Section 5.4 Homework Problems

- VanWyk's 103
 - 1. Here is a table for a group G.

0	e	a	b	С	d	f	
е	e	a	b	С	d	f	
a	a	е	d	f	b	С	
b	b	d	С	а	f	е	
С	c	f	а	d	е	b	
d	d	b	f	е	С	a	
f	$\int f$	С	е	b	а	d	

- (a) Find all the subgroups of G.
- (b) For each of the subgroups you found in 1a, find all of its (left) cosets.
- 2. Below is the table for D_4 . In Section 5.3, you found all the subgroups of D_4 . Find all of the (left) cosets of each subgroup.

	I	S	S^2	S^3	R_1	R_2	R_3	R_4
Ι	Ι	S	S^2	S^3	R_1	R_2	R_3	R_4
S	S	S^2	S^3	Ι	R_4	R_1	R_2	R_3
S^2	S^2	S^3	Ι	S	R_3	R_4	R_1	R_2
S^3	<i>S</i> ³	Ι	S	S^2	R_2	R_3	R_4	R_1
R_1	R_1	R_2	R_3	R_4	Ι	S	S^2	S^3
R_2	R_2	R_3	R_4	R_1	S^3	Ι	S	S^2
R_3	R_3	R_4	R_1	R_2	S^2	S^3	Ι	S
R_4	R_4	R_1	R_2	R_3	S	S^2	S^3	Ι

3. If G is a group such that |G| = 300, how many possible different sizes of subgroups of G are there?

VanWyk's 103

Section 5.4 Homework Answers

1a. By Lagrange's Theorem, the only possible sizes of subgroups are 1, 2, 3, and 6. Each must be closed, have e in them, and have all their inverses. So,

- One element subgroups: {*e*} (This is always the only one.)
- Two element subgroups: {*e*,*a*} (These must consist of *e* and an element that is its own inverse.)
- Three element subgroups: {e, c, d}
 (These must consists of e and two elements that are their own inverses or are inverses of each other, and must also be closed. Note that the subset {e, b, f} is *not* a subgroup: although b and f are inverses of each other, {e, b, f} is *not* closed since b ∘ b = c ∉ {e, b, f}.)
- Six element subgroups: *G* (This is always the only one.)

1b.

• Cosets of $\{e\}$:

$$e \circ \{e\} = \{e\} \\ a \circ \{e\} = \{a\} \\ b \circ \{e\} = \{b\} \\ c \circ \{e\} = \{c\} \\ d \circ \{e\} = \{c\} \\ f \circ \{e\} = \{d\} \\ f \circ \{e\} = \{f\}$$

• Cosets of $\{e,a\}$:

$$e \circ \{e, a\} = a \circ \{e, a\} = \{e, a\}$$

$$b \circ \{e, a\} = d \circ \{e, a\} = \{b, d\}$$

$$c \circ \{e, a\} = f \circ \{e, a\} = \{c, f\}$$

• Cosets of $\{e, c, d\}$:

$$e \circ \{e, c, d\} = c \circ \{e, c, d\} = d \circ \{e, c, d\} = \{e, c, d\}$$
$$a \circ \{e, c, d\} = b \circ \{e, c, d\} = f \circ \{e, c, d\} = \{a, b, f\}$$

• Cosets of G:

$$e \circ G = a \circ G = b \circ G = c \circ G = d \circ G = f \circ G = G$$

2. As always, there are as many cosets of $\{I\}$ as there are elements in the group, in this case 8. (See Problem 1b.) And there is only 1 coset of D_4 , namely D_4 itself. Here are the cosets of the other subgroups:

• Cosets of $\{I, R_1\}$:

$$I \circ \{I, R_1\} = R_1 \circ \{I, R_1\} = \{I, R_1\}$$

$$S \circ \{I, R_1\} = R_4 \circ \{I, R_1\} = \{S, R_4\}$$

$$S^2 \circ \{I, R_1\} = R_3 \circ \{I, R_1\} = \{S^2, R_3\}$$

$$S^3 \circ \{I, R_1\} = R_2 \circ \{I, R_1\} = \{S^3, R_2\}$$

• Cosets of $\{I, R_2\}$:

$$I \circ \{I, R_2\} = R_2 \circ \{I, R_2\} = \{I, R_2\}$$

$$S \circ \{I, R_2\} = R_1 \circ \{I, R_2\} = \{S, R_1\}$$

$$S^2 \circ \{I, R_2\} = R_4 \circ \{I, R_2\} = \{S^2, R_4\}$$

$$S^3 \circ \{I, R_2\} = R_3 \circ \{I, R_2\} = \{S^3, R_3\}$$

• Cosets of $\{I, R_3\}$:

$$I \circ \{I, R_3\} = R_3 \circ \{I, R_3\} = \{I, R_3\}$$

$$S \circ \{I, R_3\} = R_2 \circ \{I, R_3\} = \{S, R_2\}$$

$$S^2 \circ \{I, R_3\} = R_1 \circ \{I, R_3\} = \{S^2, R_1\}$$

$$S^3 \circ \{I, R_3\} = R_4 \circ \{I, R_3\} = \{S^3, R_4\}$$

• Cosets of $\{I, R_4\}$:

$$I \circ \{I, R_4\} = R_4 \circ \{I, R_4\} = \{I, R_4\}$$

$$S \circ \{I, R_4\} = R_3 \circ \{I, R_4\} = \{S, R_3\}$$

$$S^2 \circ \{I, R_4\} = R_2 \circ \{I, R_4\} = \{S^2, R_2\}$$

$$S^3 \circ \{I, R_4\} = R_1 \circ \{I, R_4\} = \{S^3, R_1\}$$

• Cosets of $\{I, S^2\}$:

$$I \circ \{I, S^2\} = S^2 \circ \{I, S^2\} = \{I, S^2\}$$

$$R_1 \circ \{I, S^2\} = R_3 \circ \{I, S^2\} = \{R_1, R_3\}$$

$$R_2 \circ \{I, S^2\} = R_4 \circ \{I, S^2\} = \{R_1, R_4\}$$

$$S \circ \{I, S^2\} = S^3 \circ \{I, S^2\} = \{S, S^3\}$$

• Cosets of $\{I, S, S^2, S^3\}$:

$$I \circ \{I, S, S^2, S^3\} = S \circ \{I, S, S^2, S^3\} = S^2 \circ \{I, S, S^2, S^3\}$$
$$= S^3 \circ \{I, S, S^2, S^3\} = \{I, S, S^2, S^3\}$$

$$R_1 \circ \{I, S, S^2, S^3\} = R_2 \circ \{I, S, S^2, S^3\} = R_3 \circ \{I, S, S^2, S^3\}$$
$$= R_4 \circ \{I, S, S^2, S^3\} = \{R_1, R_2, R_3, R_4\}$$

• Cosets of $\{I, S^2, R_2, R_4\}$:

$$I \circ \{I, S^2, R_2, R_4\} = S^2 \circ \{I, S^2, R_2, R_4\} = R_2 \circ \{I, S^2, R_2, R_4\}$$
$$= R_4 \circ \{I, S^2, R_2, R_4\} = \{I, S^2, R_2, R_4\}$$

$$S \circ \{I, S^2, R_2, R_4\} = S^3 \circ \{I, S^2, R_2, R_4\} = R_1 \circ \{I, S^2, R_2, R_4\}$$
$$= R_3 \circ \{I, S^2, R_2, R_4\} = \{S, S^3, R_1, R_3\}$$

• Cosets of $\{I, S^2, R_1, R_3\}$:

$$I \circ \{I, S^2, R_1, R_3\} = S^2 \circ \{I, S^2, R_1, R_3\} = R_1 \circ \{I, S^2, R_1, R_3\}$$

= $R_3 \circ \{I, S^2, R_1, R_3\} = \{I, S^2, R_1, R_3\}$

$$S \circ \{I, S^2, R_1, R_3\} = S^3 \circ \{I, S^2, R_1, R_3\} = R_2 \circ \{I, S^2, R_1, R_3\}$$
$$= R_4 \circ \{I, S^2, R_1, R_3\} = \{S, S^3, R_2, R_4\}$$

3. By Lagrange's Theorem, |H| must divide |G| if $H \le G$. Since $300 = 2^2 \cdot 3 \cdot 5^2$, the number of divisors of |G| is $d(300) = 3 \cdot 2 \cdot 3 = 18$. (Remember that from Chapter 2?) So |H| could be one of 18 different sizes, one for each divisor of *G*.

Note. Lagrange's Theorem does not say that there *must* be a subgroup of each of these 18 sizes, only that there *could* be a subgroup of each of these 18 sizes.