# Presentations of Subgroups of Artin Groups 

Jennifer Becker
Matthew Horak
Leonard VanWyk
July 1996

## Overview

Let $A \Gamma$ be the Artin group based on the graph $\Gamma$, and let $\phi: A \Gamma \longrightarrow \mathbb{Z}$ be a homomorphism which maps each of the standard generators of $A \Gamma$ to 0 or 1 . We compute an explicit presentation for $\operatorname{ker} \phi$ and determine graph theoretical conditions on $\Gamma$ which ensure the finite presentation of $\operatorname{ker} \phi$ when $\Gamma$ is a cone, a tree, a triangle, and a special tree-triangle combination.

## Artin Groups

Let $\Gamma$ be a finite simple graph whose edges are weighted with integers greater than 1 . Then we can associate a group $A \Gamma$ with generators in one-to-one correspondence with the vertices of $\Gamma$ and relations $[x, y]_{k}=[y, x]_{k}$ for each edge $\{x, y\}$ of weight $k$, where $[x, y]_{k}=\underbrace{x y x \ldots}_{k \text { letters }}$. Such a group $A \Gamma$ is called an Artin group and $\Gamma$ is its underlying graph.

## Example:

$$
A \Gamma=\langle a, b, c \mid a b a=b a b, a c a c=c a c a\rangle
$$

## Special Homomorphisms Onto $\mathbb{Z}$

Given Artin group $A \Gamma$, partition the vertices of $\Gamma$ into two sets, $L=\left\{l_{1}, l_{2}, \ldots, l_{n}\right\}$ and $D=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$. Define the homomorphism $\phi: A \Gamma \longrightarrow\langle t\rangle$ by $\phi\left(l_{i}\right)=t$ and $\phi\left(d_{i}\right)=1$ for all $i$.

Definition. We call a vertex $l_{i} \in L$ live and a vertex $d_{i} \in D$ dead.

Note: For convenience, all following epimorphisms, $\phi$, are of the type defined above.

## Graph Terms

Definition. The living subgraph of $\Gamma$, denoted $\mathcal{L}(\phi)$, is the full subgraph spanned by the living vertices of $\Gamma$.

## Example:

- living
- dead


Definition. A subgraph $\Gamma^{\prime}$ of a graph $\Gamma$ is dominating if every vertex in $\Gamma-\Gamma^{\prime}$ is adjacent to a vertex in $\Gamma^{\prime}$.

Note: $\mathcal{L}(\phi)$ above is a connected and dominating subgraph of $\Gamma$.

## Machinery

## Tietze Transformations:

Given any two presentations of a group $G$, one can be obtained from the other by repeated applications of Tietze transformations.

## Reidemeister-Schreier Rewriting Process

Given a presentation of a group $G$ and suitable information about a subgroup $H \leq G$, the Reidemeister-Schreier method enables one to obtain a presentation for $H$.

Example: Let $A \Gamma$ and homomorphism $\phi$ be defined according to the diagram below.


Using the Reidemeister-Schreier process and Tietze transformations, one can obtain the following presentation for the homomorphism, $\phi$, indicated in the graph above:

$$
\begin{array}{ll}
\text { generators: } & \delta, v_{0}, v_{1}, v_{2}, v_{3}, \lambda_{0}, \lambda_{1}, \lambda_{2}, \psi_{0} \\
\text { relations: } & \Psi_{n} \delta \Psi_{n}=\delta \Psi_{n} \delta \\
& \delta \Upsilon_{n} \delta \Upsilon_{n+1}=\Upsilon_{n} \delta \Upsilon_{n+1} \delta \\
\text { where: } & \Psi_{n}= \begin{cases}\Lambda_{n} \psi_{n+1} \Lambda_{n}^{-1} & \text { for } n<0 \\
\Lambda_{n-1} \psi_{n-1} \Lambda_{n-1}^{-1} & \text { for } n>0 \\
\lambda_{n+1} \lambda_{n+3} \lambda_{n+2}^{-1} & \text { for } n<0 \\
\lambda_{n-2}^{-1} \lambda_{n-3} \lambda_{n-1} & \text { for } n>2\end{cases} \\
& \Lambda_{n}= \begin{cases}v_{n+1} v_{n+3} v_{n+4}^{-1} v_{n+2}^{-1} & \text { for } n<0 \\
v_{n-2} v_{n-4} v_{n-3}^{-1} v_{n-1}^{-1} & \text { for } n>3\end{cases}
\end{array}
$$

Notice that $\operatorname{ker} \phi$ is finitely generated.

Finitely presented?

## Trees

Theorem (S. Hermiller, J. Meier, 1996): Let $\Gamma$ be a finite, weighted tree, and let $\phi: A \Gamma \longrightarrow\langle t\rangle$ be an epimorphism which sends each generator to t. Then $\operatorname{ker} \phi$ is the free group on $N=\sum_{e_{i} \in \Gamma}\left(W\left(e_{i}\right)-1\right)$ generators where $W(e)$ represents the weight of edge $e$.

Theorem: Let $T$ be a finite, weighted tree and let $\phi$ : $A T \longrightarrow\langle t\rangle$ be an epimorphism which sends each generator to $t$ or 1 . If $\mathcal{L}(\phi)$ is connected and dominating, then $\operatorname{ker} \phi$ is the free group on $N=\sum_{e_{i} \in \mathcal{L}(\phi)}\left(W\left(e_{i}\right)-1\right)+\sum_{e_{j} \notin \mathcal{L}(\phi)} \frac{W\left(e_{j}\right)}{2}$ generators, where $W(e)$ represents the weight of edge $e$.

Example: Define $\phi: A \Gamma \longrightarrow\langle t\rangle$ by $\phi\left(l_{i}\right)=t$ and $\phi\left(d_{i}\right)=1$ where $\Gamma$ is as follows. Then by the above theorem, $\operatorname{ker} \phi \simeq F_{9}$.


## Constructible Graphs

Theorem (J. Levy, C. Parker, L. VanWyk 1995): Let $\Gamma$ be a finite, simple graph whose vertices are partitioned into sets $L=\left\{l_{1}, l_{2}, \ldots, l_{r}\right\}$ and $D=\left\{d_{1}, d_{2}, \ldots, d_{s}\right\}$. Let $\phi: G \Gamma \longrightarrow\langle t\rangle$ be an epimorphism defined by $\phi\left(l_{i}\right)=t$, $\phi\left(d_{i}\right)=1, \forall i$. Then ker $\phi$ is finitely presented if there exists a sequence of subgraphs $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{n}$ of $\Gamma$ where $\Gamma_{1}$ consists of a single vertex of $L$ and $\Gamma_{n}=\Gamma$ such that $\Gamma_{j+1}$ can be obtained from $\Gamma_{j}$ by either

1. adding vertex $v$ and edge $\left\{v, l_{i}\right\}$ for some $l_{i} \in \Gamma_{j}$.
2. adding edge $\{a, b\}$ where $a, b, l_{i} \in V\left(\Gamma_{j}\right) ;\left\{a, l_{i}\right\},\left\{b, l_{i}\right\} \in$ $E\left(\Gamma_{j}\right)$

Theorem: Let $\Gamma$ be a finite, simple, weighted graph whose vertices are partitioned into sets $L=\left\{l_{1}, l_{2}, \ldots, l_{r}\right\}$ and $D=$ $\left\{d_{1}, d_{2}, \ldots, d_{s}\right\}$. Let $\phi: A \Gamma \longrightarrow\langle t\rangle$ be an epimorphism defined by $\phi\left(l_{i}\right)=t$ and $\phi\left(d_{i}\right)=1$ for all $i$. Then $\operatorname{ker} \phi$ is finitely presented if there exists a sequence of subgraphs $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{n}$ of $\Gamma$ where $\Gamma_{1}$ consists of a single vertex of $L$, $\Gamma_{n}=\Gamma$, and $\Gamma_{j+1}$ can be obtained from $\Gamma_{j}$ by either

1. adding a vertex $v$ and an edge $\left\{v, l_{i}\right\}$, where $l_{i} \in V\left(\Gamma_{j}\right)$, or
2. adding an edge $\{a, b\}$, where $a, b, l_{i} \in V\left(\Gamma_{j}\right) ;\left\{a, l_{i}\right\},\left\{b, l_{i}\right\} \in$ $E\left(\Gamma_{j}\right) ;$ and $k_{\left\{a, l_{i}\right\}}=k_{\left\{b, l_{i}\right\}}=2$.

Example: Define $\phi: A \Gamma \longrightarrow\langle t\rangle$ by $\phi\left(l_{i}\right)=t$ and $\phi\left(d_{i}\right)=1$ where $\Gamma$ is as follows. Note: Unlabelled edges have arbitrary weight.


Construction of subgraph sequence $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{8}, \Gamma$.

|  | ${ }_{0} l_{1}$ | $d_{3}$ |  |
| :---: | :---: | :---: | :---: |
| $d_{1} \bullet$ | $\stackrel{\circ}{1}$ | $\stackrel{O}{l}^{1}$ | $d_{2}$ |

Definition. A 2-cone is a weighted graph, $\Gamma$, such that there exists a vertex, $a$, which is adjacent to all other vertices of $\Gamma$ with an edge of weight 2 .

## Example:

## 2-Cones

Corollary (J. Meier, L. VanWyk, 1995): Let $G \Gamma$ be a graph group and let $\Gamma$ be a cone with apex $a$. If $\phi: G \Gamma \longrightarrow\langle t\rangle$ is an epimorphism with $\phi(a) \neq 1$, then $\operatorname{ker} \phi$ is finitely presented.

Theorem: Let $A \Gamma$ be an Artin group and let $\Gamma$ be a 2 -cone with apex $a$ and base $\Gamma_{1}$. If $\phi: A \Gamma \longrightarrow\langle t\rangle$ is an epimorphism mapping all generators to either $t$ or 1 with $\phi(a)=t$, then $\operatorname{ker} \phi \simeq A \Gamma_{1}$. In particular, $\operatorname{ker} \phi$ is finitely presented.

Example: Let $\phi: A \Gamma \longrightarrow\langle t\rangle$ be defined by $\phi(a)=t, \phi\left(l_{i}\right)=t$, and $\phi\left(d_{i}\right)=1$ where $\Gamma$ is as follows. (Note: unlabelled edges have arbitrary weight.) Since $\Gamma$ is a cone, by the above theorem, $\operatorname{ker} \phi \simeq A \Gamma_{1}$, where $\Gamma_{1}$ is shown below.



Note: $A \Gamma \simeq\langle a\rangle \times A \Gamma_{1}$.

## Example 2:



## Example 3:

$$
\begin{gathered}
A \Gamma=\langle a, b, c \mid a b=b a, a c=c a, b c=c b\rangle \\
A \Gamma \simeq \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}
\end{gathered}
$$

## Example 4:

$$
\begin{gathered}
A \Gamma=\langle a, b, c \mid a b a=b a b, a c=c a, b c b=c b c\rangle \\
A \Gamma \simeq B_{4}
\end{gathered}
$$

