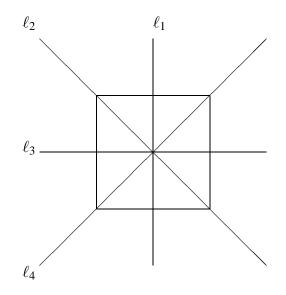
VanWyk's 103

Section 4.5 Homework Problems

1. The symmetry group of the square is $D_4 = \{I, S, S^2, S^3, R_1, R_2, R_3, R_4\}$, where each reflection R_i is about the line ℓ_i below, and $S = R_1R_2$.



- (a) How many degrees does $S = R_1R_2$ rotate the square counterclockwise? How about R_1R_3 ? R_1R_4 ? R_2R_1 ?
- (b) Which elements of D_4 are direct? Opposite?
- (c) Make a "multiplication table" for the elements of D_4 , i.e., fill in the following chart. You can use the fact (which we will see later) that every element of D_4 has to occur exactly once in each row and in each column. It might help to use a square card with numbers in each corner.

	Ι	S	S^2	S^3	R_1	R_2	R_3	R_4
Ι	Ι	S	S^2	S^3	R_1	R_2	R_3	R_4
S	S							
S^2	S^2							
S^3	S^3					$\frac{R_2}{R_2}$		
R_1	R_1				Ι			
R_2	R_2					Ι		
R_3	R_3						Ι	
R_2 R_3 R_4	R_4							Ι

- 2. In D_{231} , if you have the product $R_{45}S^{199}R_{19}R_{71}S^{22}$, is it some S^i or some R_i , and why?
- 3. In D_{180} , what is the angle between ℓ_1 and ℓ_2 ? What is the angle of minimal counterclockwise rotation (i.e., the angle of *S*)?

VanWyk's 103

Section 4.5 Homework Answers

1a. *S* rotates the square 90° counterclockwise, since the angle between ℓ_1 and ℓ_2 is 45°. R_1R_3 rotates the square $2 \cdot 90^\circ = 180^\circ$ counterclockwise. R_1R_4 rotates the square $2 \cdot 135^\circ = 270^\circ$ counterclockwise. R_2R_1 rotates the square 90° *clockwise*, which is the same as 270° counterclockwise. 1b. The *S*^{*i*}'s are always direct since they are rotations and the R_i 's are always opposite, since they are reflections. 1c.

	Ι	S	S^2	S^3	R_1	R_2	R_3	R_4
Ι	Ι	S	S^2	S^3	R_1	R_2	R_3	R_4
S	S	S^2	S^3	Ι	R_4	R_1	R_2	R_3
S^2	S^2	S^3	Ι	S	R_3	R_4	R_1	R_2
S^3	S^3	Ι	S	$ \frac{S^3}{I} \\ \frac{S}{S^2} $	R_2	R_3	R_4	R_1
R_1	R_1	R_2	R_3	R_4	Ι	S	S^2	S^3
R_2	R_2	R_3	R_4	R_1	S^3	Ι	S	S^2
R_3	R_3	R_4	R_1	R_2	S^2	S^3	Ι	S
R_4	R_4	R_1	R_2	R_4 R_1 R_2 R_3	S	S^2	S^3	Ι

Notice that this table illustrates how direct and opposite motions multiply:

$$\begin{array}{c|c}
D & O \\
\hline
D & D & O \\
\hline
O & O & D
\end{array}$$

2. It's some R_i because the product contains an odd number of opposite motions (so it must be opposite).

3. The angle between ℓ_1 and ℓ_2 in D_{180} is $\frac{180^{\circ}}{180} = 1^{\circ}$. So, the angle of rotation of $S = R_1 R_2$ is 2° .