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Abstract. The pure symmetric automorphism group, PΣn, consists of those

automorphisms of the free group on n generators that take each standard
generator to a conjugate of itself. We give presentations for kernels of ho-
momorphisms PΣn → Z where each standard generator is sent to either 0
or 1, and provide explicit generators (as words in the standard generators)

when those kernels are finitely generated. In addition, we provide recursive
constructions of the defining graphs of the graph groups associated with PΣn.

1. Introduction

The pure symmetric automorphism group, PΣn, consists of those automorphisms
of the free group on n generators, Fn, that take each standard generator to a conju-
gate of itself. Such automorphisms have also been referred to as basis-conjugating
automorphisms of free groups.

Just as each braid group, Bn, can be interpreted as a group of motions of n

distinct points in the plane, so PΣn can be interpreted as a group of motions of n

unknotted, unlinked circles in R3. The fundamental group of the link complement
of this trivial link is Fn, with each of the n standard generators corresponding to
a meridian of one of the circles. PΣn is then realized as the group of motions
generated by those motions for which the ith circle is passed through the jth circle,
with all others remaining fixed. See Goldsmith [7] or Brownstein and Lee [4] for
details.

McCool [12] derived a finite presentation for PΣn. Gutiérrez and Krstić [8] have
discovered normal forms for the more general symmetric automorphism group of Fn

(those that send each standard generator to a conjugate of itself or another standard
generator) that form a regular language. Orlandi-Korner [15] has computed the first
Σ-invariant for PΣn. Brady et al. [3] have shown that the PΣn are duality groups.

Since two of the three types of relators in McCool’s presentation for PΣn are
commutators of his generators, there is an associated graph group or right-angled
Artin group associated with each PΣn; PΣn is the quotient of this graph group
by the normal subgroup generated by the other relators. Graph groups have been
studied extensively, and have proven to be an interesting yet accessible category of
groups. See [2], [5], [6], [9], [13], [14], and [16] for some results about graph groups.
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The focus of this paper is threefold. First, we derive a presentation for kernels
of homomorphisms θ : PΣn → 〈t〉 (where 〈t〉 is the infinite cyclic group) in which
each generator is mapped to t or 1. (Kernels from graph groups to 〈t〉 provided the
first example of groups that satisfy homological finiteness condition FP2 but which
were not finitely presented [2].) These kernels necessarily contain the commutator
subgroup of PΣn. Secondly, we study the structure of the underlying graph of the
graph group associated with PΣn. Lastly, we provide and explicit finite generating
set for those homomorphisms θ for which ker θ is finitely generated.

This work is the result of an NSF-funded Research Experiences for Undergradu-
ates project at James Madison University of the first two authors under the direction
of the third. We thank John Meier for suggesting this project and Joshua Levy for
his help in improving the presentation of this material.

2. Preliminaries

Let Fn be the free group with basis X = {x1, x2, . . . , xn}. The pure symmetric
automorphism group of Fn, denoted by PΣn, is the subgroup of Aut(Fn) that sends
each xi to a conjugate of itself.

In [12], McCool provides a finite presentation of PΣn. The generators are the
maps φi,j : Fn → Fn (i 6= j) given by

φi,j(xk) =
{

x−1
j xixj if k = i

xk otherwise

and the relations fall into three categories:
[φi,j , φk,j ] = 1 for all distinct i, j and k

[φi,j , φk,l] = 1 for all distinct i, j, k and l

[φi,j , φi,kφj,k] = 1 for all distinct i, j and k

(1)

We call the first category of relators Type C; these are relations in which auto-
morphisms with common conjugates commute. The second category is Type D;
these are relations in which automorphisms with disjoint subscripts commute. The
third category is Type E; these can be thought of as edge relations, where a single
vertex commutes with a pair of common conjugates (as defined by the equation
above) that correspond to an edge in the underlying graph group defined below.

Since the relators of Types C and D are commutators of generators, the group
formed from the presentation above minus the relators of Type E is a graph group
or right-angled Artin group.

Following [11], we will denote the Tietze transformations adjunction of relators,
deletion of relators, adjunction of generators, and deletion of generators by (T1),
(T2), (T3), and (T4), respectively. It is shown in [11] that given any two presen-
tations of a group G, one can be obtained from the other by repeated applications
of these four transformations.

Given a presentation of a group G and suitable information about a subgroup
H ≤ G, the Reidemeister-Schreier method enables one to obtain a presentation for
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H. In [10] it is shown that if 〈X;R〉 is a presentation for G, π : F (X) → G is
the canonical epimorphism, T is a Schreier transversal for π−1(H) in F(X), and
Φ : F (X)→ T is the function which maps each element to its coset representative,
then Y = {txΦ(tx)−1 | t ∈ T, x ∈ X, tx /∈ T} corresponds to a set of generators for
H. Furthermore, if τ : π−1(H)→ F (Y ) is the function in [10] which rewrites each
w ∈ π−1(H) in terms of the generators Y and S = {τ(trt−1) | t ∈ T, r ∈ R}, then
〈Y ;S〉 is a presentation for H.

The reader is directed to [10] or [11] for details of Tietze transformations and
the Reidemeister-Schreier rewriting procedure.

3. A Presentation for the subgroups

Let PΣn have the presentation given in Section 2, with generating set X = {φi,j |
1 ≤ i, j ≤ n, i 6= j} and relators given in Equation 1 of Types C, D, and E. Let
θ : PΣn → 〈t〉 be a homomorphism that maps each generator φi,j to either t or 1.
We seek a presentation for ker θ.

Following [1] and [9], we will refer to those generators mapped to t as “live” and
those mapped to 1 as “dead.”

Since there will always be at least one live generator, and the presentation of
PΣn is symmetric, we will always assume φ1,2 is live.

For a Schreier transversal for π−1(ker θ) in F (X), take T = {φm
1,2 | m ∈ Z} and

recall that Φ : F (X) → T sends each element to its coset representative. A set of
generators for ker θ is then {txΦ(tx)−1 | t ∈ T, x ∈ X, tx 6∈ T}. Just as in [1] and
[9], a straightforward calculation yields the following families of generators:{

λ(i, j, m) = φm
1,2 φi,j φ

−(m+1)
1,2 for each live φi,j and for each m ∈ Z

δ(i, j, m) = φm
1,2 φi,j φ−m

1,2 for each dead φi,j and for each m ∈ Z.

Notice we use λ(i, j, m) for each family of generators corresponding to a live au-
tomorphism and δ(i, j, m) for those corresponding to a dead automorphism. Also
notice that λ(1, 2,m) = 1 for all m ∈ Z.

We now obtain the relations for ker θ by rewriting the set {trt−1 | t ∈ T, r ∈ R}
in terms of these generators, where R consists of the relators in Equation 1. For the
following, we will denote the live generators of PΣn by li,j and the dead generators
of PΣn by di,j , i.e.,

φi,j =
{

li,j if θ(φi,j) = t
di,j if θ(φi,j) = 1

Once again, straightforward calculations yield the following relations for ker θ;
each holds for all m ∈ Z:

(1) Relations derived from Type C relations of PΣn.
(a) From each relation of the form [li,j , lk,j ] = 1:

λ(i, j, m)λ(k, j,m + 1)λ(i, j, m + 1)−1λ(k, j,m)−1 = 1
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(b) From each relation of the form [li,j , dk,j ] = 1:

λ(i, j, m)δ(k, j,m + 1)λ(i, j, m)−1δ(k, j,m)−1 = 1

(c) From each relation of the form [di,j , dk,j ] = 1:

δ(i, j, m)δ(k, j,m)δ(i, j, m)−1δ(k, j,m)−1 = 1

(2) Relations derived from Type D relations of PΣn.
(a) From each relation of the form [li,j , lk,l] = 1:

λ(i, j, m)λ(k, l,m + 1)λ(i, j, m + 1)−1λ(k, l,m)−1 = 1

(b) From each relation of the form [li,j , dk,l] = 1:

λ(i, j, m)δ(k, l,m + 1)λ(i, j, m)−1δ(k, l, m)−1 = 1

(c) From each relation of the form [di,j , dk,l] = 1:

δ(i, j, m)δ(k, l,m)δ(i, j, m)−1δ(k, l,m)−1 = 1

(3) Relations derived from Type E relations of PΣn.
(a) From each relation of the form [li,j , li,k lj,k] = 1:

λ(i, j, m)λ(i, k,m + 1)λ(j, k,m + 2)λ(i, j, m + 2)−1λ(j, k,m + 1)−1λ(i, k,m)−1 = 1

(b) From each relation of the form [li,j , li,k dj,k] = 1:

λ(i, j, m)λ(i, k,m + 1)δ(j, k,m + 2)λ(i, j, m + 1)−1δ(j, k,m + 1)−1λ(i, k,m)−1 = 1

(c) From each relation of the form [li,j , di,k lj,k] = 1:

λ(i, j, m)δ(i, k,m)λ(j, k,m + 1)λ(i, j, m + 1)−1λ(j, k,m)−1δ(i, k,m)−1 = 1

(d) From each relation of the form [li,j , di,k dj,k] = 1:

λ(i, j, m)δ(i, k,m + 1)δ(j, k,m + 1)λ(i, j, m)−1δ(j, k,m)−1δ(i, k,m)−1 = 1

(e) From each relation of the form [di,j , li,k lj,k] = 1:

δ(i, j, m)λ(i, k,m)λ(j, k,m + 1)δ(i, j, m + 2)−1λ(j, k,m + 1)−1λ(i, k,m)−1 = 1

(f) From each relation of the form [di,j , li,k dj,k] = 1:

δ(i, j, m)λ(i, k,m)δ(j, k,m + 1)δ(i, j, m + 1)−1δ(j, k,m + 1)−1λ(i, k,m)−1 = 1

(g) From each relation of the form [di,j , di,k lj,k] = 1:

δ(i, j, m)δ(i, k,m)λ(j, k,m)δ(i, j, m + 1)−1λ(j, k,m)−1δ(i, k,m)−1 = 1

(h) From each relation of the form [di,j , di,k dj,k] = 1:

δ(i, j, m)δ(i, k,m)δ(j, k,m)δ(i, j, m)−1δ(j, k,m)−1δ(i, k,m)−1 = 1

Note that every generator φi,j of PΣn (except for φ1,2) corresponds to a countable
family of generators for ker θ, and every relation of PΣn corresponds to a countable
family of relations for ker θ.
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4. The structure of the underlying graphs of PΣn

Recall [12] that PΣn admits a finite presentation with generators

{φi,j | 1 ≤ i, j ≤ n, i 6= j}

and relations given in Equation 1 of Types C, D, and E.
Since the relators of Types C and D are commutators of generators, each group

given by removing a subset of the relations containing all Type E relations is a graph
group. Each such group has a defining graph whose vertices are the generators φi,j

and whose edges connect (distinct) generators that commute.

Definition 1. Let C(PΣn) [resp. D(PΣn)] denote the defining graph of the graph
group whose generators consist of the φi,j and whose relations consist of all Type
C [resp. Type D] relations. Similarly, let CD(PΣn) denote the defining graph of
the graph group whose generators consist of the φi,j and whose relations consist of
all Type C and all Type D relations.

Recall a graph Γ is k-regular provided the degree of every vertex in Γ is k. Also
recall that the link of φi,j , lk(φi,j), is the full subcomplex generated by all vertices
adjacent to φi,j , while the star of φi,j , st(φi,j), is the cone of φi,j over lk(φi,j).
Throughout this section, since we are only concerned with the underlying graphs,
we will take lk(φi,j) and st(φi,j) to be the 1-skeleta of the topological link and star.

Proposition 1. In C(PΣn), st(φi,j) is a copy of the complete graph Kn−1.

Proof. Every pair of vertices of the form φk,j and φl,j with 1 ≤ l, k ≤ n (l, j, k
distinct) are connected by an edge of Type C. �

Proposition 2. C(PΣn) is (n− 2)-regular, D(PΣn) is (n− 2)(n− 3)-regular, and
CD(PΣn) is (n− 2)2-regular.

Proof. There is an edge of Type C between φi,j and φk,j iff k 6= i, j. Thus C(PΣn) is
(n−2)-regular. There is an edge of Type D between φi,j and φk,l iff i, j, k, and l are
distinct. Thus D(PΣn) is (n−2)(n−3)-regular. Since (n−2)+(n−2)(n−3)=(n−2)2,
it follows that CD(PΣn) is (n− 2)2-regular. �

Notice that the proof of Proposition 2 shows that ∀ i, j, lk(φi,j) = lk(φj,i) in the
graph D(PΣn). Also notice it follows that all links of vertices in CD(PΣn) [resp.
C(PΣn), D(PΣn)] are isomorphic.

Corollary 1. The link of any vertex of D(PΣn+2) is isomorphic to D(PΣn).

Proof. The vertex φn+1,n+2 is connected to the vertex φl,m (l 6= m) by a Type D
edge iff 1 ≤ l ≤ n, 1 ≤ m ≤ n, and l 6= m. Thus lkφn+1,n+2 = D(PΣn). The result
follows from Proposition 2. �

Proposition 3. The link of any vertex of CD(PΣn+1) is isomorphic to a full
subgraph of CD(PΣn).
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Proof. By definition, lk(φn+1,j) is a full subgraph of CD(PΣn+1). Since φn+1,j is
not adjacent to any vertices of the form φn+1,k or φk,n+1, all vertices take the form
φl,m where neither l nor m is equal to n + 1. Thus, lk(φn+1,j) is a full subgraph of
CD(PΣn). It follows from Proposition 2 that the link of any vertex of CD(PΣn+1)
is isomorphic to a full subgraph of CD(PΣn). �

Proposition 4. CD(PΣn+1) is obtained from CD(PΣn) by adding 2n vertices of
the form φi,n+1 and φn+1,i, together with 3n(n−1)

2 edges of Type C and 2n(n−1)(n−
2) edges of Type D.

Proof. Clearly the only vertices that need to be added to CD(PΣn) are the 2n

vertices of the form φi,n+1 and φn+1,i.
By Proposition 1, for each i (1 ≤ i ≤ n) there are n−1 edges of Type C between

φn+1,i and the copy of Kn−1 spanned by the vertices φj,i of CD(PΣn). Since the
vertices of the form φi,n+1 also form a copy of Kn, there are n(n−1)

2 edges of Type C
connecting these vertices to each other. Thus n(n−1)+ n(n−1)

2 = 3n(n−1)
2 additional

edges of Type C are needed when constructing CD(PΣn+1) from CD(PΣn).
Also, for each i, there are (n − 1)(n − 2) edges connecting each φn+1,i and

φi,n+1 to vertices in CD(PΣn) of the form φj,k with j, k, i, and n + 1 distinct.
Thus 2n(n − 1)(n − 2) additional edges of Type D are needed when constructing
CD(PΣn+1) from CD(PΣn). �

Definition 2. Let φi,j , φk,l ∈ PΣn. The distance between φi,j and φk,l, denoted
d(φi,j , φk,l), is the distance between those two vertices in CD(PΣn).

Proposition 5. For each n ≥ 4, the diameter of CD(PΣn) is 2.

Proof. Let n ≥ 4, and let φi,j ∈ CD(PΣn). We first show that each vertex φk,l in

CD(PΣn) lies a distance at most 2 from φi,j . By φa,b
C←→ φc,d and φa,b

D←→ φc,d,
we mean that the vertex φa,b is connected to the vertex φc,d by an edge of type C
and D, respectively. There are six possible forms for φk,l:

(1) φk,j (k 6= i, j). Then φi,j
C←→ φk,j .

(2) φk,l (i, j, k, l distinct). Then φi,j
D←→ φk,l.

(3) φj,k (k 6= i, j). Then φj,k
C←→ φl,k

D←→ φi,j , where l 6= i, j, k.

(4) φi,k (k 6= i, j). Then φi,k
C←→ φl,k

D←→ φi,j , where l 6= i, j, k.

(5) φk,i (k 6= i, j). Then φk,i
D←→ φl,j

C←→ φi,j , where l 6= i, j, k.

(6) φj,i. Then φj,i
D←→ φl,k

C←→ φi,j , where i, j, k, l are distinct.

Since φi,j and φj,i are not adjacent, the diameter of CD(PΣn) is 2. �

5. A finite generating set for ker θ

In [15], Orlandi-Korner computed Σ1(PΣn), the first BNS-invariant of PΣn. As
an immediate corollary of her main theorem, we have
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Corollary 2 (Orlandi-Korner). Let θ : PΣn → 〈t〉 be as in Section 3. Then ker θ is
not finitely generated iff for some i and j, φi,j and φj,i are the only live generators
under θ.

In this section, we calculate a set of finite generators for ker θ when the negation
of the above condition holds. Since at least one generator must be live for ker θ 6=
PΣn, we will assume φ1,2 is live throughout this section, as in Section 3. (Recall
that φ1,2 was chosen as our “transversal generator” in that section. The actual
choice of a tranversal generator would depend on which generators are live and
dead. Fortunately, the symmetry of McCool’s presentation of PΣn allows us to
renumber accordingly.)

Definition 3. Let φi,j , φk,l ∈ PΣn, with φi,j live. By a live path from φi,j to φk,l,
we mean a path in CD(PΣn) in which all intermediate generators are live.

The following is immediate from Lemma 1 of [9].

Corollary 3 (Levy et al.). If there exists a live path from φ1,2 to φi,j, then the
family of generators of ker θ corresponding to φi,j can be reduced to one generator,
namely {φi,j} or {φi,j φ−1

1,2}, depending on whether φi,j is dead or live, respectively.

Theorem. Let θ : PΣn → 〈t〉 be as in Section 3 with n ≥ 4, and assume it is not
true that the only live generators are φ1,2 and φ2,1. Then for each φi,j, the family of
generators of ker θ corresponding to φi,j can be reduced to at most two generators.
Specifically, if φi,j is live, it contributes {φi,j φ−1

1,2} or {φi,j φ−1
1,2, φ1,2 φi,j φ−2

1,2}, while
if φi,j is dead, it contributes {φi,j} or {φi,j, φ1,2 φi,j φ−1

1,2}.

Proof. Let φi,j ∈ PΣn. If there exists a live path from φ1,2 to φi,j , then Corollary 3
applies. It follows that φi,j contributes {φi,j φ−1

1,2} to the generating set for ker θ if
it is live and {φi,j} if it is dead.

On the other hand, if there is no live path from φ1,2 to φi,j , then φi,j does not
commute with φ1,2. By Proposition 5, d(φ1,2, φi,j) = 2; consequently φi,j must be
one of four forms: φ1,k, φk,1, φ2,k or φ2,1, where k is neither 1 nor 2.

Case I. φi,j takes the form φ1,k, where k 6= 2.

Subcase I.A. φ1,k is live.
If φk,2 is live, the relation [φ1,k, φ1,2 φk,2] = 1 yields the family of relations

λ(1, k, m)λ(1, 2,m + 1)λ(k, 2,m + 2) = λ(1, 2,m)λ(k, 2,m + 1)λ(1, k, m + 2) (2)

∀m ∈ Z from Section 3, Case 3a. Since λ(1, 2,m + 1) = λ(1, 2,m) = 1 and the
relation [φ1,2, φk,2] = 1 yields the family λ(k, 2,m + 2) = λ(k, 2,m + 1) = λ(k, 2, 0)
(Case 1a), Equation 2 can be rewritten as

λ(1, k, m + 2) = λ(k, 2, 0)−1λ(1, k, m)λ(k, 2, 0).



8 ERIN CORMAN, REBECCA DOLPHIN, AND LEONARD VAN WYK

Straightforward induction shows

λ(1, k,m) =
{

λ(k, 2, 0)−m/2λ(1, k, 0)λ(k, 2, 0)m/2 m even
λ(k, 2, 0)−(m−1)/2λ(1, k, 1)λ(k, 2, 0)(m−1)/2 m odd.

Hence, λ(1, k, m) can be expressed in terms of λ(k, 2, 0) and λ(1, k, 0), or λ(k, 2, 0)
and λ(1, k, 1). Thus φ1,k contributes {φ1,k φ−1

1,2, φ1,2 φ1,k φ−2
1,2} to the generating set

of ker θ. Similarly, if φk,2 is dead, φ1,k contributes {φ1,k φ−1
1,2}.

Subcase I.B. φ1,k is dead.
If φk,2 is live, the relation [φ1,k, φ1,2 φk,2] = 1 yields the family of relations

in Case 3e. As in I.A., straightforward induction shows that δ(1, k,m) can be
expressed in terms of λ(k, 2, 0) and δ(1, k, 0), or λ(k, 2, 0) and δ(1, k, 1). As in I.A.
it follows that φ1,k contributes {φ1,k, φ1,2 φ1,k φ−1

1,2} to the generating set of ker θ.
Similarly, if φk,2 is dead, it follows that φ1,k contributes {φ1,k}.

Case II. φi,j takes the form φk,1, where k 6= 2. The techniques in this case are
essentially identical to those of Case I.

Subcase II.A. φk,1 is live.
If φk,2 is live, the relation [φk,1, φk,2 φ1,2] = 1 yields the family of relations in

Case 3a, which can be used to show φk,1 contributes {φk,1 φ−1
1,2, φ1,2 φk,1 φ−2

1,2} to the
generating set of ker θ. Similarly, if φk,2 is dead, φk,1 contributes {φk,1 φ−1

1,2}.
Subcase II.B. φk,1 is dead.

If φk,2 is live, the relation [φk,1, φk,2 φ1,2] = 1 yields the family of relations in
Case 3e, which can be used to show φk,2 contributes {φk,1, φ1,2 φk,1 φ−1

1,2}. Similarly,
φk,2 is dead, φk,1 contributes {φk,1}.

Case III. φi,j takes the form φ2,k, where k 6= 1.

Subcase III.A. φ2,k is live.
If φ1,k is live, the relation [φ1,2, φ1,k φ2,k] = 1 yields the family of relations in

Case 3a. Straightforward induction shows that λ(2, k,m) can be expressed in terms
of λ(1, k, 0), or λ(1, k, 0) and λ(1, k, 1) (depending on whether φk,2 is live or dead),
and λ(2, k, 1). In either case, it follows that φ2,k contributes {φ1,2 φ2,k φ−2

1,2}.
If φ1,k is dead, the relation [φ1,2, φ1,k φ2,k] = 1 yields the family of relations in

Case 3c. Again, straightforward induction shows that λ(2, k,m) can be expressed
in terms of λ(2, k, 0). It follows that φ2,k contributes {φ2,k φ−1

1,2}.
Subcase III.B. φ2,k is dead.

If φ1,k is live, the relation [φ1,k, φ1,2 φk,2] = 1 yields the family of relations in
Case 3b. Straightforward induction shows that δ(2, k, m) can be expressed in terms
of λ(1, k, 0), or λ(1, k, 0) and λ(1, k, 1) (depending on whether φk,2 is live or dead),
and δ(2, k, 1). In either case, it follows that φ2,k contributes {φ1,2 φ2,k φ−1

1,2}.
If φ1,k is dead, the relation [φ1,k, φ1,2 φk,2] = 1 yields the family of relations in

Case 3d. Straightforward induction shows that δ(2, k, m) can be expressed in terms
of δ(1, k, 0), or δ(1, k, 0) and δ(1, k, 1) (depending on whether φk,2 is live or dead),
and δ(2, k, 0). In either case, it follows that φ2,k contributes {φ2,k}.
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Case IV. φi,j takes the form φ2,1.

Subcase IV.A. φ2,1 is live.

Subcase IV.A.1. φk,1 is live.
The relation [φk,1, φ2,1] = 1 yields the family of relations in Case 1a. By induc-

tion, λ(2, 1,m) can be expressed in terms of λ(k, 2, 0), λ(k, 1, 0) and λ(2, 1, 0). It
follows that φ2,1 contributes {φ2,1 φ−1

1,2}.
Subcase IV.A.2. φ2,k is live.

If φ1,k is live, the relation [φ2,1, φ2,k φ1,k] = 1 yields the family of relations in
Case 3a. By induction, λ(2, 1,m) can be expressed in terms of λ(2, 1, 0), λ(2, 1, 1),
λ(2, k, 0), λ(1, k, 0) and λ(k, 2, 0) (Note the results are the same using δ(k, 2, 0)).
It follows that φ2,1 contributes {φ2,1 φ−1

1,2, φ1,2 φ2,1 φ−2
1,2}. Similarly, if φ1,k is dead,

φ2,1 contributes {φ2,1 φ−1
1,2}.

Subcase IV.A.3. φk,2 is live.
If φk,1 is live, refer to Case IV.A.1. If φk,1 is dead, the relation [φk,2, φk,1 φ2,1] =

1, yields the family of relations in Case 3e. By induction, λ(2, 1,m) can be ex-
pressed in terms of λ(k, 2, 0), δ(k, 1, 0) and λ(2, 1, 0). It follows that φ2,1 contributes
{φ2,1 φ−1

1,2}.
Subcase IV.A.4. φ1,k is live.

If φ2,k is live, refer to Case IV.A.2. If φ2,k is dead, the relation [φ2,1, φ2,k φ1,k] =
1, yields the family of relations in Case 3c. By induction, λ(2, 1,m) can be expressed
in terms of λ(2, 1, 0), δ(2, k, 0), λ(1, k, 0), λ(1, k, 1) and λ(k, 2, 0). It follows that
φ2,1 contributes {φ2,1 φ−1

1,2}.

Subcase IV.B. φ2,1 is dead.

Subcase IV.B.1. φk,2 is live.
The relation [φk,2, φk,1 φ2,1] = 1 yields the family of relations in Case 3d. By

induction, δ(2, 1,m) can be expressed in terms of λ(k, 2, 0), δ(k, 1, 0) and δ(2, 1, 0).
It follows that φ2,1 contributes {φ2,1}.
Subcase IV.B.2. φk,2 is dead, but φ1,k and φ2,k are live.

The relation [φ2,1, φ2,k φ1,k] = 1, yields the family of relations in Case 3e. By
induction, δ(2, 1,m) can be expressed in terms of λ(2, k, 0), λ(1, k, 0), δ(k, 2, 0),
δ(2, 1, 0), and δ(2, 1, 1). It follows that φ2,1 contributes {φ2,1, φ1,2 φ2,1 φ−1

1,2}.
Subcase IV.B.3. φk,2 is dead, φ1,k is live and φ2,k is dead [resp., φ1,k is dead and
φ2,k is live].

The relation [φ2,1, φ2,k φ1,k] = 1, yields the family of relations in Case 3g [resp.
Case 3f]. By induction, δ(2, 1,m) can be expressed in terms of δ(2, k, 0) [resp.
λ(2, k, 0)], λ(1, k, 0) [resp. δ(1, k, 0)], δ(k, 2, 0), and δ(2, 1, 0). In either case, it
follows that φ2,1 contributes {φ2,1}.
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Since all possible cases have been considered, it follows that for each φi,j , the
family of generators of ker θ corresponding to φi,j can be reduced to at most two
generators. �

Example. Let θ : PΣ4 → 〈t〉 be given by φ1,2, φ3,2, φ4,1, φ2,4 7→ t and all remaining
generators mapped to 1. (Figure 1 contains CD(PΣ4).) Note that φi,j is represented
as i, j, vertices of the form (i, j) are identified with i, j, live vertices are represented
by squares, and dead vertices are represented by circles.

1,4

2,1

3,4

(2,1)

4,3

1,3

Figure 1

2,4 2,3

(2,3) (2,4)

1,2

3,2 4,2

4,1 3,1

By Corollary 2, ker θ is finitely generated. First, consider all generators φi,j for
which there is a live path from φ1,2 to φi,j . φ3,2 is live and therefore by Corollary 3
contributes {φ3,2 φ−1

1,2}. Similarly, φ4,1 contributes {φ4,1 φ−1
1,2}. φ4,2 is dead and

contributes {φ4,2}. Similarly, φ4,3, φ3,4, φ2,1, φ3,1, φ2,3 and φ1,4 correspond to the
generators {φ4,3}, {φ3,4}, {φ2,1}, {φ3,1}, {φ2,3} and {φ1,4}, respectively.

Finally, consider all generators with no live path from φ1,2 to the generator, i.e.
φ1,3 and φ2,4. By the previous theorem, φ1,3 corresponds to {φ1,3, φ1,2 φ1,3 φ−1

1,2}.
Similarly, φ2,4 contributes {φ2,4 φ−1

1,2}.
So, a generating set for ker θ is:

{φ3,2 φ−1
1,2, φ4,2, φ4,3, φ3,4, φ4,1 φ−1

1,2, φ2,1, φ3,1, φ2,3, φ1,4, φ1,3, φ1,2 φ1,3 φ−1
1,2, φ2,4 φ−1

1,2}.
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