1. Here are two plane graphs, Γ_1 and Γ_2 , respectively:

- (a) List the number of vertices, edges, and faces for both Γ_1 and Γ_2 .
- (b) List the degrees of all the vertices of both Γ_1 and Γ_2 .
- (c) List the degrees of all the faces (i.e., the number of edges incident with, or bounding, each face) of both Γ_1 and Γ_2 .
- (d) Draw the duals Γ_1^* and Γ_2^* .
- (e) Repeat 1a–1c for Γ_1^* and Γ_2^* .
- (f) Conclude that Γ_1 and Γ_2 are "basically the same graph" but Γ_1^* and Γ_2^* are "structually different."

VanWyk's 103

Section 6.3 Homework Answers

1a. Both have 6 vertices, 10 edges, and 6 faces.

1b. The degrees of the vertices for both Γ_1 and Γ_2 are the same:

vertex	и	V	W	х	у	Z.
degree	2	4	4	4	3	3

1c. The degrees of the faces for Γ_1 are:

face	uvw	vxw	vxy	WXZ	xyz	uvyzw
degree	3	3	3	3	3	5

The degrees of the faces for Γ_2 are:

face	uvw	vyzw	vxy	xyz	WXZ	uvxw
degree	3	4	3	3	3	4

1d. Here are Γ_1^* and Γ_2^* , superimposed over Γ_1 and Γ_2 , respectively:

1e. Both have 6 vertices, 10 edges, and 6 faces. Notice, though, that the 6 vertices of the duals correspond to the 6 faces of the originals, and vice-versa.

For Γ_1^* :

vertex	а	b	С	d	е	f
degree	3	3	3	3	3	5
face	af	acdf	bcde	bef	def	acbf

For Γ_2^* :

vertex	a	b	С	d	е	f
degree	3	4	3	3	3	4
face	af	abef	bde	bcd	cdef	abcf

1f. It is easy to see that $\Gamma_1 \cong \Gamma_2$. Basically, Γ_2 is obtained from Γ_1 by grabbing the vertex *x* and pulling it out to the right.

The reason $\Gamma_1^* \ncong \Gamma_2^*$ is that Γ_1^* has a vertex of degree 5 but Γ_2^* doesn't. So there is *no way* Γ_1^* can be deformed into Γ_2^* , since the degrees of the vertices don't change under any deformation.

What this example shows is that two graphs that are "structurally the same" (*isomorphic*) can have duals that are not. So, it only makes sense to talk about duals of plane graphs and not in the more general context of planar graphs.