VanWyk's 103

Section 5.1 Homework Problems

1. Let * be the binary operation defined on the set of natural numbers $\mathbb{N} = \{0, 1, 2, 3, ...\}$ given by

$$a * b = a^b$$
.

Is * commutative? Is * associative?

2. Show the following binary operation * on $S = \{0, 1\}$ is not associative:

$$\begin{array}{c|ccc}
* & 0 & 1 \\
\hline
0 & 1 & 0 \\
1 & 1 & 1
\end{array}$$

Hint: 0^3 .

- 3. Write the table for *left* projection on the set $S = \{a, b, c\}$.
- 4. Is the following a table for a commutative binary operation? Why or why not?
 - (a)

(b)

$$\begin{vmatrix} a & b & c \\ a & c & b & a \\ b & b & c & a \\ c & c & a & c \\ \end{vmatrix}$$

$$\begin{vmatrix} a & b & c \\ a & c & b & a \\ b & b & b & c \\ c & a & c & a \end{vmatrix}$$

5. Give an argument showing the following is a table for an associative binary operation.

	a	b	С
a	b	b b	b
b	b	b	b
С	b	b	b

6. There are 3⁹ different binary operations on a set with 3 elements. How many *commutative* binary operations are there on a set with 3 elements? Hint: Use the symmetry of the table.

VanWyk's 103

Section 5.1 Homework Answers

1. * is not commutative since $2 * 3 = 2^3 = 8$, while $3 * 2 = 3^2 = 9$. * is not associative since $(2 * 3) * 4 = (2^3) * 4 = 8 * 4 = 8^4 = (2^3)^4 = 2^{12}$, while $2 * (3 * 4) = 2 * (3^4) = 2 * 81 = 2^{81}$.

- 2. 0 * (0 * 0) = 0 * 1 = 0, while (0 * 0) * 0 = 1 * 0 = 1, so * is not associative.
- 3. Since $\alpha * \beta = \alpha$, here is the table:

4a. No, since $a * c \neq c * a$.

4b. Yes, since the table is symmetric about the main diagonal.

5. Since $\alpha * \beta = b$, it follows that for all $\alpha, \beta, \gamma \in S$, $(\alpha * \beta) * \gamma = b = \alpha * (\beta * \gamma)$. So * is associative.

6. The answer is 3^6 . By the symmetry we need for commutativity, the table must look like

So there are really only 6 slots we can fill. (Once the 6 on and above the main diagonal are filled in, the 3 below that are determined.)