VanWyk's 103

TERMS YOU SHOULD KNOW: sets, intersection, union, complement, Cartesian product.

- 1. Let $\mathcal{U} = \{1, 2, 3, \dots, 9, 10\}$ be the universe of discourse, let $A = \{2, 4, 6, 8\}$, and let $B = \{1, 2, 3\}$. Find each of the following sets.
 - (a) $A \cup B$.
 - (b) $A \cap B$.
 - (c) A'.
 - (d) B'.
 - (e) $A \times B$.
 - (f) $B \times A$.
- 2. Assume $A, B \subset U$ (the universe of discourse), |A| = 25, |B| = 10, and |U| = 100. (Recall |X| denotes the number of elements in the set *X*.)
 - (a) What is |A'|? |B'|?
 - (b) What is $|A \times B|$?
 - (c) What is the smallest $|A \cup B|$ can be? What is the largest $|A \cup B|$ can be?
 - (d) What is the smallest $|A \cap B|$ can be? What is the largest $|A \cap B|$ can be?
 - (e) Suppose you also know that $|A \cap B| = 5$. What must $|A \cup B|$ be?
- 3. Let *A*, *B*, and *C* be nonempty sets contained in the same universal set U. For each of the following, draw a single Venn diagram illustrating the given relationships. Be sure to label *A*, *B*, and *C* in your diagrams.
 - (a) $A \subseteq C$, $B \subseteq C$, and $A \cap B = \emptyset$.
 - (b) $A \subseteq B$ and C = B'.
 - (c) $A \subseteq B, A \cap C = \emptyset$, and $B \cap C \neq \emptyset$.
 - (d) $A \cap B \subseteq C$ and $A \cup B \not\subseteq C$.
- 4. Let $\mathbb{N} = \{0, 1, 2, 3, ...\}$ denote the set of natural numbers.

- (a) List the elements of the set $A = \{n \in \mathbb{N} \mid 5 \le n \le 11\}$.
- (b) List (some of) the elements of the set $B = \{2n \mid n \in \mathbb{N}\}$.
- (c) List (some of) the elements of the set $C = \{2n+1 \mid n \in \mathbb{N}\}$.
- (d) Write the set $D = \{0, 3, 6, 9, ...\}$ using set-builder notation.

VanWyk's 103

Section 1.4 Homework Answers

1a. $A \cup B = \{1, 2, 3, 4, 6, 8\}.$ 1b. $A \cap B = \{2\}.$ 1c. $A' = \{1, 3, 5, 7, 9, 10\}.$ 1d. $B' = \{4, 5, 6, 7, 8, 9, 10\}.$ 1e. $A \times B = \{(2, 1), (2, 2), (2, 3), (4, 1), (4, 2), (4, 3), (6, 1), (6, 2), (6, 3), (8, 1), (8, 2), (8, 3)\}.$ 1f. $B \times A = \{(1, 2), (1, 4), (1, 6), (1, 8), (2, 2), (2, 4), (2, 6), (2, 8), (3, 2), (3, 4), (3, 6), (3, 8)\}.$ 2a. |A'| = 100 - 25 = 75. |B'| = 100 - 10 = 90.2b. $|A \times B| = (25)(10) = 250.$ 2c. The smallest $|A \cup B|$ can be is 25 = |A|; this occurs if $B \subseteq A$. The largest $|A \cup B|$ can be is |A| + |B| = 35; this occurs if $A \cap B = \emptyset.$ 2d. The smallest $|A \cap B|$ can be is 0; this occurs if $A \cap B = \emptyset$. The largest $|A \cap B|$ can be is |B| = 10; this occurs if $B \subseteq A$.

2e.
$$|A \cup B| = |A| + |B| - |A \cap B| = 25 + 10 - 5 = 30$$
.

4a. $A = \{5, 6, 7, 8, 9, 10, 11\}.$ 4b. $B = \{0, 2, 4, 6, 8, \dots\}.$ 4c. $C = \{1, 3, 5, 7, 9, \dots\}.$ 4d. $D = \{3n \mid n \in \mathbb{N}\}.$