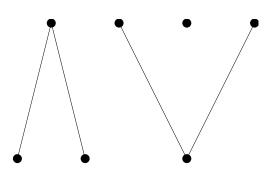
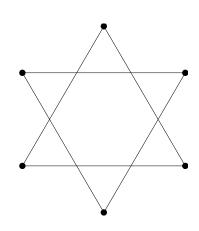

1. Create an adjacency matrix for the following graph:

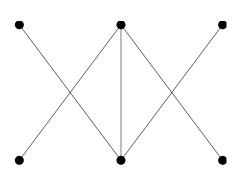
2. Below is a graph.



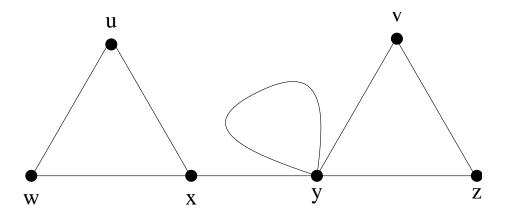
Find a closed path at *v* of each of the following lengths:


- (a) 3
- (b) 4
- (c) 5

3. Find the connected components of each of the following graphs:


(a)

(b)



(c)

4. How many cut vertices does K_n have? C_n ? $C_n - \{e\}$ for any edge e?

5. Here is a graph:

- (a) Find all its cut vertices and cut edges.
- (b) If this graph represents a communications network, which links (edges) should be backed up to help avoid a breakdown of the network?

VanWyk's 103

Section 6.2 Homework Answers

1.

2a.

$$v \xrightarrow{d} x \xrightarrow{b} y \xrightarrow{c} v$$

There are others.

2b.

$$v \xrightarrow{f} w \xrightarrow{e} x \xrightarrow{b} y \xrightarrow{c} v$$

There are others.

2c.

$$v \xrightarrow{f} w \xrightarrow{e} x \xrightarrow{d} v \xrightarrow{f} w \xrightarrow{f} v$$

There are others.

3a. There are three components.

3b. There are two components.

3c. This graph is connected, so there is only one component.

4. K_n and C_n have no cut vertices. $C_n - \{e\}$ has n - 2 cut vertices (all the "interior" vertices).

5a. x and y are cut vertices. The edge xy is a cut edge.

5b. You should back up the edge *xy* with another edge. That way, if *xy* fails, the network still operates.