VanWyk's 103

Section 3.2 Homework Problems

TERMS YOU SHOULD KNOW: fundamental counting principle, permutations, combinations

- 1. Let $\mathcal{A} = \{a, b, c, \dots, x, y, z\}$ be the set of the 26 letters of the alphabet.
 - (a) How many 5-letter "words" (whether or not they make sense) can be made from the elements of A if letters can be used more than once?
 - (b) How many 5-letter "words" (whether or not they make sense) can be made from the elements of A if letters cannot be used more than once?
 - (c) How many 5-element sets can be made from the elements of A?
- 2. (a) How many possible 7-digit phone numbers are there if they can start with any number?
 - (b) How many possible 7-digit phone numbers are there if they can start with any number except a 0 or a 1?
 - (c) In the movies, all phone numbers start with 555. How many possible 7-digit phone numbers are there that start with 555?
 - (d) What is the probability that a random phone number chosen from the set of all numbers that doesn't start with a 0 or a 1 starts with 555?
- 3. You draw 5 cards from a standard 52-card deck.
 - (a) How many different hands are there?
 - (b) If you draw only three cards, how many ways are there to draw 3 aces?
 - (c) If you draw 5 cards, how many different ways are there to draw 3 aces?
 - (d) What is the probability that a random 5-card hand is 3 aces?
- 4. There are 3 boys and 3 girls in line. How many different ways can they stand in order to have the order (front to back) boy, girl, boy, girl, boy, girl?
- 5. A bag contains 7 green balls and 5 yellow balls; all 12 are identical except for their color.
 - (a) If you reach in and grab one ball at random, what is the probability it is yellow?
 - (b) In how many ways can 2 balls be selected?

- (c) In how many ways can 2 yellow balls be selected?
- (d) If you reach in and grab two balls at random, what is the probability that both are yellow?

Section 3.2 Homework Answers

VanWyk's 103

1a. 26^{5} 1b. ${}_{26}P_{5}$ 1c. ${}_{26}C_{5}$ 2a. 10^{7} 2b. $8 \cdot 10^{6}$ 2c. 10^{4} 2d. $\frac{10^{4}}{8 \cdot 10^{6}} = \frac{1}{800}$

3a. ${}_{52}C_5 = 2,598,960$ 3b. ${}_4C_3 = 4$

3c. This is a tough one. The number of ways to draw 3 aces is ${}_{4}C_{3}$. The number of ways to draw 2 non-aces is ${}_{48}C_{2}$. So the answer to the question is the product ${}_{4}C_{3} \cdot {}_{48}C_{2}$.

3d. Divide the answer in 3c by the answer in 3a.

4. There are $_{3}P_{3} = 6$ ways for the boys to be arranged and $_{3}P_{3} = 6$ ways for the girls to be arranged, so the answer is $6 \cdot 6 = 36$.

5a. $\frac{5}{12}$ 5b. ${}_{12}C_2 = 66$ 5c. ${}_{5}C_2 = 10$ 5d. $\frac{5}{33}$