)
of elements of S exactly one element of S, x∗ y.

2 If |S|= n, then there are nn2
different binary operations on S, one for each possi-

ble table.

2 Let ∗ be a binary operation on S.

– ∗ is associative if for all a,b,c ∈ S, a∗ (b∗ c) = (a∗b)∗ c.
– ∗ is commutative if for all a,b ∈ S, a∗b = b∗a.
– e ∈ S is an identity under ∗ if for all a ∈ S, a∗ e = e∗a = a.
– If ∗ has an identity e, then a,b ∈ S are inverses if a∗b = b∗a = e. (Nota-

tion: b = a−1.)

2 Remarks. ∗ is commutative iff its multiplication table is symmetric about the
main diagonal. Associativity is hard to check, in general. An operation which is
associative but not commutative is left projection: 2∗©= 2.

Example. Let S = {a,b,c}.

1. The binary operation ∗ given by the table

∗ a b c
a a b c
b a b c
c a b c

is associative (it is “right projection”) but not commutative (since b∗c = c,
while c∗b = b). There is no identity, so it doesn’t make sense to talk about
inverses.

2. The binary operation � given by the table

� a b c
a a c b
b c c b
c b b a

is commutative (since the table is symmetric about the main diagonal) but
not associative (since b�(b�c) = b�b = c, while (b�b)�c = c�c = a).
There is no identity, so it doesn’t make sense to talk about inverses.

3. For the binary operation � given by the table

� a b c
a a c a
b c a b
c a b c

c is the identity (therefore c is its own inverse). a and b are inverses of each
other.
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2 Since the left and right cancellation laws hold for groups, every group table con-
tains every element exactly once in each row and in each column.

2 If G is a group and S ⊆ G, then S is closed if a∗b ∈ S whenever a,b ∈ S.

2 If H ⊆ G, then H is a subgroup of G, written H ≤ G, if H is itself a group. In
fact, H ≤ G iff

– H is closed.

– The identity is in H.

– H has all its own inverses.

2 If H ≤ G, then a (left) coset of H is a set of the form a∗H = {a∗h | h ∈ H} for
some a ∈ G.

2 Lagrange’s Theorem states that (for a finite group G) if H ≤ G then |H| divides
|G|.

Example. Here is the table for a group G:

◦ e a b c d f
e e a b c d f
a a e d f b c
b b d c a f e
c c f a d e b
d d b f e c a
f f c e b a d

1. The set S = {b,c} is not closed because b ◦ c = a 6∈ S. (There are other
reasons too.)

2. The set T = {e,c,d} is closed; all possible products result in elements of
T :

◦ e c d
e e c d
c c d e
d d e c

Since e ∈ T and T contains all its inverses (c and d are inverses of each
other), T is a subgroup of G.

3. Since |T | = 3 and |G| = 6, the subgroup T has 2 cosets. One, as always
is T , which is also e ◦ T = c ◦ T = d ◦ T . The other coset, {a,b, f}, is
a◦T = b◦T = f ◦T .

Example. If G has a prime number of elements, then the only subgroups of G are {e} and
G, since the only divisors of |G| are 1 and |G|. So groups with a prime number
of elements have no “interesting” subgroups.
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Chapter Six: Graph Theory

2 A graph consists of vertices and edges which run between vertices. If there is
an edge between two vertices, they are adjacent, and both of the vertices are
incident with that edge. A loop is an edge from a vertex to itself.

2 The degree of a vertex is the number of edges incident with it, loops counting
twice. (Equivalently, it is the number of parts of edges sticking out of the vertex.)
The degrees of all the vertices can be summarized in an adjacency matrix.

Example. The following is a graph with 7 vertices (labeled) and 7 edges, one of which is a
loop at v:

u

v

z

x y w

t

The degree of each vertex is

vertex degree
x 2
y 2
z 2
u 3
v 4
w 1
t 0

w is a pendant vertex and t is an isolated vertex.

The adjacency matrix for this graph is

x y z u v w t
x 0 1 1 0 0 0 0
y 1 0 0 1 0 0 0
z 1 0 0 1 0 0 0
u 0 1 1 0 1 0 0
v 0 0 0 1 1 1 0
w 0 0 0 0 1 0 0
t 0 0 0 0 0 0 0

Notice the adjacency matrix is symmetric about the main diagonal.

2 A plane graph is a graph with no edge crossings. A planar graph can be drawn
with no edge crossings. There are planar graphs that are not plane graphs.
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Example. Here is a planar graph that is not a plane graph:

To see that it is planar, redraw it as:

2 A simple graph is a graph with no loops or multiple edges.

2 Three important classes of simple graphs are:

1. The complete graph, Kn. Every pair of the n vertices is adjacent.

2. The cyclic graph, Cn. This is simply an n-sided polygon.

3. The complete bipartite graph, Kn,m. The vertices are split into two disjoint
sets, one with n elements and one with m. Every vertex in the one set is
adjacent to every vertex in the other set, and no other vertices are adjacent.

Example. 1. Here is K5:

2. Here is C5:

3. Here is K2,3:
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2 The concept of a path in a graph is exactly what you would guess, with the
requirement that a path begins at a vertex and ends at a vertex. A path is closed
or a circuit if it begins and ends at the same vertex. If it isn’t closed, it is open.
The length of a path is the number of edges it traverses.

Example. In the following graph

u

v

z

x y w

tj

g

fe
i

k

h

an open path from z to w of length 6 is

z h−→ u
f−→ y

f−→ u i−→ v
j−→ v k−→ w

while a closed path at u of length 3 is

u i−→ v
j−→ v i−→ u.

2 A graph Γ is connected if there is a path connected any two of its vertices. If Γ

is not connected, then the maximum connected subgraphs of Γ are its connected
components.

Example. The following graph has two components, one containing two vertices and the
other containing the other three vertices.

2 A cut vertex of a graph Γ is a vertex v such that Γ−{v} has more components
than Γ. A cut edge of a graph Γ is an edge e such that Γ−{e} has more compo-
nents than Γ.
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Example. In the following graph, u and v are cut vertices, while e and f are cut edges:

u

f

v e

2 The Handshaking Theorem states that in any graph Γ with E edges, the sum of
the degrees of all the vertices of Γ is 2E. This is easy to see, since each edge
contributes 2 to the total degree of the graph.

Example. In the graph in the example of degree of a vertex,

u

v

z

x y w

t

the sum of the degrees is

2+2+2+3+4+1+0 = 14,

and the number of edges is 7.

2 If Γ is a connected plane graph, then it splits the plane up into faces, one of which
is “exterior” (or “unbounded” or “infinite”).

2 If Γ is a connected plane graph, then its dual graph Γ∗ has

– a vertex f ∗ for every face f of Γ.

– an edge e∗ for every edge e of Γ such that the vertices f ∗1 and f ∗2 of Γ∗

are connected by the edge e∗ in Γ∗ exactly when the faces f1 and f2 are
separated by the edge e in Γ.

Example. Here is a plane graph Γ with three faces (the inside of the triangle, the inside of
the loop, and the exterior face):
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To form its dual graph Γ∗, first put a vertex in each of the three faces:

��

��

��

Then connect every two new vertices with an edge if their corresponding faces
in Γ are separated by an edge in Γ:

��

��

��

If we draw Γ∗ alone, we get

��

��

��

We can redraw Γ∗ to look a bit nicer:
��

�� ��
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Notice that Γ∗ is also planar. Furthermore,

Γ Γ∗

# vertices 4 3
# edges 5 5
# faces 3 4

The roles of “vertex” and “face” have been interchanged. That is what duality is
all about in graph theory.

Also, if we started with Γ∗ (drawn in the original way, not starting with the
“redrawn” Γ∗) and formed its dual, we would get Γ back again. In other words,
(Γ∗)∗ = Γ.

2 If Γ is a plane graph, it can be embedded on a sphere (in a “3-dimensional way”).
When this is done, the exterior face becomes just another bounded face.

Example. Start with the following plane representation of K4 (3 bounded faces, 1 un-
bounded face):

This can be redrawn as a tetrahedron with 4 bounded (2-dimensional) faces:

2 An edge path in a graph Γ is a path that traverses each edge of Γ exactly once.

2 A graph Γ is Eulerian if it has a closed edge path.

2 We know exactly when a graph has an open or closed edge path:

– Γ is Eulerian if and only if Γ is connected and all the vertices of Γ have
even degree.

– Γ has an open (but not closed) edge path if an only if Γ is connected and
exactly two of its vertices have odd degree.
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Example. K4 has neither an edge circuit nor an edge path since it has four vertices of odd
degree:

2 If G is a group and X ⊆ G, then X is a generating set for G if every element of
G can be written as a “product” of the elements of X and their inverses. These
products are called “words” in X .

Example. The group Z5 is generated by the single element {2} because

1 = 2+2+2
2 = 2
3 = 2+2+2+2
4 = 2+2
0 = 2+2+2+2+2

Example. We showed in class that D4 is generated by the subset {S,R1}.

2 If G is a group and X ⊆G, then the Cayley graph of G with respect to X , C(G,X),
is the directed graph with

– Vertices. The elements of G.

– Edges. For all g ∈ G and for all x ∈ X ,

s s-
g g · x

x

Example. The Cayley graph of Z4 with respect to the generating set X = {3} is:

t t

tt
6

-

?�
0 1

23

C(Z4,{3})

Here each of the edges is labeled “3”.
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2 In any Cayley graph:

– The graph is connected.

– Every vertex has an edge going in and an edge going out for every element
of X .

– So, every vertex has the same degree.

2 A Cayley graph gives a “picture” of a group.

THE END
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