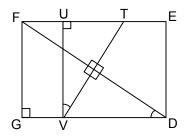
To solve this problem, make use of the fact that the crease is the perpendicular bisector of the segment connecting the two opposite corners. With this in mind, a diagram like the following may be drawn:



In the drawing, \overline{DF} is the diagonal, \overline{VT} is the crease, and \overline{UV} is perpendicular to the longer sides of the paper.

To work the problem, the following notation will help:

l = length of paper = DG w = width of paper = FG = UV c = length of crease = VT d = length of diagonal = DFr = ratio of length to width = l / w

Thus l = rw (Equation 1)

A little bit of geometry shows that $\angle GDF \cong \angle UVT$ as is indicated in the diagram. A little more geometry shows that $\triangle GDF \sim \triangle UVT$. Thus $\frac{GD}{UV} = \frac{DF}{VT}$. Substituting the above notation gives $\frac{l}{w} = \frac{d}{c}$ Thus the ratio of the longer side to the shorter side is $r = \frac{d}{c}$ (Equation 2) By the Pythagorean theorem, $d^2 = w^2 + l^2$. Substituting rw for l (see Equation 1) and then taking the square root of both sides gives $d = \sqrt{w^2 + r^2w^2}$ Factoring out w^2 produces $d = w\sqrt{1 + r^2}$ (Equation 3) Since the crease is the same length as the longer side, c = l. Substituting Equation 1 produces c = rw (Equation 4) Substituting Equations 3 and 4 into Equation 2 produces $r = \frac{w\sqrt{1 + r^2}}{rw}$ Therefore $r = \frac{\sqrt{1 + r^2}}{r}$. Thus $r^2 = \sqrt{1 + r^2}$. Squaring and then rearranging gives $r^4 - r^2 - 1 = 0$ Solving this quadratic in r^2 shows that $r^2 = \frac{1 + \sqrt{5}}{2}$ which is the golden ratio! Thus $r = \sqrt{\frac{1 + \sqrt{5}}{2}}$ Q.E.D.