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Preface

Calculus is a branch of mathematics that studies functions through the pro-
cesses of limits, derivatives, and integrals. This text introduces the ideas of
calculus through the context of mathematical models. This text is organized
to review precalculus concepts necessary to be successful in learning calculus.
The goal is not, however, to introduce these concepts to a beginner but to
leverage some familiarity toward a deeper understanding.

The text begins with a basic review of numbers and variables with an aim of
connecting these foundational concepts to the goals of modeling relationships
between physically measured quantities. It then turns to the development of
functions as the mathematical tool used for predictive relationships between
variables. Intuitive ideas of continuity are introduced in relationship to making
piecewise functions connected, with limits introduced as a way to characterize
the behavior of a function at the break points.

Sequences are introduced early as a discrete illustration of many of the
concepts relating to modeling with functions. Patterns found in sequences are
familiar to students and these patterns can often be described both explicitly
and recursively. This will serve as a prelude to the idea that functions can be
defined explicitly with a formula or indirectly through differential equations.
In addition, sequences foreshadow the ideas of limits, derivatives, and integrals.
Describing the monotonicity and concavity of a sequence then provides a direct
correspondence to describing the behavior of a function in terms of its first and
second derivatives.

Summation rules and formulas naturally occur as part of the discussion of
sequences. This motivates an early introduction of the definite integral as the
generalization of the accumulation of increments of change. The rate of change
is introduced in the context of accumulation and the reader is explicitly told to
look forward to the Fundamental Theorem of Calculus as the formal connection
between the rate of accumulation and the instantaneous rate of change as being
equivalent. Properties of the definite integral as well as elementary formulas
are introduced. The behavior of functions in terms of the first and second
derivative are introduced using the integral representation of functions.

Next, we develop a more thorough investigation of limits and continuity
of functions. Properties of limits are developed in the context of the limits
of sequences. The epsilon-delta definition of a limit is given in an optional
section. Continuity of functions is formalized and the major theorems for
continuous functions are presented, namely the Intermediate Value Theorem
and the Extreme Value Theorem.

This is followed by the formal development of the derivative and the rules
of differentiation, including the first part of the Fundamental Theorem of Cal-
culus. Applications of derivatives and antiderivatives are included.

You can download a PDF copy of the book with the links below. There are

v



vi

differently formatted options, depending on how you intend to use the PDF.

• http://educ.jmu.edu/~waltondb/MA2C/model-calculus.pdf (Margins for-
matted to print 2-sided)

• http://educ.jmu.edu/~waltondb/MA2C/model-calculus-1page.pdf (Mar-
gins formatted to print 1-sided)

In order to keep track of changes during the semester, the following list
describes the changes that have taken place in the text since August 2018.

• n/a

http://educ.jmu.edu/~waltondb/MA2C/model-calculus.pdf
http://educ.jmu.edu/~waltondb/MA2C/model-calculus-1page.pdf
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1.1 Learning Mathematics
I assume that you want to be successful in learning mathematics. It might be
true, however, that your past experiences make you doubt this as a possibil-
ity. Before we start talking about actual mathematics, let’s have a discussion
about what it means to learn mathematics and how to approach this more
successfully.

1.1.1 How People Learn
This section is based on my reading, understanding and interpretation of a
report issued by the National Research Council in 2000 called How People
Learn: Brain, Mind, Experience and School and a follow-up report in 2005
focused more directly on mathematics, How Students Learn: Mathematics in
the Classroom. Although there is a lot to digest, I would encourage you to
read some of this if you want more background. I hope to convey some key
points that I hope will be especially helpful in focusing our efforts in learning.

Let us start with some questions. What does it mean to learn? Can we
become more effective at learning?

Studies of brain activity reveal that learning physically changes the struc-
ture of the brain. The brain consist of neurons (brain cells) that form networks.
Any particular neuron has dendrites which receive signals from other neurons.
When the total signal received by a neuron reaches a critical threshold, the
neuron will produce its own signal which it transmits along its axon to synap-
tic connections with the dendrites of other neurons. External stimuli trigger
patterns of neuron firing responses which are ultimately translated into mem-
ories and actions. Learning consists of transforming these networks so that
the firing patterns change. Feedback (both positive and negative) is neces-
sary to weaken connections that are not desired and to create and strengthen
connections that are desired.

Early attempts to measure learning (which pre-date the understanding of
the brain), especially when studying animal models like rats in maze, consid-
ered learning as behavior that is reinforced by a stimulus. An example is given
of a cat trapped in box with an exit that opens when a particular string is
pulled. By (frantic) trial and error, the cat eventually opens the box. When
put back in the box, the cat will not immediately repeat the necessary action
to escape; it takes a number of repetitions for the action to be reinforced by the
reward before the cat learns to attempt the particular action immediately in
order to escape. Using modern understanding of the brain’s neural networks,
the negative feedback (from being trapped) and the positive feedback (from
being released and rewarded) established new neural connections that triggered
pulling the release when the cat found itself in the trapped environment.

Memorization of facts using flashcards or online drills can be interpreted
in the context of this model of learning. A presented statement (the clue or
question) provides a stimulus. Recalling the desired response (the answer) is
the behavior desired from that response. Success or failure and the resulting
emotional responses during training provide the feedback for the new network
connections to be formed. Unfortunately, memorization of facts is not an
effective learning approach when dealing with more abstract problem solving
scenarios.

http://www.nap.edu/catalog/9853/how-people-learn-brain-mind-experience-and-school-expanded-edition
http://www.nap.edu/catalog/9853/how-people-learn-brain-mind-experience-and-school-expanded-edition
http://www.nap.edu/catalog/11101/how-students-learn-mathematics-in-the-classroom
http://www.nap.edu/catalog/11101/how-students-learn-mathematics-in-the-classroom
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Figure 1.1.1 A model for learning as feedback-driven rewiring of neural path-
ways.

Views of learning have expanded to consider learning with understand-
ing wherein learning is not just a reinforced behavior but a cognitive effort
(thought) built on a framework (understanding). Learning therefore is not
just a filing system of individual memories; it is structured according to some
organizational process that itself involves neural feedback. One of the key dis-
tinctions that has been identified between novices and experts in a problem-
solving area is that an expert has a rich body of knowledge that is organized
around core concepts as opposed to a list of facts or strategies.

Thus, we see that learning requires more than just the memorization of
facts, processes and strategies; it requires developing a mental framework by
which information is organized. These steps require that we undertake pro-
cesses by which neural network connections in our brain are rewired, breaking
connections that correspond to misconceptions and poor organization and de-
veloping new connections that correspond to more effective knowledge and
organization. This requires a significant level of interaction with the material
that we wish to learn in order to effect such a change.

1.1.2 Best Practices for Learning
How People Learn identified three basic principles to guide effective learning.

1. Because students approach learning with preconceptions, these under-
standings must be engaged or else learning will be superficial or thwarted.

2. Developing competence requires (a) a deep foundation of factual knowl-
edge, (b) a conceptual framework by which these facts and ideas are un-
derstood, and (c) an organized memory system that facilitates retrieval
and application of that knowledge.

3. Students should take control of their own learning by defining learning
goals and monitoring their progress in achieving them.

We should attempt to frame our learning experiences so that these three prin-
ciples are implemented.
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One key aspect of this framing has to do with our mindset. Mindset refers
to our own ideas about how we learn. We have a fixed mindset when we believe
that our intelligence is predetermined and our ability to learn is limited. We
have a growth mindset when we believe that our intelligence can grow and we
can learn anything with enough effort.

Jo Boaler, a mathematics education expert on mindset, has a fascinating
project on mathematical mindset and mathematical learning, youcubed.org, in
which she emphasizes the following three key points about our attitude and
approaches to learning.

1. Anyone can learn to high levels.

2. Mistakes and struggle are good for brain growth.

3. Visualization of mathematics helps develop our brain connections.

I highly recommend watching some of the videos that she has developed.

1.1.2.1 Engaging Preconceptions

Preconceptions represent the sum of all knowledge accumulated as well as
the manner in which that knowledge is organized and interpreted. Valid pre-
conceptions provide the necessary foundation on which additional knowledge
accumulates. Unfortunately, it is often the case that preconceptions might also
be an obstacle for learning. This may be due to something learned incorrectly.
But it can just as often be something learned correctly but organized in a way
that obscures generalizations necessary to advance in learning.

Engaging our preconceptions involves recognizing exactly what our precon-
ceptions may be. For valid preconceptions, we integrate new knowledge into
our system of understanding and it is held more tightly than if we did not con-
nect it to our existing knowledge. For invalid or obstructive preconceptions,
we face an uncomfortable cognitive dissonance that may require dismantling
and reconstructing our framework of understanding so that future learning can
proceed.

1.1.2.2 Developing and Organizing a Deep Foundation of Knowl-
edge

The second principle focuses on the knowledge itself and how we organize our
thinking about that knowledge. We start with the need for a deep foundation of
facts. However, we should notice that the factual knowledge alone is really just
one component of this learning principle. At first glance, I thought the second
and third components—a conceptual framework and an organized memory
system—were the same thing. Then I saw that although they could be related,
they emphasize two different aspects.

The conceptual framework is about how the facts and ideas are under-
stood. This is how we make sense of the facts, how we relate them with one
another, and how we interpret them. Effective learning requires developing
this framework as we add knowledge to our memory.

The organized memory system refers to our methods and strategies for
recall. Consider how we can organize files on a computer drive. We could
adopt a flat filing system where every file is in a single location, distinguished
only by name; or we could adopt a hierarchical filing system with folders or
directories organized in a way that related files are grouped together. More
modern storage strategies include tagging files (e.g., hashtags), which may be
easier to relate to memory. Imagine that our memories work in a similar way,

https://www.youcubed.org
https://www.youcubed.org/resource/brain-science/
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that we can establish tags that go along with the knowledge. By thinking
about the relevant tags as a stimulus for our mind, we can trigger our memory
to recall that desired knowledge.

1.1.2.3 Metacognition and Taking Control of Your Learning

The third principle states that students should take control of their own learn-
ing. Each student should establish clear learning goals and monitor their
progress. This requires thinking about their thinking, reflecting on their own
understanding and effectiveness in organizing their knowledge. This process is
called metacognition. Metacognition allows us assess our own progress and
identify our strengths and weaknesses. It allows us to recognize when we need
additional help. It is essential to make these assessments while our knowledge
and skill set are still forming. When we recognize our weaknesses, we can
adapt our learning methods and accelerate our progress. We shouldn’t wait
for a class exam to decide we don’t understand.

1.1.3 What’s Class Got to Do With It?
As the understanding of how we learn has grown, experts recommend that
our educational settings and environments be designed to facilitate effective
learning. Four design characteristics summarize what we want to create effec-
tive learning. The environment should be (1) learner-centered, (2) knowledge-
centered, (3) assessment-centered, and (4) community-centered.

In a learner-centered classroom, the educational experiences give attention
to students’ ideas, knowledge, skills, and attitudes. There is an awareness that
existing ideas can lead to misconceptions as well as a path to new understand-
ing. Student experiences as well as the ways students reflect and understand
these experiences will be different for different individuals. Consequently, stu-
dents must be individually engaged in the educational experience. This is
strongly related to the idea that brain growth occurs during the struggle of
learning new things.

In a knowledge-centered classroom, the educational experiences provide
clear guidance on what is intended for learning, and those experiences are
designed to develop understanding of that knowledge. Effective knowledge
involves both the content matter and an understanding of the context, rela-
tionship, and application of that matter. Knowledge-centered learning helps
students create an effective mental organization by identifying core connected
ideas.

Assessment-centered education emphasizes that both the learner and the
educator need to assess the progress of learning and understanding. Assess-
ment helps make learning and understanding visible to both the student and
the teacher during the learning process and not just through formal evaluation.
Instruction that helps students become aware of their own progress through
informal assessments provides them with opportunities to revise and improve
their thinking. In-class activities where students engage in material and eval-
uate their own progress are examples of such informal assessment opportuni-
ties. In response to these assessment opportunities, students can develop their
metacognitive abilities and learn to evaluate the effectiveness of their strategies
in learning.

A community-centered classroom establishes norms of behavior and con-
nections to the world that support core learning values. In our classes, we
encourage the processes of development, questioning, and progress. Because
our minds grow more when we make mistakes, we welcome mistakes. They
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do not measure inadequacy but are evidence of a healthy struggle to learn.
We also encourage taking emotional risks that are part of asking questions
or suggesting alternative approaches. At the same time, the classroom never
has room for comments or behaviors that degrade, belittle, or hurt others. In
summary, a community-centered classroom seeks to establish an environment
that encourages a growth mindset.
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1.2 Numbers, Measurements and Relations

1.2.1 Overview
Numbers play a fundamental role in science because they allow us to quan-
tify observations. That is, instead of saying things are big or small, we can
assign numbers to measurements. Science in large part has progressed be-
cause of our ability to determine mathematical relationships between different
measurements that make prediction possible.

Mathematics admittedly views numbers themselves as objects worthy of
study. A number is an exact entity—other numbers, regardless of how close
they might be, are different. Consequently, a mathematical result has an exact
value. Sometimes we can only approximate the value, but we should give
an exact expression for that value when possible. Mathematicians classify
numbers according to the complexity of their definition. Historical conventions
often suggest ways in which we can simplify an expression, often so that the
classification can be more easily recognized.

Measurements allow us to assign numerical values to physical attributes,
such as length, temperature, mass, and speed. Instruments need to be designed
so that repeated measurements will result in the same values using standard
units. Measurement error results from the limited accuracy intrinsic in reading
a measurement from an instrument’s scale. Most often, we measure more than
one attribute of an object or system under a given condition. The collection
of all such measurements is called the state of the system. We generally wish
to understand the relationships between these different quantities.

1.2.2 Numbers in Mathematics
In mathematics, numbers have precise meanings and classifications. Here, we
review the basic sets of numbers. The natural numbers are the positive
integers

N = {1, 2, 3, . . .}.

Including the number zero gives us all counting numbers

N0 = {0, 1, 2, 3, . . .}.

The set of all integers is written

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

The rational numbers are all numbers that can be represented as a ratio of
integers

Q = {p
q

: p ∈ Z, q ∈ N}.

This set-builder notation indicates that Q is a set of numbers that can be
written in the form p/q where p is some integer and q is some natural number.

We often visualize numbers geometrically using a number line. First, the
origin of the line is specified with a value of zero. The integers are then equally
spaced by a unit length counting from zero. (See Figure A.1.1.) Subdividing
the unit length into a whole number of equal parts generates additional points
that are rational numbers. (See Figure A.1.2.) However, even when all rational
numbers are included, there are infinitely many points on the line that are never
covered. These are the irrational numbers, which include algebraic numbers
like
√

2 or
√

3, as well as transcendental numbers like π and e. The set of real
numbers is written R and consists of both rational and irrational numbers.
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Figure 1.2.1 The number line graphically represents real numbers, both ra-
tional and irrational.

Every mathematical value represents a single point on the number line.
Two values are equal only when they refer to the very same point on the
line. Calculators give decimal approximations for numbers using a limited
number of digits and so they can actually only represent a finite collection
of the infinitely many possible numbers. In particular, irrational numbers
can never be represented exactly using decimals. Thus, we usually represent
mathematical values by their mathematical expression rather than decimals.
When a decimal approximation is useful, we should indicate we are making an
approximation using the approximation symbol (≈) rather than an equals sign
(=).

Simplification of numbers corresponds to finding a new representation of a
number in a reduced form. For example, a rational number has many different
representations of the form p/q with p ∈ Z and q ∈ N. But there is only one
representation where p and q have no common factors. Canceling any common
factors to find this representation would be simplification. Other examples of
simplification include simplifying a root or rationalizing a denominator.

Example 1.2.2 The fraction 126
24 is not simplified. If we find the prime fac-

torization of the numerator and denominator, we find

126 = 6 · 21 = 2 · 32 · 7,
24 = 3 · 8 = 23 · 3.

The fraction simplifies by canceling all common factors:

126
24 = 2 · 32 · 7

23 · 3 = 3 · 7
22 = 21

4 .

In practice, we don’t always have to find the prime factorization. Instead,
we can find one common factor at a time until no common factors remain. For
example, since 126 and 24 are both even, we could write

126
24 = 63

12 .

Then, we look at 63 and 12 and recognize that they are both divisible by 3,
allowing us to rewrite the fraction as

126
24 = 63

12 = 21
4 .

Because 21 = 3 · 7 and 4 = 22 do not have common factors, we know this is
simplified. �

A square root is not simplified if there is a factor inside the root that is
a perfect square. Similarly, a cube root is not simplified if there is a factor
inside that is a perfect cube. We use the factors of the value inside a root to
determine if we can simplify it.

Example 1.2.3 The square root
√

126 is not simplified. A square root is
the inverse operation of squaring numbers (for non-negative numbers) so that
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√
32 = 3. Because

√
a · b =

√
a ·
√
b (for a, b ≥ 0), we can simplify as

√
126 =

√
2 · 32 · 7 =

√
9 ·
√

14 = 3
√

14.

�

Example 1.2.4 The cube root 3
√

48 is not simplified. We start by factoring:

48 = 2 · 24 = 2 · 3 · 8 = 24 · 3.

A cube root is the inverse operation of cubing numbers so that for every perfect
cube, we can simplify 3

√
a3 = a. We have

3
√

48 = 3√24 · 3 = 3√23 · 2 · 3 = 2 3
√

6.

�
Some additional rules of simplification you may have learned were created

before fast calculators and computers were available. These rules were taught
so that scientists and engineers could express an answer that would be in a
form where it would be faster to use the tables and slide rules available at
the time. We no longer need such rules for efficiency, but they often illustrate
important algebra rules.

One example of such a rule is the simplification of fractions with square
roots, called rationalizing a fraction. It was much more costly to use a table or
slide rule if the root was in the denominator. The practice was developed to
rewrite such an answer so that the root was in the numerator. This could be
accomplished by multiplying the fraction on top and bottom by a factor that
would eliminate the undesired root.

Example 1.2.5 Simplify 4
3
√

2
by rationalizing the denominator.

Solution. A square root can simplify if there is a perfect square inside. The
square root in this denominator

√
2 would need another 2 inside to have a

perfect square. Multiply numerator and denominator by the extra
√

2 to get
a square in the denominator.

4
3
√

2
= 4

√
2

3
√

2
√

2
= 4
√

2
3 · 2

Now we can finish simplifying the fraction by canceling common factors:

4
3
√

2
= 4
√

2
6 = 2

√
2

3 .

�

In the previous example, the two expressions 4
3
√

2
and 2

√
2

3 are equally
simplified. The first expression has a rationalized numerator. The second
expression has a rationalized denominator. You should ask your instructor
whether they expect a preferred simplified form.

Although we usually use simplification for aesthetic reasons, having a stan-
dard way to write numbers can be useful to prove mathematical results. Thanks
to Pythagorus, the ancient Greeks knew that

√
2 was a number that repre-

sented the hypotenuse of an isosceles right triangle with legs of unit length.
The Greeks also originally thought that all numbers would ultimately be ratio-
nal numbers. Realizing that

√
2 was irrational was so shocking that, according

to legend, the discoverer of this fact was drowned at sea.
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Example 1.2.6 The proof of the irrationality of
√

2 uses the idea that ra-
tional numbers have a simplified form. The basic argument is to consider a
rational number that might represent

√
2 and then proceed to show that such

a representation doesn’t make sense. The detailed argument is shown below.
Solution. Suppose that

√
2 is a rational number. Then it can be written as

the ratio of two integers
√

2 = p
q in reduced form, meaning p and q do not have

common factors. By definition of square roots, we must have p2

q2 = 2 which
implies

p2 = 2q2

so that p2 is an even number. The only way that p2 can be even is if p itself is
even, since the product of two odd numbers is always odd.

Once we know p is even, we can factor out 2 and write p = 2k where k is
also an integer. Now p2 = 4k2 which implies 4k2 = 2q2 or

q2 = 2k2.

This means q would also be an even number. This is where the contradiction
occurs—since p and q were to have had no common factors, they couldn’t both
be even. This means that

√
2 can not be written as a reduced fraction, which

in turn means that
√

2 is not a rational number. �

1.2.3 Numbers as Measurements
In science, numbers often arise from measurements. When counting objects,
measurements use integers and are exact. Most measurements, however, are
not exact and require the use of a scale. An instrument for measurement
provides a physical tool that allows us to identify a number of units associated
with the physical quantity.

The most elementary physical measurement of this type is a measurement
of length. The instrument of measurement, a ruler, uses a constructed number
line such that the spacing between numbers on the ruler represents distance.
The standard unit for the ruler, such as an inch or centimeter, sets the spacing
between integer distances. The designer of a ruler also chooses the number of
subdivisions per unit. For example, many rulers with inches use either 8 or 16
subdivisions per inch while metric rulers use 10 subdivisions per centimeter.
You should see a similarity between the construction of the ruler and the
development of rational numbers, except that the set of rational numbers allows
for all possible integer number of subdivisions of the unit.

Measured quantities generally occur between two values that an instrument
can measure. Given a ruler, the observer must choose a length based on the
existing rulings. Even a length that appears to be exactly on a ruling might
be found to be slightly off when examined under magnification. The observer
might also make judgment errors in reading off a measurement. Consequently,
a measurement represents an approximation of the value of a quantity. The
difference between the true and measured values of a quantity is called an
error.
Definition 1.2.7 Given any quantity with an actual value Q and a measured
value Q̂, the error or residual is a value, say E, that measures the difference
between the actual and measured values,

E = Q− Q̂.

Equivalently, E is that quantity such that the actual value is equal to the
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measured value plus the error,

Q = Q̂+ E.

♦

Definition 1.2.8 Given any quantity with an actual value Q and a measured
value Q̂, the absolute error measures the absolute value of the error:

|E| = |Q− Q̂|.

♦

Note 1.2.9 Symbols that represent variables correspond to the entire symbol
being used. In the previous definitions, Q and Q̂ are different symbols and
represent different numbers even though they both use the letter “Q”. Similarly,
the case of a letter matters so that R and r are different symbols. Avoid the
trap of thinking that the letter’s name is the symbol.

In science, the error in a measurement is not known precisely but is rep-
resented by a bound. There are a variety of techniques used to indicate the
bound for an error. We will briefly discuss how the use of significant digits or
a margin of error represent error bounds.

One way that the accuracy of measurements are described is using a number
of significant digits. The idea is that the last digit reported represents the
smallest subdivision the instrument can distinguish.

Example 1.2.10 Imagine that an object has a length of 15.2772 cm, measured
to the nearest micron (micrometer). (We never really know exact lengths of
physical objects.) How would the length be reported with different numbers of
significant digits?

If that object was measured using a ruler showing only centimeters, we
would see that the length was between 15 and 16 cm but closer to 15. Our
measurement would be written as 15 cm, or Q̂ = 15, and we would have two
significant digits. However, if we did not know about details of the original
measurement and only saw the recorded value of 15 cm, then we would have
to assume that the true length was somewhere between 14.5 cm and 15.5 cm,

14.5 ≤ Q ≤ 15.5

Subtracting Q̂ = 15 from each term, we find

−0.5 ≤ Q− Q̂ ≤ 0.5.

The absolute error is therefore bounded by 0.5 cm.
If the ruler showed millimeters, then our measurement would be 15.3 cm

with three significant digits. Knowing only the measurement Q̂ = 15.3 and
that there are three significant digits, we can infer

15.25 ≤ Q ≤ 15.35

so that the error is bounded between

−0.05 ≤ Q− Q̂ ≤ 0.05.

The absolute error based on the measurement is bounded by 0.05 cm. �
An alternative to using significant digits is to state explicitly a margin of

error. The margin of error is equivalent to providing a bound for the error.
We saw that a measurement 15.3 cm with three significant digits corresponds
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to an inequality
15.25 ≤ Q ≤ 15.35

such that the absolute error is bounded by 0.05,

|Q− Q̂| ≤ 0.05.

Using a margin of error, we write Q = 15.3 ± 0.05 cm. The margin of error
±0.05 is interpreted as −0.05 ≤ Q− Q̂ ≤ 0.05.

A margin of error is more precise than significant digits. For example, if
we wanted to say that a measurement was somewhere between 15.2 cm and
15.4 cm, then we would write 15.3 ± 0.1 cm. The value 15.3 was used as a
central value and the margin of error gives a distance in either direction to
reach the extreme values. The true value must be between the extremes.
Example 1.2.11 The length of the hypotenuse of a right triangle with legs
of lengths 4 cm and 6 cm is H =

√
42 + 62 =

√
52 = 2

√
13 cm. A calculator

shows the decimal approximation is H ≈ 7.211103 cm.
Now, suppose we use a ruler using centimeters but showing millimeters

to measure the length. Different ways of describing the measurement with a
margin of error give different information about the length.

H

6 7 8

• Write H using a margin of error to state that the measurement to the
nearest millimeter is 7.2 cm.

• WriteH using a margin of error to state that the measurement is between
7.2 and 7.3 cm.

• WriteH using a margin of error to state that the measurement is between
7.2 and 7.25 cm.

Solution. First, we consider the nearest tick mark on the ruler. The mea-
surement Ĥ = 7.2 cm will be the nearest value for any actual length satisfying
7.15 ≤ H ≤ 7.25.

H

Ĥ = 7.2
7

The spacing from Ĥ and the edge of this interval is

ε = |7.25− 7.2| = |7.15− 7.2| = 0.05.

This value ε is the largest margin of error so that

|H − 7.2| ≤ 0.05.

We write H = 7.2± 0.05 cm.
Next, we work with the range 7.2 ≤ H ≤ 7.3. We find the mid-point of this

interval as our recorded measurement

Ĥ = 7.2 + 7.3
2 = 7.25.
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H

Ĥ = 7.25
7

Then we measure the distance from the center to the edge,

ε = |7.3− 7.25| = |7.2− 7.25| = 0.05

to find the margin of error 0.05 cm. We can then express our measurement
with a margin of error as H = 7.25 ± 0.05 cm corresponding to a bounded
error

|H − 7.25| ≤ 0.05.

Finally, we repeat this process to indicate that H is in the range 7.2 ≤ H ≤
7.25. The mid-point gives

Ĥ = 7.2 + 7.25
2 = 7.225.

H

Ĥ = 7.225
7

The margin of error is 0.025 so that our new approximate measurement
with a margin of error is written H = 7.25 ± 0.025 cm. Using an inequality
involving absolute values, we could write

|H − 7.225| ≤ 0.025.

�
In general, a margin of error establishes a symmetric interval of possible

values around the measurement. If we symbolically represent the margin of
error by ε > 0 (the Greek letter epsilon), then the statement Q = Q̂ ± ε is a
statement that the absolute error is bounded by ε,

|Q− Q̂| ≤ ε.

In other words, we know from the measurement that the true value Q is in the
interval

Q̂− ε ≤ Q ≤ Q̂+ ε.

1.2.4 Summary
• In mathematics, numbers represent specific points on the number line.

Real numbers (R) can be classified as natural numbers (N), integers (Z),
rational numbers (Q), and irrational numbers.

• To simplify an expression is to find an expression representing the same
value in a simpler form. For fractions, there should be no common factors.
For roots, the power of prime factors inside should be less than the root.

• In a physical context, numbers represent measurements that have limited
precision. This precision might be characterized by significant digits or
by a margin of error.
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• The error of approximation E for a quantity Q and an approximation Q̂
is defined by

E = Q− Q̂.

A symmetrical error bound −ε ≤ E ≤ ε corresponds to the absolute
value inequality |Q− Q̂| ≤ ε for a range of values

Q̂− ε ≤ Q ≤ Q̂+ ε.

1.2.5 Exercises

Simplify the following values.
1. 42

12

2. 210
28

3.
√

75
4.

√
160

5. 3
√

160
6. 4

√
160

7.
√

72
4

8.
√

864
15

Simplify the following values by rationalizing the denominator.

9. 6
5
√

3

10. 10
3
√

2

11. 4
√

2√
3

Simplify the following values by rationalizing the numerator.

12. 4
√

2√
3

13. 5 3
√

4
3
√

3
14. One of your colleagues has recorded the mass of a specimen in your lab’s

notebook. The recording is given as 35.8 g. How much uncertainty is
in this measurement? What are the possible actual masses that might
correspond to that measurement?

15. One of your colleagues has recorded the mass of a specimen in your lab’s
notebook. The recording is given as 35.8 g. Suppose you also know that
the lab instrument that was used always rounds measurements to the
nearest 0.2 g. How should the recording have been written to indicate
this additional information? What are the possible actual masses that
might correspond to that measurement?

16. A thermometer’s scale shows every 5 degrees. You observe the current
temperature registers on the thermometer as being between 75 and 80
but clearly closer to 75 degrees. How would you report the temperature
in order to reflect both your measurement and your uncertainty?
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17. A right triangle is formed with legs measuring 5 cm and 8 cm. Express the
length of the hypotenuse H to the nearest tenth of a centimeter, stating
the margin of error based on a ruler showing millimeters. Rewrite your
statement about margin of error as an inequality involving absolute values.

18. A right triangle is formed with one leg measuring 10 cm and the hy-
potenuse measuring 18 cm. Express the length of the other leg L to the
nearest tenth of a centimeter, stating the margin of error based on a ruler
showing millimeters. Rewrite your statement about margin of error as an
inequality involving absolute values.
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1.3 Graphs and Relations between Variables

1.3.1 Overview
In physical settings, we usually consider measurements of multiple quantities
at the same time. We do this because we are interested in the relationships
between these different quantities. We think of each quantity of interest as
a state variable; the collection of all such variables under consideration is
called the system. At any instant, the variables of the system will each have
a particular value and the collection of those values at that instant is called
the state of the system. Graphs are often used to reveal relationships between
different variables.

In this section, we explore graphs of data through scatter plots and graphs
of equations. An equation involving multiple variables represents a relation
between those variables. We consider the role of solving equations in the
context of these relations.

1.3.2 Systems, States and Variables
In the course of an experiment, or even just in observation, many different
quantities typically are covarying, or changing with one another. For example,
an object in motion has changing position, changing velocity, and changing
forces. In the course of a chemical reaction, there are changing concentrations
of the different reactants and products. Other quantities might also change,
such as temperature, pH, and volume. While observing a changing population,
there could be changing population numbers, total biomass, birth and death
rates, consumption of resources, and production of products and waste.

Mathematically, the system consists of all possible observable quantities
associated with the experiment or observed physical system. The state of the
system refers to the collection of instantaneous values of all such quantities
at a particular instant or configuration of the system. A state variable,
or more simply a variable, represents a single quantity that is or could be
observed in the system. Quantities that can be calculated in terms of state
variables are mathematically dependent variables and are also examples of
state variables, even if they can not be directly measured.

Example 1.3.1 Consider the following data about the population, births and
deaths in the United States. To conserve space, the data are given using
scientific notation expressed in the standard machine form where the power of
10 follows the letter E, so that 2.521× 108 would be written 2.521E8.
Year Population Births Deaths Year Population Births Deaths
1991 2.530E8 4.111E6 2.170E6 2001 2.850E8 4.026E6 2.416E6
1992 2.565E8 4.065E6 2.176E6 2002 2.876E8 4.022E6 2.443E6
1993 2.599E8 4.000E6 2.269E6 2003 2.901E8 4.090E6 2.448E6
1994 2.631E8 3.953E6 2.279E6 2004 2.928E8 4.112E6 2.397E6
1995 2.663E8 3.900E6 2.312E6 2005 2.955E8 4.138E6 2.448E6
1996 2.694E8 3.891E6 2.315E6 2006 2.984E8 4.266E6 2.426E6
1997 2.727E8 3.881E6 2.314E6 2007 3.012E8 4.316E6 2.424E6
1998 2.758E8 3.942E6 2.337E6 2008 3.041E8 4.248E6 2.472E6
1999 2.790E8 3.959E6 2.391E6 2009 3.068E8 4.131E6 2.437E6
2000 2.822E8 4.059E6 2.403E6 2010 3.094E8 3.999E6 2.468E6
Each row (corresponding to the population in a given year) represents a

distinct state of the system. The observed values in the state are the vari-
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ables: the year, the total population at the beginning of the year, the total
number of births in the year, and the total number of deaths in the year. The
year is included as one of the variables—an independent variable—in order to
distinguish the different states with respect to time. �

We often represent a variable by a symbol—a letter, a Greek letter, an
abbreviation, or even a word. That symbol becomes a name for the variable
to be used in sentences, expressions, and equations. Uppercase and lowercase
letters are different symbols and should not be interchanged with one another.
The choice of symbol should generally be related to the meaning of the variable.
An important part of communication in modeling is in stating clearly the
variables of a system and identifying the symbols that are chosen to represent
them.
Example 1.3.2 In the previous example, there were four variables. A common
strategy is to use the first letter of a word describing each variable. The
population variable might be represented by the symbol P . Births and deaths
might be represented by the symbols B and D, respectively. The year might
be represented by the symbol Y .

Note that the symbols p, b, d and y are not the same as the symbols above,
even though they have the same letter names. They should not be used for
this problem. �

The next example illustrates how we might write a short explanation of a
system and the variables associated with it. Note how the physical explanation
of the system is described first, followed by an introduction of the measure-
ments taken and the symbols used to represent those variables. Any time you
have data and refer to the data by variables, you need a few sentences that
introduce the meaning of each variable along with the units of measurement.

Example 1.3.3 In biology, scientists run electrophoresis gels to determine
the size of polymers, such as proteins or DNA strands. The gel provides a
porous structure for the polymers to travel through while an electric potential
(voltage) creates a force that pulls the polymers through the gel. Different size
polymers travel at different speeds. The experiment is setup with all polymers
starting at one end of the gel, the voltage is turned on for a certain amount of
time and then disconnected. Clusters of similarly sized polymers are identified
visually as bands on the gel, with smaller polymers traveling a greater distance.

The image below represents an electrophoresis gel run on a standardized
collection of DNA of fixed sizes. Because the image does not show a length
scale, the distances traveled by the different lengths are measured in image
pixels and recorded in the table below. The variables for the experiment are
the length of DNA segments and the distance traveled through the gel. Let L
represent the length of the segment (in nucleotides) and let D represent the
distance traveled (in pixels), measured from the center of the starting well to
the center of the corresponding band in the image. Each row represents a single
state (L,D) of the system.
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L (nts) D (px)
100 342
200 327
300 312
400 299
500 288
600 278
700 270
800 263
900 256
1000 249

�

1.3.3 Scatter Plots and Relationships Between Variables
The primary motivation for collecting data regarding different variables in the
state of a system is to determine relationships between those variables. One of
the ways that we look for relationships is using a scatter plot. A scatter plot
is a graph showing the relationship between two variables. Suppose the two
variables use symbols x and y. For each state of the system, there will have
been observed values for both x and y. The graph will include points for each
pair (x, y).

Spreadsheets (like Microsoft Excel, Apple Numbers or Google Sheets) are
a common tool to generate scatter plots. The data are first put in a table.
The first column of data will correspond to the variable used for the horizontal
axis (x), and the second column of data will correspond to the variable for the
vertical axis (y). Select the two columns at the same time and add a chart to
your spreadsheet, choosing the scatter plot style of graph. You should become
familiar with how to create a scatter plot. Always be sure that you label your
axes, using the variables of the system rather than the generic names of x and
y.

The following figure shows two different scatter plots for the electrophoresis
gel data above. One plot is based on the pairs (L,D) whereas the other is based
on the pairs (D,L). These graphs contains the same information but viewed
from a reverse perspective. When we switch the order of the variables, we call
the relationships inverse relations.

500 1,000
250

300

350

L

D

250 300 350

500

1,000

D

L

Figure 1.3.4 Scatter plot of electrophoresis data, displacement vs size and the
inverse relation size vs displacement.

When a system has a state defined by more than two variables, scatter plots
can be defined for each pair of state variables. For example, the population
data has four state variables, (Y, P,B,D). Three scatter plots can be formed by
plotting the population, the total births and the total deaths versus the year,
giving graphs of points (Y, P ), (Y,B), (Y,D). Because the births and deaths
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are on the same scale, we can combine the plots as one. The inverse relations
(P, Y ), (B, Y ) and (D,Y ) contain the same information from a different view
and are not shown.
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Figure 1.3.5 Scatter plot of population, births and deaths with respect to
time.

We can also look at relationships between other pairs of variables. For
example, we can look at how the number of births or deaths relate to the pop-
ulation, plotting (P,B) and (P,D), or how the number of births relate to the
number of deaths with (B,D). The graph showing the relation between births
and deaths to time (above) is very similar to the graph showing the relation
between births and deaths to population (below). However, the relation be-
tween the births and deaths illustrates that sometimes variables do not show
a clear relation.
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Figure 1.3.6 Graphs showing the relations (P,B), (P,D), and (B,D).

1.3.4 Graphs of Equations
An equation gives an abstract representation of a relationship between vari-
ables by stating that two expressions are equal in value. Just as the state
of an experimental system is defined by the value of the variables defining the
state, an equation can be considered as a mathematical way to define relation-
ships between variables of an abstract system. A solution to the equation
is a state for the variables such that the equation is true. The graph of an
equation generalizes a scatter plot by including all solutions of the equation.
If we choose an ordering for the variables (e.g., alphabetical), the values for
the variables can be conveniently listed as an ordered list. When two variables
are involved in an equation, the ordered list is called an ordered pair, or point,
like (x, y), and the graph of the equation is typically a curve in the plane.
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Example 1.3.7 The equation

2x+ 3y = 12

involves two variables, x and y, and is the equation of a line. The expressions in
the equation are 2x+3y and 12. The values x = 3 and y = 2, corresponding to
the ordered pair (x, y) = (3, 2), provide one solution because for those values,

2x+ 3y = 2(3) + 3(2) = 12,

so that the equation is true. On the other hand, (x, y) = (4, 1) is not a solution
because for that state,

2x+ 3y = 2(4) + 3(1) = 11

and 11 6= 12. Some other solutions include the points (6, 0) and (0, 4). The
line corresponding to this equation represents the set of all such solutions. The
points (3, 2), (6, 0) and (0, 4) are on the line, while (4, 1) is not.

−2 0 2 4 6 8

0

2

4

x

y

�

Example 1.3.8 The equation

u2 + v2 = 16 + 6u

also involves two variables, u and v. The expressions in the equation are
u2 + v2 and 16 + 6u. Using ordered pairs (u, v), the points (3, 5) and (3,−5)
are solutions. That is, if (u, v) = (3, 5), the expressions have the same value:

u2 + v2 = 32 + 52 = 9 + 25 = 34,
16 + 6u = 16 + 6(3) = 16 + 18 = 34.

It is possible to show that the graph of solutions for this equation is a circle
centered at (3, 0) with radius 5. Other points on this circle include such points
as (−2, 0) and (6,−4). You should verify that these are also solutions, at least
for one or two points to reinforce the idea that a solution makes the statement
of the equation true.

0 5 10
−5

0

5

u

v
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�
It is usually difficult to know how to sketch the graph of an arbitrary

equation. Computer utilities that support implicit plots can be used. For
example, the online graphing calculator at desmos.com allows you to enter an
equation involving variables x and y. We also could use computational systems,
such as SageMath shown below, to create an implicit plot.

# Declare the variables
var("u,v")
# Create a graphics object from an implicit plot
myplot = implicit_plot(u^2+v^2==16+6*u, (u,-5,10), (v,-5,5))
# Show the graph with axis labels
show(myplot , axes_labels =['u','v'])

When an equation is written as a dependent variable being equal to an ex-
pression involving an independent variable, we can easily generate points that
are in the solution set using a table with the independent variable in the first
column and the dependent variable in the second column. We choose conve-
nient values for the independent variable, compute the value of the expression
that depends on that variable, and then use that resulting value for the de-
pendent variable. All such points will be solutions to the equation. This is
precisely how a graphing calculator works internally; it computes many such
points very quickly and connects the points with line segments.

Example 1.3.9 Rewrite the equation 2x+ 3y = 12 so that y is the dependent
variable. Use the new equation to find four points in the solution set.
Solution. We need to isolate the variable y using balanced operations.

2x+ 3y = 12
3y = −2x+ 12

y = 1
3(−2x+ 12)

y = −2
3x+ 4

The final equation y = − 2
3x + 4 should be recognized as a slope-intercept

equation of a line. The slope is m = − 2
3 while the y-intercept value is b = 4.

Having solved for y, we can finish the task by using four different values for x
to find corresponding values for y. We do this in a table.

x y = − 2
3x+ 4 (x, y)

0 − 2
3 (0) + 4 = 4 (0, 4)

1 − 2
3 (1) + 4 = 10

3 (1, 10
3 )

2 − 2
3 (2) + 4 = 8

3 (2, 8
3 )

3 − 2
3 (3) + 4 = 2 (3, 2)

�

1.3.5 Parametrized Models and Regression Curves
Suppose we have data that appear to show a relation between two variables
in a scatter plot. We would like to extend the relation to data that are not in
the table of known values. If we had a mathematical equation that described
our relation, we could use that equation to find the solution that would match
the desired values. As a practitioner, we choose a parametrized model and

https://www.desmos.com/calculator
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then use a computational tool to select the best model given our data. The
most common computational strategy is called regression.

A parametrized model is an equation relating state variables that in-
cludes additional variables representing model parameters. The model is
identified by choosing particular values for each of the parameters. Once the
parameters are known, the equation establishes a relation for the state vari-
ables. A given parametrized model describes an entire family of different rela-
tions, one relation for each choice of parameters.

The most common example in algebra of a parametrized model is a linear
equation

y = mx+ b.
The symbols m and b are the model parameters, and x and y are the state
variables. The particular equation y = 2x − 5 is in this family of relations
based on the parameter values m = 2 and b = −5.

Another example of a parametrized model,

y = ax2 + bx+ c,

which has three parameters a, b, and c, can be used to create relations whose
graphs are parabolas. The simplest parabola, y = x2, corresponds to the
parameter values a = 1, b = 0, and c = 0. Curiously, linear models are
contained in this family as well by choosing a = 0. Our earlier example y =
2x − 5 could have been obtained from this model using a = 0, b = 2, and
c = −5.

Notice that the symbols used for the parameters do not have universal
meaning. In the linear parametrized models, we had chosen b to represent the
y-intercept value. In the quadratic models, the parameter b was used for the
coefficient of x.

Regression is a strategy to select parameters for a parametrized model in
such a way that it “best” matches data for a given relation. Mathematical
equations are exact. Real data exhibit uncertainty and randomness. Conse-
quently, there usually aren’t parameter values that will match all of the data
simultaneously. The most common regression algorithms seek to the sum of
the squared errors and are called least-squares regression. Spreadsheets
and graphing calculators that find a trend line for data use this type of regres-
sion. We revisit finding parametrized model to match exact data in a later
section.

A trend line or a trend curve resulting from regression provides a model
that allows us to predict values where there are not observed data. When the
prediction occurs between observed data, such prediction is called interpo-
lation. If the prediction is occurring beyond the extremes of the data, such
prediction is called extrapolation. We can use the value for one variable and
the regression equation to solve for the predicted value of the related variable.
Often, a formula may not describe all of the data but provides a good ap-
proximation for a certain range of values. Interpolation is usually safer than
extrapolation.

Example 1.3.10 Consider the population example with the scatter plot of the
number of deaths plotted with respect to the total population size. Find the
linear regression model for these data and predict the number of deaths in a
year if the population were 300 million.

The easiest tool to find a regression model seems to be at the website
desmos.com/calculator. The site desmos.com does not support scientific no-
tation for data entry, we can make a modified model. Let P̃ = P/108 be the
population in units of 100 million and let D̃ = D/106 be the annual death rate

https://www.desmos.com/calculator
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in units of 1 million. We are going to enter the data shown in the table below.

P̃ B̃ P̃ B̃ P̃ B̃ P̃ B̃

2.530 2.170 2.694 2.315 2.850 2.416 2.984 2.426
2.565 2.176 2.727 2.314 2.876 2.443 3.012 2.424
2.599 2.269 2.758 2.337 2.901 2.448 3.041 2.472
2.631 2.279 2.790 2.391 2.928 2.397 3.068 2.437
2.663 2.312 2.822 2.403 2.955 2.448 3.094 2.468

1. Create a table to enter the data. Either click the + menu and select table
or type table in the formula field.

2. Enter the population values P̃ in the column x1 and the corresponding
death rate values D̃ in the column y1. The data are now plotted and you
should see they look roughly linear.

3. We now construct the parametrized model for the data. In Desmos, this
is done by creating an equation using the tilde symbol ~ in place of an
equals. If we want to use the parametrized model D̃ = aP̃ + b with
parameters a and b, we would type into the next formula y1 ~ a x1 + b.

4. Desmos will report values for the parameters a and b and draw the
trend line through the scatter plot. The parameters are identified as
a = 0.486666 and b = 0.992711 so that the model equation is

D̃ = 0.486666P̃ + 0.992711.

Specify static image with @preview attribute,
Or create and provide automatic screenshot as

images/interactive-1-preview.png via the mbx script

www.desmos.com/calculator/my9xzvkfea
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We can now use the model to predict the number of deaths per year for a
population of 300 million. This corresponds to P = 300 × 106 = 3 × 108 so
that P̃ = 3. Using the parametrized model, we find

D̃ = 0.486666(3) + 0.992711
= 2.452691

/interactive-1.html


CHAPTER 1. FOUNDATIONAL PRINCIPLES 25

Because D̃ is the number of deaths in units of millions, the model predicts
2,452,691 deaths per year for a population of 300 million. Since the original
data only had four significant digits, we should not expect any more digits
accuracy in the model prediction. We would predict 2.453 million deaths. �
Example 1.3.11 Consider the electrophoresis gel data. Suppose we had an-
other DNA sample of unknown length that traveled a distance of D = 282
pixels. Use a model to estimate the length of the DNA sample.
Solution. Because we know the distance displaced in the gel and want to
predict the length of the polymer, we treat D as the independent variable and
L as the dependent variable. We will look at the scatter plot (D,L) with
the length of the DNA L graphed with respect to the distance traveled in the
gel D (Figure 1.3.4). The data appear smooth with a slight upward curve.
A nonlinear model will be required to model the bend, such as a quadratic
parametrized model,

L = aD2 + bD + c.

We enter the data in a table and apply regression with our model. In
Desmos, we would create a table for (x1, y1) with values of D in x1 and values
of L in y1. We then calculate model parameters using y1 ~ a x1^2 + b x1
+ c. The resulting model parameters are a = 0.0573428, b = −43.381, and
c = 8241.57. Consequently, the trend curve is modeled by

L = 0.0573428D2 − 43.381D + 8241.57.

The graph of the data with the trend curve is shown below.
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Using our value for D, we can find the value of L using the model,

L = 0.0573428(282)2 − 43.381(282) + 8241.57 ≈ 568.26.

Since our original data had 3 significant digits, we would estimate the length
of the DNA in question as L ≈ 568 nucleotides. In this way, a regression of
known electrophoresis data allows us to estimate lengths of other molecules.

�
You should note that the number of significant digits reported is not the

same as the uncertainty in the prediction. The degree to which the original
data vary around the trend curve leads to uncertainty in the coefficients of the
regression model and subsequent uncertainty to the trend curve itself. In the
last example, rounding the model parameters themselves to 3 significant digits
would have changed the predicted length by 11 nucleotides. Analysis of this
uncertainty is a topic for statistics and is outside the scope of this text. For
simplicity, we use models to make predictions and then round to comparable
precision as the data.
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1.3.6 Summary
• Quantities that can be measured correspond to state variables. A system

is the collection of all possible variables. The state of the system is the
collection of values measured for all of the variables simultaneously. An
important part of communication is describing all relevant variables and
introducing their names.

• A relation between two variables can often be visualized graphically using
a scatterplot. An equation is the mathematical idealization of a relation.
The graph of an equation involving two variables, say x and y, shows all
solutions as points (x, y).

• When the equation is written as a dependent variable equal to an ex-
pression of the dependent variable, points on the graph can be quickly
tabulated using the formula.

• Using regression to find a trend line or regression curve can give an
approximate relation corresponding to observed data. Treating the re-
sulting equation as a model equation can give approximate predictions
of states of the system.

1.3.7 Exercises

Each problem has an equation involving two variables. Determine whether
each of the given states for those variables are in the solution set.

1. 3x− 2y = 8
(a) (x, y) = (0,−4)

(b) (x, y) = (1,−2)

(c) (x, y) = (4, 2)
2. 2w + 5z − 3 = w2 + z2

(a) (w, z) = (−2, 2)

(b) (w, z) = (−1, 3)

(c) (w, z) = (3, 2)

Each problem has an equation involving multiple variables. Solve for the indi-
cated dependent variable.

3. Perimeter of Rectangle. Given 2L+ 2W = P , solve for W .
4. Volume of Rectangular Prism. Given V = LWH, solve for L.
5. Volume of Cylinder. Given V = πr2h, solve for h.
6. Ideal Gas Law. Given PV = nRT , solve for P .

Given an equation relating two variables, solve for the indicated dependent
variable. Use your resulting expression to calculate the value for that variable
given the values of the indicated independent variable. Make note of any values
that are not defined. Plot the corresponding points in the solution set of the
equation on a graph.

7. Given the equation 4x+5y = 20, find y for each value x ∈ {1, 2, 3, 4, 5}.
8. Given the equation np = 1000, find n for each value p ∈ {10, 20, 25, 40, 50}.
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Graph two dependent variables representing the expressions on each side of the
equation. Use the points of intersection to identify solutions to the equation.
Verify that the values you identify are solutions by testing whether make the
equation true.

9. 3x− 5 = x+ 2

10. 20x
x+ 4 = x+ 3

11. 4x3 − 9x2 = x− 6

Additional DNA samples were run in the same electrophoresis gel as described
in Example 1.3.11. Using the data and regression curve from that example,
estimate the length of each sample. Indicate whether the approximation is
appropriate.

12. Estimate the length of a DNA sample that traveled 200 pixels.
13. Estimate the length of a DNA sample that traveled 335 pixels.
14. Estimate the length of a DNA sample that traveled 350 pixels.

A Voltage–Resistance–Current Relationship A simple electric circuit
has an applied voltage V (volts) and a variable load resistance R (kilohms).
When the circuit is closed, current flows through the circuit, measured as the
current I (amperes). When the voltage was held constant at V = 9 V, the
resistance and current were measured with values recorded in the table below.
The following group of problems are based on these data.

V (V) R (kΩ) I (A)
9.0 0.84 0.0107
9.0 1.2 0.0073
9.0 1.8 0.0050
9.0 2.7 0.0033
9.0 3.4 0.0026

15. Create a scatter plot of (R, I). Would a trend line make sense for this
data? Explain.

16. Conductance G is the reciprocal of resistance, G = 1/R. Create a
scatter plot of (G, I). Would a trend line make sense for this data?
Explain.

17. One of the previous scatter plots should have had a meaningful trend
line. State an appropriate regression equation as a model and use it
to predict the current I when the resistance is R = 2.1 kΩ.

Population-Growth Relationships The number of births and of deaths
in a population generally depends on the size of the population. The table
below gives population data for ten of the twelve highest population cities in
the state of Virginia for the year 2012. The data include the population P and
the total number of births B and deaths D for the year recorded for each city.
The following group of exercises are based on these data.
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City P B D

Virginia Beach 447021 6270 2828
Norfolk 245782 3773 1827

Chesapeake 228417 2805 1582
Richmond 210309 2939 1849

Newport News 180726 2905 1438
Alexandria 146294 2763 686
Roanoke 97469 1492 1172

Portsmouth 96470 1534 980
Suffolk 85181 1087 726

Lynchburg 77113 1062 779
18. Create a scatter plot of (P,B) and find the equation of the trend line.

The cities of Hampton and Harrisonburg were left off the list with
populations of P = 136836 and P = 50981, respectively. Use the
trend line regression model to predict the number of births in these
cities during 2012. Which calculation is an example of interpolation
and which is extrapolation?

19. Create a scatter plot of (P,D) and find the equation of the trend
line. Use the trend line regression model to predict the number of
deaths· in Hampton and Harrisonburg during 2012. (See the previous
problem for population values.) Which calculation is an example of
interpolation and which is extrapolation?

Which of the calculations were examples of interpolation and which were ex-
amples of extrapolation?
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1.4 Formulas as Models of Relations

1.4.1 Overview
Models are simplified abstract representations of something of interest. Air-
plane and automobile manufacturers create scale models to test aerodynamics
in wind tunnels. Architects build models of future projects, whether a physical
mock-up or a computerized 3-d representation, to see how their plan will fit
together and give clients a vision of pending products. The models do not need
to include every detail of the actual object of interest, just those details that
are relevant to the purpose of the model.

Scientists also regularly use models. Physicists use high energy collisions of
extremely fast particles to create conditions that they expect are comparable
to the moments immediately after the big bang. A biologist may use mice from
a well-controlled population as a model to study cancer, considering its biology
to mimic that of humans at some level of approximation. A climatologist might
use a computational model where a computer program tracks changes in the
makeup of the air, pollutant levels and air and ocean temperatures according
to known and assumed interactions.

A mathematical model is an abstract representation of measurable phe-
nomena that is characterized through mathematical equations. Recall that we
think of a system as the collection of all possible measurements associated
with the objects and environment involved in the phenomenon. Each quantity
is a state variable, even if we do not have a physical way to obtain the mea-
surement. Many laws of science are described using mathematical equations
that relate state variables. These equations are examples of mathematical
models. Knowing the value of one state variable, we can use the model to
predict the value of other variables.

In this section, we explore some of the most common parametrized formulas
used in mathematical models. The most important concept that relates many
of these families is the idea of proportionality. When we have a mathematical
model, we can use values for the variables to solve for unknowns. We will
introduce ways to solve equations using technology in this section and review
some strategies for solving equations by hand in later sections.

1.4.2 Proportionality
The idea of proportionality occurs everytime there is a common ratio between
two quantities.

Example 1.4.1 In chemistry, we know that the atomic mass of an element
(daltons) represents the mass (grams) of exactly one mole of atoms of that
element. The atomic mass of carbon-12 is exactly 12 Da. Thus, 1 mole of
carbon-12 atoms has a mass of 12 grams, 2 moles of carbon-12 atoms has a
mass of 24 grams, and 5 moles of carbon-12 atoms has a mass of 60 grams. The
ratio of the number of moles to the mass is always the same constant matching
the atomic mass. We say that the mass is proportional to the number of
moles. �

So what does proportionality really mean? A proportion is a ratio be-
tween two quantities. The quantities are proportional if the ratio between
the quantities always equals the same value. We sometimes say that the two
quantities have a common proportion.

Definition 1.4.2 A quantity Q is proportional to a quantity P if the ratio
Q/P is a constant, say Q/P = k. The value k is called the proportionality
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constant and we can rewrite the equation as

Q = kP .

♦
Many laws of physics are statements of proportionality. Isaac Newton dis-

covered that the force F acting on an object due to gravity is proportional to
the mass m of the object. Newton’s law of gravity could be written

F = mg,

where the constant g is called the gravity acceleration constant. The French
physicist Charles-Augustin de Coulomb discovered a similar law, that the elec-
trical force F acting on a charged object is proportional to the charge of the
object q. Coulomb’s law can be written

F = qE,

where E is the electrical field strength at the object’s location. The German
physicist Georg Ohm discovered that the voltage drop V across a conductor
in a circuit is proportional to the current I flowing through that conductor.
Ohm’s law is written

V = IR

and R is called the resistance of the conducting component.
When we know that two quantities are proportional, we can find the pro-

portionality constant by calculating the ratio given observed data. If there
are errors or uncertainties in the data, we can approximate the proportionality
constant using an average of calculated ratios.

Example 1.4.3 Suppose we know that the birth rate for a population (number
of births per unit time) is proportional to the number of individuals in the
population. If the population has 20 births per month when it consists of 5000
individuals, find the number of births per month when the population consists
of 8000 individuals.
Solution. We start by assigning variables for our quantities. Let P be the
size of the population and let B be the birth rate. Because the birth rate (births
per month) is proportional to the population size (individuals), we know that
the ratio B/P is equal to some constant, which we will name b:

b = B

P
= 20

5000 = 0.004.

The constant b is called a per capita birth rate. Rewriting the equation
B/P = b = 0.004, we have a model

B = bP ⇔ B = 0.004P .

We now use our model. When the population has 8000 individuals, we have
P = 8000. Substituting this value in the model, we find

B = 0.004(8000) = 32.

That is, the population is predicted by our model to have 32 births per month.
�

Mathematically, the geometric idea of similarity is one of the most common
sources of proportional relations. Given two geometric polygons, we need a
way to associate each vertex (points where edges meet) of one polygon with a
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particular vertex on the other polygon. The polygons are usually labeled by
vertices, like a triangle ABC or a quadralateral PQRS. If we relate triangle
ABC to triangle JKL, then the corresponding vertices would be

A↔ J B ↔ K C ↔ L.

Polygons are similar if the ratio of distances between any pair of corresponding
vertices always equal the same constant.

Example 1.4.4 Suppose triangle ABC is similar to triangle PQR, shown in
the figure below. The lengths of the edges AB and AC are 4 and 6, respectively.
The lengths of the edges PQ and QR are 2.5 and 3.125, respectively. Find the
lengths of the other two edges.

A

B

4

C

6

P

Q

2.5

R

3.125

Solution. The association between vertices of the triangles are

A↔ P B ↔ Q C ↔ R.

Because the triangles are similar, the ratios of corresponding edges must all
have the same value,

ρ = AB

PQ
= AC

PR
= BC

QR
.

Because we know the lengths of both AB and PQ, we can use those values to
determine the common ratio,

ρ = AB

PQ
= 4

2.5 = 1.6.

Using this ratio, we can solve for the remaining unknowns:

1.6 = AC

PR
= 6
PR

⇒ PR = 6
1.6 = 3.75

1.6 = BC

QR
= BC

3.125 ⇒ BC = 1.6(3.125) = 5

Thus, PR = 3.75 and BC = 5. �
The last example of simple proportionality arises in linear relations. Tradi-

tionally, we think of y as the dependent variable and x as the independent vari-
able. Given any two points in the relation P1 = (x1, y1) and P2 = (x2, y2), we
calculate the ordered increments of change going from P1 to P2 as ∆x = x2−x1
and ∆y = y2 − y1. We always calculate increments of change as the ending
value minus where the starting value. A relation is linear if the ratio ∆y/∆x is
always the same constant. This constant value is called the slope, traditionally
using the symbol m,

m = ∆y
∆x = y2 − y1

x2 − x1
. (1.4.1)
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The slope represents the proportionality constant between ∆x and ∆y. If
we know any point (x, y) = (a, b) that satisfies the linear relation and the slope,
then if we take any other point (x, y), we must have

y − b = m (x− a). (1.4.2)

This equation is called the point–slope equation of a line.

Example 1.4.5 A container of ice water containing 200 grams of ice and
600 grams of water requires heat added to raise its temperature. The relation
between temperature increase and required energy in heat is linear. To raise the
temperature 10 degrees Celsius, we need 110.19 kJ. To raise the temperature
20 degrees Celsius, we need 133.67 kJ. How much energy is required to raise
the temperature 25 degrees Celsius?
Solution. Because the relation between the temperature increase and the
energy added to the water is linear, we can calculate the slope as the ratio of
change in these values. Let T be the amount the temperature rises and let Q
be the energy in heat added. Thinking of Q as the dependent variable, the
slope will be the ratio of the change in Q to the change in T ,

m = ∆Q
∆T = 133.67− 110.19

20− 10 = 2.348.

Knowing the slope, we can create an equation that models the relation
between Q and T . The point–slope equation of a line using the point (T,Q) =
(10, 110.19) becomes

Q− 110.19 = 2.348 (T − 10).

To find the energy required to raise the temperature 25 degrees Celsius, we
substitute T = 25 and can then solve for Q.

Q− 110.19 = 2.348 (25− 10)
Q− 110.19 = 35.22

Q = 145.41

It will take 145.41 kJ to raise the temperature to 25 degrees Celsius. �

1.4.3 Common Models
Many common models are based on a relation of proportionality between a
quantity and a dependent variable based on another quantity. Simple propor-
tionality would be where a variable y is proportional to another variable x,
y = kx. We are now interested in models where y is proportional to some
simple function of x. We say that y is inversely proportional to x if y is
proportional to the reciprocal of x,

y = k · 1
x

= k

x
.

This is equivalent to saying that the product xy = k is constant.
A power law refers to a dependent variable being proportional to some

power p of the independent variable,

y = Axp.
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An exponential relation refers to a dependent variable being proportional
to some positive base b being raised to the independent variable as the power,

y = Abx.

Although these two laws look similar, they have very different behaviors be-
cause of the role of the independent variable. Find ways to train your mind
to read these differently. For example, for the power law, you might read the
formula as “x raised to a power p”, but for the exponential relation, you would
read the formula as “the exponential of base b raised to the power x”. As
you intentionally use language to distinguish between the two models, you will
more easily remember appropriate methods for each.

We now consider how we would find the model parameters given data.
Regression methods do exist. For example, in Desmos, it would be possible to
put given data in a table and then compute parameters using a formula like y1
~ A x1^p or y1 ~ A b^x1. You would get perfectly good approximate values
that could be used for applications. However, our purpose is to introduce the
role of equations in solving for exact values.

When we are given data that a model describes exactly, we should consider
each point in the data as being a solution to the model equation. When we
have multiple points, we have multiple equations, all of which need to be true
simultaneously. We then treat the parameters as variables and solve the system
of equations to find parameter values.

We should have a clear separation in our thinking between creating the
system of equations and solving the resulting system. We first focus on creating
the system of equations, and we will use a computational tool to solve for the
values. We will look at graphical methods of approximating solutions as well
as using computer algebra systems to find exact formulas.

Example 1.4.6 Suppose y has a power law relation with x, y = Axp. Further,
suppose that we have two data points, (x, y) = (2, 4) and (x, y) = (3, 8). Find
the equations that determine the model parameters. Graph the equations to
find their values.
Solution. To find each equation, we substitute the values of x and y in the
model equation. For each given point, this will leave an equation that still
involves the unknown model parameters. Using the point (x, y) = (2, 4), we
substitute x = 2 and y = 4 in y = Axp:

4 = A · 2p.

Using the point (x, y) = (3, 8), we substitute x = 3 and y = 8 in y = Axp:

8 = A · 3p.

To show that we have a system of equations that need to be solved together,
we group the equations with a curly brace,{

A · 2p = 4,
A · 3p = 8.

Our first method for finding the values will be graphical. Because we have
two parameters, A and p, we can think of these as two variables that define a
plane of points (p,A). Each equation defines a curve in the plane of solutions to
that equation. With two equations, we obtain two different curves. Intersection
points are the points in common to both curves and are the solutions that we
seek.
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Some graphing tools, like Desmos and most graphing calculators, require
the variables to be x and y. They also typically expect that we have solved for
y as a dependent variable. If we replace p ↔ x and A ↔ y and then solve for
y, our equations become {

y = 4/2x,
y = 8/3x.

In Desmos, you can click on the point of intersection and see approximate
values (1.71, 1.223). Using a handheld calculator, a menu option to find an
intersection point gives a better approximation (1.709511, 1.223055) meaning
that p ≈ 1.7095 and A ≈ 1.2231. A graph showing the points and the approx-
imate model y = 1.2231 · x1.7095 is shown below.
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Figure 1.4.7 Graph of y = 1.2231 · x1.7095 with given points (2, 4) and (3, 8).
�

Example 1.4.8 Similar to the previous example, suppose y has an exponential
relation with x, y = Abx with the two data points, (x, y) = (2, 5) and (x, y) =
(3, 8). Find the equations that determine the new model’s parameters and
solve the system of equations.
Solution. To find each equation, we substitute the values of x and y in the
model equation. For each given point, this will leave an equation that still
involves the unknown model parameters. Using the point (x, y) = (2, 5), we
substitute x = 2 and y = 5 in y = Abx to obtain

5 = A · b2.

Using the point (x, y) = (3, 8), we obtain the equation

8 = A · b3.

Our system of equations becomes{
A · b2 = 5,
A · b3 = 8.

The graphical method of solution used in the previous example results in
approximate values. To find exact values, we need to perform an algebraic
solution. A computational tool with expect us to provide it with our equations
as well as the variables for which we are solving. In this text, we will work
with the SageMath system, an open source computer algebra system. A blank
interactive SageMath cell can be opened at https://sagecell.sagemath.org.

https://sagecell.sagemath.org
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# Tell SageMath that A and b should be treated as variables
var('A','b')
# Define our equations
eq1 = (A*b^2 == 5)
eq2 = (A*b^3 == 8)
# Solve the system of equations for the system of variables
soln = solve([eq1 , eq2], A, b)
# Display the result
show(soln)

When this script is executed, SageMath reports a solution

A = 125
64 , b = 8

5 .

Our model becomes y = 125
64 ·

( 8
5
)x. A graph of the model with our given points

is shown in the figure below.
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Figure 1.4.9 Graph of y = 125
64 ·

( 8
5
)x with given points (2, 5) and (3, 8).

I want to note that SageMath fails to solve the similar system for the pre-
vious power law example. The change to the script above is minimal. You
should try it and see what happens. This is a curious example where computer
algebra systems sometimes know too much. In more advanced mathematics
that account for complex numbers, there is an abiguity in that system of equa-
tions that is not obvious. You can see a glimpse of the complexity if you try
to solve the system of equations using the WolframAlpha website. Try the
request solve A*2^p=4 and A*3^p=8 for A and p. �

1.4.4 Constructing More Models
Once we have elementary models like powers and exponentials, we can con-
struct more complicated models by using arithmetic. For example, polyno-
mials are created by adding power functions where each of the powers are
non-negative integers.

Definition 1.4.10 A polynomial is a sum of terms of the form akx
k where

k is a non-negative integer, ak is a real number, and x is the independent
variable. The values ak are called coefficients. The largest power k is called
the degree of the polynomial. ♦

The equation y = 4x3 − x+ 5 is a polynomial with degree 3, which we call
a cubic polynomial. The coefficients are a0 = 5, a1 = −1, and a3 = 4. A

https://www.wolframalpha.com


CHAPTER 1. FOUNDATIONAL PRINCIPLES 36

model for y as cubic polynomial of x would look like
y = a3x

3 + a2x
2 + a1x+ a0.

We usually include zero coefficients for any skipped powers smaller than the
degree, so our example would also have a2 = 0.

We can create a system of equations to find coefficients for a polynomial.
Because a cubic polynomial has 4 coefficients, we will need four data points to
find a unique solution.

Example 1.4.11 Find a quadratic polynomial (degree 2) that goes through
the points (−1, 1), (1, 2), and (2, 4).
Solution. A general degree 2 polynomial model would have the form

y = a2x
2 + a1x+ a0.

We substitute the values for x and y to get one equation for each point.
1 = a2(−1)2 + a1(−1) + a0

2 = a2(1)2 + a1(1) + a0

4 = a2(2)2 + a1(2) + a0

⇔


1 = a2 − a1 + a0

2 = a2 + a1 + a0

4 = 4a2 + 2a1 + a0

We now use a computer algebra system to solve for the coefficients.

# Declare the parameters as variables
var('a2','a1','a0')
# Create the equations
eq1 = 1 == a2 - a1 + a0
eq2 = 2 == a2 + a1 + a0
eq3 = 4 == 4*a2 + 2*a1 + a0
# Solve the system
soln = solve([eq1 ,eq2 ,eq3], a0, a1, a2)
show(soln)

The result of the algebra solution is

a0 = 1, a1 = 1
2 , a2 = 1

2 .

That is, our polynomial model is

y = 1
2x

2 + 1
2x+ 1.

A graph of the data with the model is shown in the next figure.
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Figure 1.4.12 A graph of y = 1
2x

2 + 1
2x + 1 with the points (−1, 1), (1, 2),

and (2, 4).
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�
We end this section by discussing the difference between regression and

solving equations. Regression is used when we have data that we want to ap-
proximate with a model. This means that given data points will not necessarily
be solutions—and most likely, they will not be. When we solve for a model
passing through given data, we are finding a curve that has the given data
points as solutions. Each point must actually lie on the curve. If we tried to
solve for a model where we should be doing a regression, we will discover that
there is no solution.
Example 1.4.13 Consider the three points (1,−2), (3, 1), and (6, 6). Can we
model these with a linear function y = mx+ b?
Solution. Using the three data points, we can create a system of three equa-
tions for the model parameters.

−2 = m(1) + b

1 = m(3) + b

6 = m(6) + b

⇔


m+ b = −2
3m+ b = 1
6m+ b = 6

If we try to solve the system of equations, the solution set is empty.

var('m','b')
eq1 = m + b == -2
eq2 = 3*m + b == 1
eq3 = 6*m + b == 6
soln = solve([eq1 ,eq2 ,eq3],m,b)
show(soln)

To visualize why there is no solution for this system, let us consider the
graphical approach. We can solve each equation for b as the dependent variable
and graph the resulting equations. Recall that many graphing utilities require
us to rename our variables, m↔ x and b↔ y:

b = −2−m
b = 1− 3m
b = 6− 6m

↔


y = −2− x
y = 1− 3x
y = 6− 6x

When we graph these equations, we get three lines. Although they appear
close to having a single point of intersection near (m, b) = (1.6,−3.6), there is
not point where all three lines intersect simultaneously. This is the graphical
result of no solution.
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b = −2−m
b = 1− 3m
b = 6− 6m

When we approach this problem as a regression model, we seek for a linear
equation that is closest to all three points. Desmos reports regression coeffi-
cients m ≈ 1.60526 and b = −3.68421 for a regression model

y = 1.60526x− 3.68421.
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Notice that this model only approximates our points of interest:

x = 1 ⇒ y = −2.07895
x = 3 ⇒ y = 1.13158
x = 6 ⇒ y = 5.94737
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�

1.4.5 Summary
• Proportionality between two variables is when the ratio of their values is

always the same constant. As a parametrized model, to say y is propor-
tional to x means that y = kx for some constant k.

• Many models are generated by expressing a dependent variable as being
proportional to a function of the independent variable. Common ex-
ampes are inverse proportionality, power law relations, and exponential
relations.

• Given a parametrized model, a data point for the variables establishes
an equation in the model parameters. With enough data points, the
resulting system of equations can be solved to find the parameters.

• Solutions to a system of equations can be approximated based on the
intersection of graphs. Computer algebra systems can often help solve a
system of equations to find exact solutions.

1.4.6 Exercises
1. The British physicist Robert Hooke observed that when a spring is stretched,

the strength of the force is proportional to the length of the stretch, at
least for small to moderate lengths. When a spring is stretched 5 cm, the
force exerted by the spring is 1.8 N.
(a) If F is the force of the spring and L is the length the spring is

stretched, write down the general equation describing the relation
that F is proportional to L. Then use the given data to find the
proportionality constant.

(b) Find the force exerted by the spring if it is stretched 8 cm.

(c) What lengths should the spring be stretched for a force of 1 N? 2 N?
2. The amount of heat (a form of energy) stored in a substance is propor-

tional to the change in temperature. When a gram of water absorbs 10 J
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of heat, the temperature rises by 2.389 degrees Celsius.
(a) If ∆T is the change in the temperature of the water and Q is the

heat added to the water, write down the general equation describing
the relation that Q is proportional to ∆T . Then use the given data
to find the proportionality constant, which is called the specific heat
of water.

(b) How much will the temperature change if 16 J of heat is added to
the water.

(c) How much energy in added heat is required to raise a gram of water
from 20 degrees to 100 degrees?

3. The surface area of a cube is proportional to the square of the length of
one side.
(a) If A is the surface area and s is the length of a side, write down

the general equation describing the relation that A is proportional
to the square of s.

(b) Using geometrical reasoning, what is the proportionality constant?

(c) What is the surface area of a cube whose sides are each 5 cm in
length?

(d) What the length is the side of a cube whose surface area is exactly
1 cm2 in length?

4. The mass of a raindrop is proportional to the cube of its diameter. A
raindrop with a diameter of 3 mm has a mass of 14.137 mg
(a) If m is the mass of a raindrop and d is the diameter, write down

the general equation describing the relation that m is proportional
to the cube of d.

(b) Find the constant of proportionality using the given data.

(c) What is the mass of a raindrop with a diameter of 5 mm?

(d) What is the diameter of a raindrop with a mass of 25 mg?
5. The time to complete a large manual labor job is inversely proportional

to the number of people performing the labor. Suppose a job will take 20
days when 5 people are working.
(a) If T the time required to complete the job and L is the number

of laborers, write down the general equation describing the relation
that T is inversely proportional to L.

(b) Find the constant of proportionality using the given data. What is
the physical interpretation of this constant?

(c) How long will the job take if there are 16 people working?

(d) What is the fewest number of people that can complete the job in 8
days?

6. The intensity of radiation from the sun is inversely proportional to the
square of the distance from the sun. The earth, which is 1 AU (atronomical
unit) from the sun, receives radiation from the sun at an intensity of
1367 W/tothe2.
(a) If I the radiation intensity and r is the distance fom the sun, write
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down the general equation describing the relation that I is inversely
proportional to the square of r.

(b) Find the constant of proportionality using the given data.

(c) Find the intensity of radiation at Mercury, which is 0.387 AU from
the sun.

(d) Find the distance at which the sun’s radiation is half the intensity
as compared to earth.

7. A right triangle ABC has legs AC = 4 and BC = 3.
(a) Find the length of the hypotenuse AB by applying the Pythagorean

theorem.

(b) Find the lengths of a triangle PQR that is similar to ABC whose
hypotenuse has length PQ = 1.

(c) Find the lengths of a triangle STU that is similar to ABC whose
leg SU has length SU = 1.

8. A right triangle ABC has a leg AC with length AC = 2 and a hypotenuse
AB with length AB = 3.
(a) Find the length of the other leg BC by applying the Pythagorean

theorem.

(b) Find the lengths of a triangle PQR that is similar to ABC whose
hypotenuse has length PQ = 1.

(c) Find the lengths of a triangle STU that is similar to ABC whose
leg SU has length SU = 1.

9. Consider the parametrized model y = ax2 + b and data points (x, y) =
(1, 3) and (x, y) = (2, 9).
(a) Determine the system of equations in terms of a and b.

(b) Graph the system of equations for the parameters in the (a, b)-plane.

(c) Solve for a and b, using a computer to assist if needed.

(d) Find the value of y when x = 4.
10. Consider the parametrized model y = ax2 + bx and data points (x, y) =

(1, 3) and (x, y) = (2, 9).
(a) Determine the system of equations in terms of a and b.

(b) Graph the system of equations for the parameters in the (a, b)-plane.

(c) Solve for a and b, using a computer to assist if needed.

(d) Find the value of y when x = 4.
11. Consider the parametrized power law model y = a · xb and data points

(x, y) = (1, 3) and (x, y) = (2, 9).
(a) Determine the system of equations in terms of a and b.

(b) Graph the system of equations for the parameters in the (a, b)-plane.

(c) Solve for approximate values for a and b using a graphing utility.

(d) Find the value of y when x = 4.
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12. Consider the polynomial model y = ax2 + bx+ c and data points (x, y) =
(1, 3), (x, y) = (3, 6), and (x, y) = (−2, 4).
(a) Determine the system of equations in terms of a, b, and c.

(b) Solve the system of equations to find exact values for the model
parameters

(c) Find the value of y when x = 6.
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1.5 Algebra and Equivalence

1.5.1 Overview
Algebra can sometimes feel complicated. This feeling often arises when algebra
is viewed as a long list of rules of manipulation. Perhaps you think of algebra as
rules for moving symbols and then feel overwhelmed by the number of possible
different problems. Or you might feel like you are doing the same operation in
different situations and are counted correct in some situations but incorrect in
others.

To be effective in algebra, we should organize our thinking around a small
number of core principles. The first principle is to distinguish between expres-
sions and equations. Our goals when working with an expression are different
from when we are working with an equation. The second principle is the idea of
equivalence, whether that refers to equivalent expressions or equivalent equa-
tions. Third, we want to minimize the number of rules be relating them to the
fundamental properties of algebra.

In this section, we will relate the algebra principles you should have pre-
viously learned around these core principles. We will focus on the idea that
algebra identities allow us to replace one expression with another equivalent ex-
pression. The operations on expressions all originate with the basic properties
of real number arithmetic. Equations are relations stating that two expressions
have the same value. Our operations on equations will be designed to generate
simpler equations that are equivalent to the original. These strategies focus
on applying the same operation to both sides of the equation to maintain a
balance, with the goal of creating an equation that is more easily solved than
the original.

1.5.2 Expressions and Properties of Algebra
In algebra, we use variables as placeholders for numerical values. The variable
is given a symbol, usually a letter like x, that takes the place of the value.
Sometimes, this is because we want to describe a calculation without referenc-
ing a specific value. Other times, we want a specific but unknown value and
use a variable as a name.
Example 1.5.1 Maybe you have seen a calculation described similarly to the
following.

Think of a number. Add five. Double the result. Subtract four. Divide the
answer in half. Subtract your original number.

Use the variable x to represent the number chosen. Write out the formula
that describes this calculation.
Solution. We use parentheses to emphasize the order of calculations. Start
with x and add five to get x+5. Doubling this means to multiply by two to get
2(x+5). Subtracting four gives 2(x+5)−4. Dividing in half means divide this

by two, resulting in 2(x+ 5)− 4
2 . We end by subtracting the original value x.

The formula that matches this calculation would be

2(x+ 5)− 4
2 − x.

�
An expression is any formula involving numbers and variables, such as the

formula in the previous example. An expression itself represents a numerical
value. When an expression involves variables, the value of the expression itself
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is unknown until the values of all variables are known. Consequently, the
expression itself is a dependent variable, and we often represent its value by
another symbol.

Example 1.5.2 For the previous example, we could introduce a variable y to
represent the final number. That gives a dependent variable defined by the
expression

y = 2(x+ 5)− 4
2 − x.

�
Dependent variables often depend on more than one variable.

Example 1.5.3 For a business that earns money by selling a number of items,
each of which is sold for the same price, the revenue (money brought in
through sales) is computed by multiplying the number of items sold by the
price of each item. We can summarize this statement defining revenue using
algebra if we represent the state variables by symbols. Let R represent the
revenue, let n represent the number of items sold, and let p represent the price
of each item. The product n · p is the expression representing the product of
the number of items and the price per item. We use the equation

R = n · p

to describe that the revenue is computed by this expression.
We see that the revenue R is defined here as a dependent variable based on

the values of n and p. If we know the value of both n and p, then we will know
the value of R. For example, if the company sells n = 1000 items and sets a
price of p = 1.25 dollars, then the revenue is R = 1000 · 1.25 = 1250 dollars.

�
Different expressions can represent the same value. For example, x + x

and 2x are different expressions—they describe different calculations—but they
always have the same value. We say that two expressions are equivalent if they
result in the same value for all possible values of the involved variables. The
properties of algebra describe the rules for how to create equivalent expressions.

Elementary Properties of Algebra.

For any expressions x, y, and z, the following expressions are equivalent.
• Additive identity (zero): x+ 0 = x.

• Multiplicative identity (one): 1 · x = x.

• For every value x, there is an additive inverse value written −x
so that x+−x = 0. It is always the case that −x = −1 · x.

• For every non-zero value x (x 6= 0), there is a multiplicative
inverse value written ÷x so that x · ÷x = 1. When x 6= 0, we
have ÷x = 1

x , which is why the inverse of x is also called the
reciprocal.

• Commutative properties: x+ y = y + x and x · y = y · x.

• Associative properties: (x+y)+z = x+(y+z) and (x ·y) ·z =
(x · y) · z.

• Distributive property of multiplication over addition: x · (y +
z) = x · y + x · z.
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Example 1.5.4 Our pick-a-number example with the dependent variable

y = 2(x+ 5)− 4
2 − x

could be used as a mind-reader trick. If a volunteer from the audience chooses
their own number for x and then does the math correctly, you (the mentalist)
can always guess the final number y. Use algebra properties to determine what
you should predict.
Solution. We start with the distributive property to rewrite 2(x + 5) =
2x + 10. Subtracting 4 is equivalent to adding −4. We can then use the
associative property to rewrite (2x + 10) + −4 = 2x + (10 + −4) = 2x + 6.
Dividing by two is equivalent to multiplying by 1

2 . This allows us to use the
distributive property again,

2(x+ 5)− 4
2 = 2x+ 6

2 = 1
2(2x+ 6) = 1

2(2x) + 1
2(6)

= (1
2 · 2)x+ 6

2 = x+ 3

The second line used the associative property and the multiplicative identity.
Can you see where? The final step in the calculation is to subtract x,

y = 2(x+ 5)− 4
2 − x = (x+ 3)− x = (x+−x) + 3 = 3.

(What properties were used there?)
In conclusion, we have discovered y = 3. No matter what number is origi-

nally chosen, the final result of the described calculation will always be three.
�

When finding equivalent expressions, we really are just using these basic
rules. We can add zero by adding an expression and its additive inverse. We
can multiply by one by multiplying by a nonzero expression and its multiplica-
tive inverse, 1 = u/u. The associative and commutative laws together allow us
to reorder terms and operations with respect to a single operation type. A com-
mon mistake is to reorder terms or operations across different operations. For
example, 2+3y might be incorrectly written as 5y, which would be incorrectly
using the idea of associativity, 2 + (3 · y) = (2 + 3) · y (false).

The distributive law is used to products of sums to sums of products and
back. The reverse operation is usually called factoring. Adding fractions
with common denominators is really about having a common factor. Because
division is really multiplication by reciprocals, canceling common factors is an
application of multiplicative inverses.

Example 1.5.5 Rewrite 3
x

+ x as a single fraction.

Solution. The first term 3
x has an inverse factor ÷x. To combine terms as

a fraction, this needs to be a common factor in both terms. We take x and
multiply it by the inverse factors x÷ x and then factor:

3÷ x+ x = 3÷ x+ xx ÷ x = (3 + x2)÷ x.

However, we usually do this using fraction notation:

3
x

+ x = 3
x

+ x · x
x

= 3 + x2

x
.

�
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Example 1.5.6 Simplify 3x2y − 6xy2

9x2y2 by canceling common factors.

Solution. A common mistake would be to cancel the x2 in the first term
and y2 in the second term. Terms do not cancel over addition; they cancel
in multiplication. We need to rewrite the numerator as multiplication rather
than addition (subtraction). The distributive law allows us to identify common
factors:

3x2y − 6xy2

9x2y2 = 3xy(x− 2y)
9x2y2 .

By recognizing 9x2y2 = (3xy)(3xy), we can rewrite our fraction and cancel the
common factors:

3x2y − 6xy2

9x2y2 = 3xy(x− 2y)
(3xy)(3xy) = x− 2y

3xy .

This is the simplest way to rewrite as a fraction. We could also distribute the
division to get a simplified sum:

x− 2y
3xy = x

3xy −
2y

3xy = 1
3y −

2
3x .

�

1.5.3 Equations
An equation is a logical statement that two expressions are equal. As a logical
statement, an equation can be true or false.
Example 1.5.7 1 + 1 = 3 is an equation. The two expressions are 1 + 1 and
3. This equation is a false statement because the values of the expressions are
different. �

When an equation involves variables, the truth of the statement depends
on the values of the variables. If we specify particular values for each variable,
then we calculate the exact numerical value of each expression and then test
if the values are equal. For some values of the variables, the equation may be
false; for other values, the equation will be true. A solution to the equation
is a set of values for the variables in the equation that makes the statement
true. The solution set of an equation is the set of all possible solutions. If the
equation is true for all possible values of the variables, the equation is called
an identity.
Example 1.5.8 x + 1 = 3 is an equation with a variable x. When x =
1, or when x represents the value 1, the equation is the same as our earlier
example. In that case, the equation is false. However, when x = 2, the
equation corresponds to 2 + 1 = 3, which is true. The value 2 is a solution and
is in the solution set. �

Example 1.5.9 The statement 2x + 5 = 13 is an equation involving a single
variable, x. We can test the equation using different values for x. For x = 1,
the expression 2x + 5 has a value 2(1) + 5 = 7. Since 7 6= 13, the equation is
false and x = 1 is not a solution. For x = 4, the expression 2x+ 5 has a value
2(4) + 5 = 13. We see that x = 1 is a solution because the expressions 2x+ 5
and 13 have the same value. The value 1 is in the solution set. �

In the examples above, we took possible numbers and tested if they were
solutions. Testing values to find solutions is impractical because there are
infinitely many different values possible for each variable. Finding a solution
by guessing would be a stroke of luck. If we did find a solution, we might use
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our intuition to say that we found all of the solutions. But how do we know?
What if our intuition is wrong? Finding one solution does not tell you whether
there might be more solutions.

Instead, we use algebra to find solutions by solving the equation. You
would have learned many strategies for solving equations in an earlier algebra
class. Rather than attempt to address every strategy, we will focus on the
overarching principles.

Most of these strategies rely on a principle of finding equivalent equations.
Equations are equivalent when they true or false for exactly the same values
of variables. The symbol ⇔ is used to say that two logical statements are
equivalent.

You may have learned that an equation is like a balance or scale. The
two expressions are like two masses being balanced against one another. The
equation is true if the masses are in balance. We create an equivalent equation
if we apply the same operation to both sides of the equation, so long as the
operation is invertible.

Balanced Operations Result in Equivalent Equations.

The following operations can be used to create equivalent equations,
where each variable represents arbitrary expressions.

• Balanced Addition: a = b is equivalent to a+ c = b+ c.

• Balanced Subtraction: a = b is equivalent to a− c = b− c.

• Balanced Multiplication: a = b is equivalent to a ·c = b ·c, so long
as c 6= 0.

• Balanced Division: a = b is equivalent to a
c

= b

c
, so long as c 6= 0.

Because multiplication and division include a condition c 6= 0, the new
equation might have extra solutions corresponding to values where c = 0
that are not solutions to the original equation. These extraneous
should not be confused with actual solutions.

In addition to the balanced arithmetic operations, we will later learn
about invertible or one-to-one functions. An invertible function can be
applied to both sides of an equation to create an equivalent equation,
so long as the expressions have values in the function domain. Nonin-
vertible functions potentially introduce extraneous solutions.

The primary strategy for solving an equation is to create an equivalent
equation where the variable is isolated. If a variable appears only once in
an equation, then our strategy would be to apply balanced operations until
one side of the equation only has that variable. Generally, we can use the
inverse operation for the last operation in the expression based on the order
of operations. If we think about the operations involved in an expression as
wrapping layers around the variable, then applying inverse operations would
be like unwrapping the variable one layer at a time.

Example 1.5.10 Consider the earlier equation 2x + 5 = 13. Use balanced
operations to solve the equation.
Solution. The variable x only appears in the expression 2x+5. Because order
of operations applies multiplication before addition, the operation of addition
+5 would be the last operation. The inverse operation is to add −5, which
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we do in a balanced way.

2x+ 5 = 13 ⇔ 2x+ 5 +−5 = 13 +−5 ⇔ 2x = 8

The last operation in the expression 2x is now multiplication by 2. The next
balanced operation is to multiply by the inverse ÷2 = 1

2 .

2x+ 5 = 13 ⇔ 2x = 8 ⇔ 1
2 · 2x = 1

2 · 8 ⇔ x = 4

The equation x = 4 has isolated the variable, so the only solution is x = 4.
The solution set {x : 2x+ 5 = 13}—the set of values x that make 2x+ 5 = 13
true—has a single value {x : 2x+ 5 = 13} = {4}. �

If an equation has the variable appearing in multiple locations, we generally
have two strategies to consider. One strategy—isolating a variable—is to find
an equivalent equation where the variable only appears once. To do this, we
use balanced operations to put terms with the variable on the same side of the
equation. We then use algebra properties, if possible, to solve for that variable.

Example 1.5.11 Solve the equation 3x
x+ 2 = 2.

Solution. The equation has the variable x appear twice. For the expression
on the left to be defined, we know x+2 6= 0. We can use balanced multiplication
and multiply both sides of the equation by x+2 to find an equivalent equation

3x = 2(x+ 2).

(This is also called cross-multiplication.) The right expression can be rewritten
to obtain

3x = 2x+ 4,

which can be solved as
x = 4.

We check our answer by testing the truth of the original equation. With
x = 4, our equation is

3(4)
4 + 2 = 2.

Because 3(4) = 12 and 4 + 2 = 6 and 12 ÷ 6 = 2, the equation is true. The
solution set is

{x : 3x
x+ 2 = 2} = {4}.

�
The other common strategy—factoring—is to find an equivalent equation

with one expression exactly zero and the other expression is factored. The fac-
toring strategy is based on the properties of zero in relation to multiplication.
When non-zero numbers are multiplied, the product is also non-zero. The only
way a product can equal zero is if one of the factors is zero.

Theorem 1.5.12 Product Equals Zero. Given any expressions A and
B, the equation A · B = 0 is equivalent to the compound statement A = 0 or
B = 0.

Consequently, when an equation is written as a product equalling zero, we
can identify all solutions for each factor individually equal to zero. The solution
set will then be the union of the solutions of these separate equations.
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Example 1.5.13 Solve the equation x3 = 4x.
Solution. Because the variable x appears as a cube x3 and alone as x, iso-
lating the variable will not be a successful strategy. We use factoring instead,
which requires moving all terms to one side. The balanced operation would be
to add −4x to both sides,

x3 − 4x = 0.

Now that we have an equivalent equation written as an expression equal to
zero, we need to factor our expression. The expression has a common factor x
in all terms, so we write

x(x2 − 4) = 0.

The factoring principle tells us that solutions satisfy either x = 0 or x2−4 = 0.
We can continue to factor:

x(x+ 2)(x− 2) = 0.

Now, each factor might equal zero leading to a different solution: x = 0,
x = −2, or x = 2. Because these are the only values that make a factor equal
zero, they are the only solutions. The solution set is the union of the three
values,

{x : x3 − 4x} = {−2, 0, 2}.

�
In the next section, we will explore the strategy of factoring in more depth

in the context of solving polynomial equations. We will also review using the
quadratic formula to solve equations. The next example reminds you to be
careful about what you think will be equivalent equations.

Example 1.5.14 Solve the equation

x

x− 3 = 3x− 4
x− 3 .

Solution. A common strategy for this equation that two fractions are equal
is to cross-multiply. That is, multiply the x in the numerator on the left by
the x− 3 in the denominator on the right, and then multiply the 3x− 4 in the
numerator on the right by the x− 3 in the denominator on the left. Then we
can use the factoring method.

x(x− 3) = (3x− 4)(x− 3)
x2 − 3x = 3x2 − 9x− 4x+ 12
x2 − 3x = 3x2 − 13x+ 12

0 = 2x2 − 10x+ 12
2(x2 − 5x+ 6) = 0
2(x− 2)(x− 3) = 0

This final equation is factored. The equation 2 = 0 has no solution. The
equations x−2 = 0 and x−3 = 0 have solutions x = 2 and x = 3, respectively.
However, because the denominators were the same, x − 3, our solution x = 3
was actually an extraneous solution.

Multiplying an equation involving fractions by an expression involving x
always risks introducing extraneous solutions, particularly if it changes the
domain of the expressions. Factoring is always preferable and only slightly
more challenging. To use factoring, we find an equivalent equation by adding
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expressions to get zero on one side,

x

x− 3 −
3x− 4
x− 3 = 0.

The common denominator is a common inverse factor, allowing us to combine
the fractions,

x

x− 3 −
3x− 4
x− 3 = x− (3x− 4)

x− 3 = x− 3x+ 4
x− 3 = −2x+ 4

x− 3 .

Consequently, our equation is equivalent to

−2x+ 4
x− 3 = 0.

The factors are −2x+4 and the multiplicative inverse of x−3, which can never
equal zero. The only solution is the solution to −2x + 4 = 0 or x = 2. (A
quotient equals zero only if the numerator equals zero and the denominator is
non-zero.) �

Finally, if an equation is equivalent to an equation that is always false, then
the equation has no solutions. The solution set is the empty set, ∅ = {}.

Example 1.5.15 Find the solution set for the equation c

c+ 3 = 1.

Solution. When we cross-multiply the equation by the expression c+ 3 (as-
suming c 6= −3), we get an equation

c = c+ 3

which is equivalent to
0 = 3.

Both of these equivalent equations are never true. There are no solutions to
the original equation. The solution set is the empty set ∅. �

1.5.4 Systems of Equations
We have just discussed solving an equation for a single variable. Equations
might involve multiple variables. Such an equation establishes a relation be-
tween the variables. Solutions will require that the value of one variable de-
pends on the values of any other variables.

Example 1.5.16 The equation

u2 + v2 = 16 + 6u

forms a relation between variables u and v.
• Find the possible values for v when u = −1.

• Find the possible values for u when v = 2.

• Find the possible values for u and v when u = v.

Solution. First, to solve the equation when u = −1, we substitute the value
of u = −1 and then use algebra to isolate v.

u2 + v2 = 16 + 6u
(−1)2 + v2 = 16 + 6(−1)
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1 + v2 = 10
v2 = 9
v = ±3

There are two values for v when u = −1. The solutions are the states (u, v) =
(−1, 3) and (u, v) = (−1,−3).

Next, to solve the equation when v = 2, we substitute the value v = 2.
However, because u appears in the equation with terms u2 and 6u, we can
not combine terms to isolate u. Instead, we need to use the (((Unresolved
xref, reference "thm-quadratic-formula"; check spelling or use "provisional" at-
tribute)))quadratic formula.

u2 + v2 = 16 + 6u
u2 + (2)2 = 16 + 6u
u2 + 4 = 16 + 6u
u2 − 6u− 12 = 0

u =
6±

√
(−6)2 − 4(−12)

2

u = 6±
√

84
2 = 6± 2

√
21

2
u = 3±

√
21

Again, two states are solutions, (u, v) = (3 +
√

21, 2) and (u, v) = (3−
√

21, 2).
Finally, the equation u = v is a constraint involving both variables. Because

v is shown as a dependent variable in the constraint v = u, we substitute u in
place of v in the original equation.

u2 + v2 = 16 + 6u
u2 + (u)2 = 16 + 6u
2u2 − 6u− 16 = 0
u2 − 3u− 8 = 0

u =
3±

√
(−3)2 − 4(1)(−8)

2

u = 3±
√

9 + 32
2 = 3±

√
41

2

For each value of u, we have v = u. One solution would be (u, v) = (3+
√

41
2 , 3+

√
41

2 )
while the other solution would be (u, v) = ( 3−

√
41

2 , 3−
√

41
2 ). �

When working with multiple variables, we often have multiple equations.
For example, when we created equations for the parameters of a parametrized
model from data, we created a different equation involving the parameters for
each data point. A solution for one equation is a state giving values for each
of the variables such that the equation is true. A solution for the system of
equations is a state that makes all of the equations true.

A useful strategy for solving equations is to isolate a dependent variable in
one equation and then substitute the resulting value or formula into the other
equation. That equation then has one variable which can be solved using the
usual methods.
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Example 1.5.17 Find a model of the form y = ax+ bx2 that passes through
the points (x, y) = (1, 2) and (x, y) = (2, 5).
Solution. Using the data provides us with an equation for a and b for each
point:

(x, y) = (1, 2) ⇒ 2 = a(1) + b(1)2

(x, y) = (2, 5) ⇒ 5 = a(2) + b(2)2

These equations form a system of equations that must be satisfied simultane-
ously, {

a+ b = 2,
2a+ 4b = 5.

This sets up the mathematical problem that we will solve.
We begin by solving one of the equations for one of the variables. If we

take the equation a+ b = 2 and solve for b, we obtain b = 2− a. We can now
substitute the expression 2 − a in place of b in the other equation, and then
solve for a:

2a+ 4(2− a) = 5
2a+ 8− 4a = 5
−2a+ 8 = 5
−2a = −3

a = 3
2

Knowing that a = 3
2 and that b = 2 − a, we find b = 1

2 . The model passing
through the data is therefore y = 3

2x + 1
2x

2. A graph showing this solution is
shown below.

−2 −1 1 2 3 4 5

5

10

15

x

y

�
Systems of equations allow us to answer questions involving variables that

are subject to multiple constraints. A constraint, which provides information
about how the variables need to be related, is represented by an equation.
Solving the system of equations finds the values that satisfy all constraints.

Example 1.5.18 Is it possible to enclose an area of 25 m2 in a rectangle with
perimeter of 18 m? If so, how?
Solution. In this problem, we need to identify the relevant variables for the
system and the equations that constrain the state. We are working with a
rectangle, which is characterized by a length and a width. Let us draw a figure
and use variables L for the length and W for the width.
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L

W

The perimeter P and the area A can be considered to be dependent vari-
ables, defined by the equations

P = 2L+ 2W,
A = L ·W.

The problem gives us two additional pieces of information, P = 18 and A = 25.
When we substitute those values of the state into the equations, we have two
equations for two variables:

2L+ 2W = 18, L ·W = 25.

In order to solve these equations, we use one equation to isolate one of the
variables, say L, and then substitute the resulting expression into the other
equation.

2L+ 2W = 18 ⇒ L = 9−W
L ·W = 25 ⇒ (9−W )W = 25

Then we solve the equation that only involves W .

(9−W )W = 25
9W −W 2 = 25

W 2 − 9W + 25 = 0

W =
9±

√
(−9)2 − 4(25)

2

W = 9±
√

81− 100
2 = 9±

√
−19

2

When solving this quadratic formula, we have the square-root of a negative
number giving complex numbers.

In conclusion, we found that there are no real solutions. This means that
it is not possible to create a rectangle with a perimeter of 18 m and an area of
25 m2. �

1.5.5 Equivalence and Graphs
It is useful to think about how graphs relate to equivalent expressions, equiva-
lent equations, and equivalent systems of equations. Understanding the inter-
pretation relating to graphs should help us understand the concepts.

Because two expressions are equivalent if and only if they produce the iden-
tical values for any choice of the variables, the graphs of equivalent expressions
should look identical. When there is only one variable involved, say x, then a
simple graph suffices. Suppose u1 and u2 are the two expressions. In a graph-
ing utility, if we graph the two expressions, y = u1 and y = u2, then the graphs
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should exactly overlap. It can be difficult to check if an overlap is exact or only
approximate.

We could instead create a single graph that subtracts one expression from
the other, y = u1 − u2. When the expressions are equivalent, the graph will
show y = 0 for all values x. However, because computers only approximately
represent numbers, computer arithmetic can introduce small errors. Conse-
quently, we should not be surprised to see a graph with small fluctuations.

Example 1.5.19 Use a graph to test whether the following expressions are
equivalent.

1.
√
x2 + 16 and x+ 4

2.
√
x+ 1− 1

x
and 1√

x+ 1 + 1

Solution. The first comparison between
√
x2 + 16 and x + 4 is checked by

graph y =
√
x2 + 16 and y = x+ 4 on the same figure.

−4 −2 2 4
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8

x

y
y =
√
x2 + 16

y = x+ 4

The graphs clearly are different. This is definitive evidence that the ex-
pressions are not equivalent. Even identifying just one point, like x = 3, and
showing the formulas give different results proves that the expressions are not
equivalent:

x = 3 ⇒
√
x2 + 16 =

√
9 + 16 =

√
25 = 5,

x = 3 ⇒ x+ 4 = 3 + 4 = 7.

The value used provides a counterexample to the claim of equivalence.

The second claim is that
√
x+ 1− 1

x
and 1√

x+ 1 + 1
are equivalent. When

we graph these two expressions, we only see one curve in the figure.
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y = (
√
x+ 1− 1)/x

y = 1/(
√
x+ 1 + 1)
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Is this because the graphs are the same? Or is it because one of the graphs
is so different that it just doesn’t appear in the window? To avoid that uncer-
tainty, we can instead graph their difference,

y =
√
x+ 1− 1

x
− 1√

x+ 1 + 1
.

−4 −2 2 4

−3

−2

−1

·10−4

xy

What do we see? Something interesting seems to be happening at x = 0.
Notice that the first expression is undefined for x = 0 (can’t divide by zero).
The other expression has a value 1

2 . So the two expressions are not really
equivalent because of this one point.

What about the other points? The rest of the graph has very small values
that appear to fluctuate. We must consider the possibility that this is due
to computer error. Let us try some values for which the square root will be
simple.

x = 3 ⇒
√
x+ 1− 1

x
=
√

4− 1
3 = 1

3
x = 3 ⇒ 1√

x+ 1 + 1
= 1√

4 + 1
= 1

3

That’s a match.

x = 8 ⇒
√
x+ 1− 1

x
=
√

9− 1
8 = 2

8
x = 8 ⇒ 1√

x+ 1 + 1
= 1√

9 + 1
= 1

4

Again, it’s a match. We start to think that the expressions probably are
equivalent. �

Graphical evidence that expressions are equivalent can give us confidence
but do not provide definitive evidence. Ultimately, that needs to come from

algebraic arguments. In our example,
√
x+ 1− 1

x
and 1√

x+ 1 + 1
appear to

be equivalent for x 6= 0. Let us use algebra to simplify the difference between
the expressions.

Example 1.5.20 Show that
√
x+ 1− 1

x
and 1√

x+ 1 + 1
are equivalent for

x 6= 0.
Solution. We will simplify the difference by finding a common denomina-
tor. Notice how we have to use the distributive property as we FOIL out the
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product.
√
x+ 1− 1

x
− 1√

x+ 1 + 1
= (
√
x+ 1− 1)(

√
x+ 1 + 1)

x(
√
x+ 1 + 1)

− x

x(
√
x+ 1 + 1)

= (
√
x+ 1)2 +

√
x+ 1−

√
x+ 1− 1− x

x(
√
x+ 1 + 1)

= x+ 1− 1− x
x(
√
x+ 1 + 1)

= 0
x(
√
x+ 1 + 1)

= 0

This proves that the expressions are equivalent for x 6= 0. �
The graphical interpretation of equivalent equations is not the same as

equivalent expressions. That should make sense because expressions and equa-
tions are not the same type of objects. Recall that equations are equivalent
if they have the same solution sets. Consequently, we need to understand the
graphical meaning of solution sets.

An equation is a statement that two expressions have the same value. We
can graph the value of an expression in terms of its independent variable. Since
an equation has two expressions, we consider two different graphs. A solution
to an equation is a value for the variable where the expressions have the same
value. This corresponds to a point where the graphs intersect. Consequently,
two equations are equivalent if the values of the variable where the expressions
agree are the same.

Example 1.5.21 Solve the equation 3
1 + 3x = 2 using equivalent equations.

For each stage of the solution, graph the expressions in the equations to illus-
trate the equivalence.
Solution. To solve the equation, we will multiply both sides by 1 + 3x and
then isolate the variable x. This gives us the following sequence of equivalent
equations.

3
1 + 3x = 2

3 = 2(1 + 3x)
3 = 2 + 6x

1 = 6x
1
6 = x

For each equation, we should see the expression intersect exactly at x = 1
6 .

We graph the two expressions for each equation and the vertical line at x = 1
6 .

Each figure shows the graphs intersect at the same x-value. The y-values for
the intersection points are changing because the expressions are changing.
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�
When we visualized one equation as a graph of two expressions, we intro-

duced a new variable y so that the graph could be shown in the (x, y) plane.
The value of y at the point of intersection is not necessarily the same when
we change to an equivalent equation. However, when we work with systems
of equations, all of the variables are essential. An equivalent system of equa-
tions needs solutions to keep the same values for all variables at the point of
intersection.
Example 1.5.22 Solve the system of equations{

x+ 4y = 6
3x− y = 5

and graph the equivalent systems at each stage.
Solution. Solving the first equation for x, we get x = 6 − 4y. When we
substitute this expression into the second equation, we have a new system.{

x = 6− 4y
3(6− 4y)− y = 5

⇔

{
x = 6− 4y
18− 13y = 5

The second equation in this system simplifies to −13y = −13 or y = 1. When
we substitute that value back into the first equation, we get x = 6 − 4(1) or
x = 2. The solution to the system is (x, y) = (2, 1).

When graphing the equations in the equivalent systems, we note that each
equation is the graph of a line. We can graph the lines quickly by plotting their
intercepts found by setting x = 0 or y = 0 and solving for the other value. The
equation x + 4y = 6 has a y-intercept (x = 0) at y = 3

2 and an x-intercept
(y = 0) at x = 6. The equation 3x− y = 5 has a y-intercept (x = 0) at y = −5
and an x-intercept (y = 0) at x = 5

3 . In our second system, the equation y = 1
is a horizontal line because x can have any value. In the final system (the
solution), the equation x = 2 corresponds to a vertical line where y can have
any value.
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1.5.6 Summary
• An expression is any value or a formula that represents a value. Expres-

sions are equivalent if they have the same value for all possible assign-
ments of the variables. Simplifying an expression is to find an equivalent
expression in a form that meets an established convention.

•

• An equation is a logical statement that two expressions are equal. A
solution to an equation is a state (values specified for all variables) that
makes the equation true. The solution set is the set of all possible so-
lutions. Equations are equivalent if they have exactly the same solution
sets.

• The primary method for solving an equation is to find an equivalent
equation that isolates the variable.

• A key fact about arithmetic is that the only way a product can equal
zero is if one factor is zero. This fact is used to solve equations written
as an expression equal to zero by factoring.

• A system of equations has solutions described by states with all variables
having values that make every equation true. Equivalent systems of
equations have the same solutions.

1.5.7 Exercises
1. Show using the elementary properties of addition and multiplication why

2(x+ 3)− 1 = 2x+ 5.
2. Show using the elementary properties of addition and multiplication why

(x+ 3)(x− 1) = x2 + 2x− 3.
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3. A student made a mistake writing 3x+ 1
x

= 3 + 1
1 = 4. What did the

student do? Why was it incorrect?

4. A student made a mistake writing x · 2x+ 1
x+ 3 = 2x2 + x

x2 + 3x . What did the
student do? Why was it incorrect?

Rewrite each of the following expressions as an equivalent sum instead of as a
product.

5. 4(x+ 3)
6. 3(x− 2)(x+ 4)
7. (x− 1)(x− 2)(x− 3)

Rewrite each of the following expressions as an equivalent factored expression.
8. 3x− 15
9. 4x2 − 6x

Without solving the equation, which of the following values are in the solution
set?

10. x2 − 2x = x+ 4
(a) x = −2

(b) x = −1

(c) x = 0

(d) x = 1

(e) x = 2
11. z3 − 5z = 2z2 − 6

(a) z = −2

(b) z = −1

(c) z = 0

(d) z = 1

(e) z = 2

Find the solution set for each equation.
12. 2(x+ 5)− 3 = 7
13. 3t+ 5 = t− 2

14. 4u
u+ 5 = 3

15. 4u
u+ 5 = 4

16. 2y
y − 1 = 2

17. 2y
y − 1 = 3

18. (2x− 3)(x+ 2) = 0
19. t(5t− 1)(3− t) = 0
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20. p(p+ 1)
p+ 2 = 0

Find the solutions to the system of equations.
21. 3x+ 2y = 15 and y = 3.
22. 2x− 5y = 7 and x+ 2y = 9.
23. x2 − y = 4x and 2x+ y = 3.

24. Is it possible to enclose an area of 25 m2 using a rectangle with perimeter
of 25 m? If so, how?

25. Is it possible to enclose an area of 50 m2 in two congruent rectangles that
share an edge such that the total length of edges is 40 m (counting the
shared edge only once)? If so, how?
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1.6 Factoring

1.6.1 Overview
Factoring provides a powerful algebraic tools to analyze where an expression
equals zero. In the previous section, we noted that a product of two factors
can only equal zero if at least one of the factors itself equals zero (see Theo-
rem 1.5.12). More generally, factoring helps us understand the relation between
a product and zero, whether it is greater than or less than zero.

In this section, we will review some strategies for factoring expressions. We
introduce some technological approaches to factoring. Then we review some
strategies that you would have seen in an algebra course. We also use our
knowledge of how factoring to develop meaningful models.

1.6.2 Factoring with Technology
Factoring is a process that is best accomplished using technology. Every tech-
nique that we learn by hand can be accomplished much more quickly and more
reliably by a computer. Once the computer has been programmed correctly, it
doesn’t commit the arithmetic errors that we are prone to make. In a practical
setting, except for simple problems, you will be better off obtaining factors
from a computer algebra system.

A computer algebra system (CAS) is a computer program that is designed
to apply the rules of algebra according to the user’s request. The popular web-
site WolframAlpha (https://www.wolframalpha.com) allows you to ask mathe-
matical questions using natural language. It interprets your request and shows
a variety of mathematical responses that might answer your question. For
example, to factor a polynomial like x3 − 7x + 6, we would submit a request
factor x^3-7x+6. WolframAlpha would give a response that the result is
(x− 1)(x− 2)(x+ 3).

WolframAlpha can perform many other basic computations. It is built on
the same CAS as a stand alone application called Mathematica, which is sold
by Wolfram. A web-based system like WolframAlpha has a disadvantage that
we can not create a chain of dependent calculation. Systems like Mathematica
that use scripts or notebooks, on the other hand, do allow for interrelated
calculations. Popular commercially available CAS programs include Wolfram’s
Mathematica and MapleSoft’s Maple. Many college campuses have license
agreements with one of these programs.

A free and open-source alternative CAS is SageMath (http://www.sagemath.
org/). While you can download and use this program on your own computer,
you can also access and use its capabilities through web-access. Similar to
using WolframAlpha to use the power of Mathematica, you can use the power
of SageMath in what are known as SageCells. A SageCell can be accessed
at https://sagecell.sagemath.org. The online version of this text also has live
SageCells embedded as interactive demonstrations.

In SageMath, we can create mathematical objects (like expressions or equa-
tions) and then perform actions on those objects. The creation and naming of
a mathematical object occurs through an assignment. For example, to create
the expression x3−7x+6 and assign it to a name expr1, we type the command
expr1 = x^3-7*x+6 on its own line. Notice how we must explicity state that
there is multiplication between 7 and x. To create a new expression that is
the factored form and name it expr2, we perform a new assignment where the
value is based on the factoring action applied to expr1. The relevant command
would be expr2 = expr1.factor().

https://www.wolframalpha.com
http://www.sagemath.org/
http://www.sagemath.org/
https://sagecell.sagemath.org
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The SageCell script below illustrates the commands working together. There
are also two commands that show us a nicely formatted version of our expres-
sions for comparison. Be sure to try this script. Push the Evaluate button in
the live online cell, or copy this into a clean SageCell and evaluate it there.
You should see the results:

x3 − 7x+ 6
(x+ 3)(x− 1)(x− 2)

expr1 = x^3-7*x+6
expr2 = expr1.factor ()
show(expr1)
show(expr2)

Using named expressions is useful when we have additional actions to do
later. For simple problems like this, we can actually skip naming the ex-
pressions. Try changing the script to the following command and re-evaluate:
show( factor(x^3-7*x+6) ). What happens if you don’t include the command
show?

The reverse process of multiplying out a factored expression also is fre-
quently needed. It is also tedious to do by hand and more reliable using a
computer. The relevant command is to expand the expression. Suppose we
want to know what (x+ 1)(x+ 2)(x+ 3)(x+ 4) is as a polynomial in standard
form. Using the SageCell script below reveals the answer to be

(x+ 1)(x+ 2)(x+ 3)(x+ 4) = x4 + 10x3 + 35x2 + 50x+ 24.

Again, notice how the CAS requires that we show explicitly where each mul-
tiplication occurs. What happens if there aren’t parentheses? What do you
think might be happening?

expr1 = (x+1)*(x+2)*(x+3)*(x+4)
expr2 = expr1.expand ()
show(expr1)
show(expr2)

1.6.3 Strategies for Factoring by Hand
Although technology makes factoring fast and simple, we should be prepared
to perform simple factoring by hand. We review some basic strategies for
factoring that you would have learned in an algebra class.

It helps to remember that factoring is the reverse process of the distributive
property of multiplication over addition. That is, when we expand a (b+ c) =
ab+ ac, we see that ab and ac have the common factor of a from distribution.
If we can identify a common factor, then we can reverse the process and write
our expression as a multiplication over addition of terms.

Example 1.6.1 Factor 4x2 + 6x3.
Solution. Recalling that 4 = 2 · 2 and 6 = 2 · 3, we recognize that the terms
4x2 and 6x3 have a common factor of 2x2:

4x2 + 6x3 = 2x2 · 2 + 2x2 · 3x.

Factoring this out, we have

4x2 + 6x3 = 2x2(2 + 3x).
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�
More advanced factoring approaches often are built on top of this idea. For

example, a method known as factoring by grouping arises by expressing a
sum of terms as a sum of two groups of terms that can be found to have a
common factor. Some cubic polynomials (but not most) can be factored using
this approach.

Example 1.6.2 Use factoring by grouping to factor x3 − 3x2 − 4x+ 12.
Solution. The strategy is to group the x3 and x2 terms together and to group
the x and constant terms together,

x3 − 3x2 − 4x+ 12 = (x3 − 3x2) + (−4x+ 12),

and then factor out common factors. The first group x3 − 3x2 has a common
factor of x2 to give

x3 − 3x2 = x2(x− 3).

The second group −4x+ 12 has a common factor of 4 to give

−4x+ 12 = 4(−x+ 3).

To get a common factor, we should recognize that we should have used a
common factor of −4:

−4x+ 12 = −4(x− 3).

We now have groups with a common factor:

x3 − 3x2 − 4x+ 12 = (x3 − 3x2) + (−4x+ 12)
= x2(x− 3) +−4(x− 3)
= (x2 − 4)(x− 3)

A full factorization would also factor x2 − 4 = (x+ 2)(x− 2) to give

x3 − 3x2 − 4x+ 12 = (x+ 2)(x− 2)(x− 3).

�
In many cases, a mathematical solution to a problem is easier to find when

we anticipate what it should look like. We use this concept to guide us in
factoring quadratic polynomials. Quadratic polynomials result from expanding
a product of the form (ax+b)(cx+d). That expansion is often described using
the acronym FOIL (First-Outside-Inside-Last):

(ax+ b)(cx+ d) = ac x2 + ad x+ bc x+ bd = ac x2 + (ad+ bc)x+ bd.

Notice that in the middle expression, we have four terms, similar to what we
had with cubic polynomials. This means that we might be able to factor if we
can find a clever way to do grouping.

If we want to factor a quadratic expression Ax2 + Bx + C, then we are
looking for values for a, b, c, d so that

Ax2 +Bx+ C = (ax+ b)(cx+ d).

This requires that A = ac, C = bd, and B = ad + bc. A clever observation is
that AC = (ac)(bd) = (ad)(bc), so that we are writing B as a sum of factors
of AC. This will be how we create our grouping.

Example 1.6.3 Factor 2x2 − x− 6.
Solution. We begin by recognizing the coefficients A = 2, B = −1, and
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C = −6. We want to write B = −1 as a sum of factors of AC = −12. Our
strategy is to think through all of the simple factors of −12 and see if any pair
of factors add to −1. What are the factors of −12?

−12 = (−1)(12) = (1)(−12) = (−2)(6) = (2)(−6) = (−3)(4) = (3)(−4)

When we check the sum of those pairs, we find:

−1 + 12 = 11
1 +−12 = −11
−2 + 6 = 4
2 +−6 = −4
−3 + 4 = 1
3 +−4 = −1

In practice, we would likely add the factor pairs in our head rather than write
them down.

Once we find the pair of factors with the correct sum, 3 + −4 = −1, we
expand the term −x as a sum 3x − 4x to rewrite the quadratic as a sum of
four terms that can now be grouped.

2x2 − x− 6 = 2x2 + 3x− 4x− 6
= (2x2 + 3x) + (−4x− 6)
= x(2x+ 3) +−2(2x+ 3)
= (x− 2)(2x+ 3)

We thus have the factors

2x2 − x− 6 = (x− 2)(2x+ 3).

�
When using the method of grouping for quadratics, be sure that you con-

sider both positive and negative factors as pairs.
Another example of anticipating the form of a solution occurs when we

know a polynomial’s root. Knowing that a polynomial has a root means that
we also know a factor.
Theorem 1.6.4 Root–Factor Theorem. Suppose p(x) is a polynomial of
degree n for which x = c is a root, p(c) = 0. Then p(x) can be written in a
factored form

p(x) = (x− c) · q(x)

where q(x) is a polynomial of degree n− 1.
If we can find a root to a polynomial, then we know a simple factor. One

way to find the root is by looking at its graph. Knowing the original polynomial
and a factor, we can work out the other polynomial factor. Finding that other
factor corresponds to polynomial division.

Example 1.6.5 Factor the polynomial 6x3 − 5x2 − 17x+ 6.
Solution. When we graph the polynomial, we can identify possible roots.
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The graph suggests that there might be a root at x = 2, between -1 and
-2, and between 0 and 1. We verify that x = 2 is a root by substituting that
value into the formula:

6x3 − 5x2 − 17x+ 6 = 6(2)3 − 5(2)2 − 17(2) + 6
= 6(8)− 5(4)− 17(2) + 6
= 48− 20− 34 + 6
= 0

The factor that corresponds to x = 2 as a factor is x − 2 (because x = 2 is
equivalent to x − 2 = 0). We now know that there is a polynomial q(x) =
ax2 + bx+ c with degree 2 so that

6x3 − 5x2 − 17x+ 6 = (x− 2) · (ax2 + bx+ c).

We find q(x) = ax2 + bx+ c by polynomial division. In effect, however, we
are multiplying by this polynomial with unknown coefficients and determining
the coefficient values so that the product equals the original polynomial.

(x− 2) · (ax2 + bx+ c) = x · (ax2 + bx+ c)− 2(ax2 + bx+ c)
= ax3 + bx2 + cx− 2ax2 − 2bx− 2c
= ax3 + (b− 2a)x2 + (c− 2b)x− 2c

Because this product must equal 6x3 − 5x2 − 17x + 6, we have a system of
equations based on matching coefficients:

a = 6
b− 2a = −5
c− 2b = −17
−2c = 6

⇔


a = 6
b = 2a− 5
c = 2b− 17
−2c = 6

Substituting a = 6 into the second equation gives b = 2(6)−5 = 7. Substituting
b = 7 into the third equation gives c = 2(7)−17 = −3. This matches the fourth
equation solved for c. We can therefore write the factorization using the values
of the coefficients for q(x).

6x3 − 5x2 − 17x+ 6 = (x− 2)(6x2 + 7x− 3).

We finish the problem by factoring the new quadratic factor. The product
ac = 6(−3) = −18 has factors −18 = (−2)(9) that sum to −2 + 9 = 7. We can
rewrite and group the quadratic to have common factors:

6x2 + 7x− 3 = 6x2 +−2x+ 9x− 3
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= (6x2 − 2x) + (9x− 3)
= 2x(3x− 1) + 3(3x− 1)
= (2x+ 3)(3x− 1)

Consequently, our final factorization can be written

6x3 − 5x2 − 17x+ 6 = (x− 2)(2x+ 3)(3x− 1)

The other roots can be found from the factors: x = − 3
2 (from 2x+ 3 = 0) and

x = 1
3 (from 3x− 1 = 0). �

1.6.4 Factors for Polynomial Modeling
Polynomials have easily understood behavior based on their factors. The roots
of the factors are exactly the roots of the polynomial. Furthermore, these
roots are the only possible locations where the polynomial might change sign.
It is easy to show that each simple factor changes sign exactly at its root by
solving an inequality directly. Then, knowing the signs of each factor allows
us to determine the sign of the polynomial as a whole, based on the following
theorem.
Theorem 1.6.6 The relation of product of expressions w = u1 · u2 · · ·un with
zero is based the relations of the factors:

• The product w = 0 if and only if at least one uk = 0.

• The product w > 0 if and only if all uk 6= 0 and there are an even number
of uk < 0.

• The product w < 0 if and only if all uk 6= 0 and there are an odd number
of uk < 0.

We can analyze the behavior of a polynomial, in terms of its relation to
zero, using the factors. This process is called sign analysis.

1. Find the factored version of the polynomial.

2. Identify the roots of all of the factors and order them on the number line.

3. The roots divide the number line into a collection of intervals. On each
interval between roots, count the number of factors that will be negative.

4. On each interval, if the number of negative factors is even, then the
polynomial will be greater than zero. If the number of negative factors
is odd, then the polynomial will be less than zero.

Sometimes, a polynomial has repeated roots that appear as a factor raised to a
power. When counting factors, the power is used as multiplicity of repetition.

Example 1.6.7 Perform sign analysis of the polynomial

p(x) = x2(x+ 2)(2x− 5).

Solution. The polynomial has four factors—x (double), x + 2, and 2x − 5.
The roots of these factors are x = 0, x = −2, and x = 5

2 . We order these roots
graphically on a number line.

x2 0 5
2

Once the roots are ordered on the number line, we can see the intervals of
interest. Intervals represent continuous segments of the number line and are
described as a range from left to right. There are four intervals: (−∞,−2),
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(−2, 0), (0, 5
2 ), and ( 5

2 ,∞). On each interval, we can determine the sign of each
factor, illustrated in the table below. Then, when we multiply these factors
together, we find the overall sign of the polynomial. The polynomial is negative
when there is an odd number of negative factors and positive when there is an
even number of negative factors.

Interval x2 x+ 2 2x− 5 p(x)
(−∞,−2) (−)2 − − +
(−2, 0) (−)2 + − −
(0, 5

2 ) (+)2 + − −
( 5

2 ,∞) (+)2 + + +
Rather than create a table of signs, we can label the signs of the factors

directly on the number line above each interval.

p(x)
x2 0 5

2

(−)2(−)(−) (−)2(+)(−) (+)2(+)(−) (+)2(+)(+)

The table or the number allows us to interpret the relation of the polynomial
with zero. The polynomial is positive (greater than zero) on the intervals
(−∞,−2) and ( 5

2 ,∞) and negative (less than zero) on the intervals (−2, 0)
and (0, 5

2 ). When we look at a graph of the polynomial, we can see that the
graph is above the axis on the outer intervals and below the axis on the inner
intervals.

−4 −2 2 4

−20

20

x

p(x)

�
Performing sign analysis on a polynomial might seem like a silly exercise.

After all, with our graphing calculators and computers, it is easy enough to
graph the polynomial directly and look where the graph is above or below the
axis. It is in the reverse process that we start to see the power.

Suppose that we want to explore a mathematical model for a phenomenon
where we know how a quantity relates with zero on the number line. How-
ever, we would like to have a simple mathematical formula that captures that
relation. By constructing a polynomial with factors that will match the sign
analysis, we can use that polymomial as our model.

Example 1.6.8 A simple model for density-dependent population growth has a
population’s growth rate as positive when the population is between zero and
a carrying capacity and negative when the population is above the carrying
capacity. Create a simple polynomial model that will capture this behavior.
Solution. We will let P be our symbol to represent the value of the popula-
tion. In biology, the carrying capacity is most often symbolized by the symbol
K. The symbol for a quantity’s growth rate is called the derivative with
respect to time and has the symbol dPdt . (The goal of calculus is to understand
what this derivative really means.) We want to create a model that describes
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how the growth rate dP
dt depends on the population P such that this formula

is positive when P is in the interval (0,K) and negative when P is in (K,∞).
We can start by creating a number line summary of the behavior we want.

Because P < 0 is not physically relevant, the sign used on (−∞, 0) doesn’t
matter. However, since polynomials change sign at roots unless a factor has
an even power, we will choose to make dP

dt negative when P < 0.

dP
dt

P0 K

− + −

The roots help us know our basic factors. A root at P = 0 corresponds to
a factor of P . A root at P = K corresponds to a factor of P −K. The product
P (P − K), however, would have the opposite signs on the intervals. This is
corrected by multiplying by a third constant factor, −a, where a itself is some
positive constant. This gives us our basic model,

dP

dt
= −aP (P −K).

If we multiply the negative sign by the factor P −K, we obtain an equivalent
model

dP

dt
= aP (K − P ).

The constants a and K become model parameters.
In biology, slightly different model parameters are more commonly used.

We rewrite our factor K − P = K − PK
K and then factor out the common

factor K We now have a model

dP

dt
= aK P (1− P

K
).

The product aK can be replaced by another parameter, r, to obtain

dP

dt
= r P (1− P

K
).

The parameter r is called the intrinsic per capita growth rate. This model is
known as the logistic growth rate model for density-dependent growth. �

In our model, we used a factor 1 − P
K instead of the factor K − P . These

two factors have the same roots. One advantage to a factor like 1− P
K is that

the units of P and K cancel so that the factor is dimensionless. Polynomial
models are often written with factors of the form x

a −1 or 1− x
a where x = a is

the desired root. In particular, a linear model with known x- and y-intercepts
is most easily modeled using factors and does not require finding the slope.

Example 1.6.9 Suppose S is the number of seeds a plant produces and D
is the density of competing plants around it. When there is no competition,
D = 0, the plant can produce its highest output, S = M seeds. When the
competition reach a critical level, D = DM , the plant no longer produces seed,
S = 0. Develop a linear model for how S relates to D for 0 ≤ D ≤ DM .
Solution. A linear model has a single root, which in this modeling scenario
is S = 0 at D = DM . This means we have a factor D −DM or D

DM
− 1. We

need another constant factor, say A to account for the vertical scale, such as
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the other intercept. Our model has the form

S = A

(
D

DM
− 1
)
.

When we substitute D = 0, we find S = −A = M so that the parameter
A = −M . The model can then be written in terms of the data provided,

S = −M
(
D

DM
− 1
)

= M

(
1− D

DM

)
.

DM

M

D

S

�

1.6.5 Summary
1. In practical applications, technology is the most efficient method to factor

expressions. Computer Algebra Systems (CAS) like SageMath provide
tools to perform operations on mathematical objects.

2. The first priority in factoring involves common factors. Grouping terms
sometimes allows us to find common factors among the groups.

3. Quadratic polynomials with integer coefficients Ax2 + Bx + C can be
factored by grouping if you can find factors of AC that add to the value
of B. This is accomplished by rewriting the term Bx as two terms using
the factors and then grouping terms.

4. Knowing a root x = a of a polynomial tells us that x−a is a factor. The
other factor can be found by polynomial division.

5. The factored form of an expression allows us to perform sign analysis.

(a) Identify the roots of all of the factors and order them on the number
line.

(b) The roots divide the number line into a collection of intervals. On
each interval between roots, count the number of factors that will
be negative.

(c) On each interval, if the number of negative factors is even, then
the expression will be greater than zero. If the number of negative
factors is odd, then the expression will be less than zero.

6. Alternatively, knowing the roots and desired results for sign analysis,
we can use a factored polynomial to generate a model for the relation
between two variables.
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1.6.6 Exercises

Use technology to factor the following formulas.
1. x3 + x2 − 5x+ 3
2. x4 − 4x3 − 11x2 + 30x
3. x4 + 10x3 + 35x2 + 50 + 24
4. 24x3 + 14x2 − 11x− 6

Use the method of grouping to factor each cubic.
5. x3 − 2x2 + 3x− 6
6. x3 − 5x2 − 3x+ 15
7. 4x3 − 12x2 − x+ 3

Factor each quadratic polynomial.
8. x2 − 2x− 3
9. x2 − 9x+ 20
10. x2 + 4x− 21
11. 2x2 + 3x− 2
12. 2x2 − 7x− 15
13. 6x2 + 11x− 10

For each problem, verify that the given value is a root of the given polynomial.
Use the Root-Factor theorem and polynomial division to factor the polynomial.

14. x3 − 6x2 − x+ 30; x = −2
15. x3 − 2x2 − 11x+ 12; x = 4
16. 2x3 − x2 − 13x− 6; x = 3

For each factored polynomial, complete sign analysis to describe the intervals
where the polynomial is greater than zero and where it less than zero. Then
compare your results with a graph.

17. 3x(x− 4)
18. 2x(2− x)(3− x)
19. x(x+ 2)(x− 1)2

20. (x− 4)(2x− 3)(3x+ 1)3

21. Find a linear model for the following graph without finding the slope.
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22. Find a linear model for the following graph without finding the slope.
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23. Find a polynomial model for the following graph.
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24. Find a polynomial model for the following graph.
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25. Find a polynomial model for the following graph.
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26. Find a polynomial model for the following graph.
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27. Find a polynomial model for the following graph.
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28. In economics, the demand for a product, which measures the number of
units a company can sell, is related to the price charged to purchase the
product. Let p be the price being charged and let n be the demand or
number of units that are sold. A simple model is that the demand has
a linear relation with the price. Suppose that if the company gave away
product for free, p = 0, the demand is n = 5000. On the other hand, if
the price charged is p = 50, there is no demand, n = 0.

Create a linear model for the demand as it depends on the price.
Then, create a corresponding model for the revenue as it relates to the
price, where the revenue is the price charged times the number of units
sold.

29. Some populations will die off (negative growth rate) unless the size of the
population is above some minimum value. Populations that exhibit this
behavior are said to have the Allee effect. Let K be the population car-
rying capacity and M be the minimum threshold for population growth,
and assume that 0 < M < K.

Create a polynomial model for the population’s growth rate such that
the growth rate is positive for M < P < K and negative for 0 < P < M
and P > K. The growth rate should be zero at P = 0, P = M , and
P = K.

30. Optical tweezers (also called laser tweezers) use a tightly focused laser
beam to create a force on small transparent objects. The force depends
on the location of the object from the center of the beam. When the
object is further from the beam than a particular distance, δ, the force
pushes the object away. When the distance is less than δ, the force pulls
the object toward the center.

Create a polynomial model for the force F as it depends on the position
x of the object. Assume that x = 0 is the center of the tweezers. The
force will have roots at x = ±δ and x = 0. A positive force pushes the
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object to the right and a negative force pushes it to the left. Include a
constant factor k and use dimensionless factors for the roots at x = ±δ.
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1.7 Exponents, Roots, and Logarithms
Overview. We frequently think of simplifying expressions as looking for op-
portunities to cancel terms. We similarly might think of moving terms to the
opposite side of an equation, but somehow the opposite term moves to the
other side. Although thinking about inverses as opposites can be useful, it is
perhaps difficult to generalize properly. A more productive framework with
which to think about working with expressions and equations is in terms of
operations. We will later generalize the idea of an operation to the mathemat-
ical concept of a function. In that sense, inverse operations will correspond to
inverse functions.

One of the most common areas relating to inverses where novices encounter
trouble is in terms of powers, where the inverse operations are roots and log-
arithms. For example, a common conceptual error is thinking that logarithms
and bases cancel in the same way that factors in fractions cancel. A root is
the inverse operation of raising a quantity to a given power. A logarithm is
the inverse operation of an exponential operation.

In this section, we review the properties of exponents and focus on dis-
tinguishing between the power and exponential operations. We discuss the
concept of inverse operations and introduce roots and logarithms as inverses
to these operations. We learn to apply inverses to simplify expressions and
solve equations involving powers and exponentials.

1.7.1 Properties of Exponents
Do you remember why we have powers as a mathematical notation? When
the power is a positive integer, it is to represent repeated multiplication. For
example, 34 means that we multiply four threes together,

34 = 3 · 3 · 3 · 3.

How did we go from this simple notational convenience to be able to interpret
negative powers or fractional powers or even irrational powers? We make sense
of these more complex ideas by thinking about what properties the notation
should satisfy.

We know that when we multiply and divide by the same number, the net
effect is equivalent to multiplying by 1. We say that the terms cancel. We
should think of these actions as inverse operations. That is, the action of
multiplying a number by 3 and dividing a number by 3 are inverse operations.
If you do them in succession (one after the other), the net effect is equivalent
to having applied no operation at all,

x · 3÷ 3 = x.

Extending this idea allows us to simplify repeated factors represented by

powers. How would we simplify 35

32 ? If we realize that 35 in the numerator
means that we multiply by five threes and that the 32 in the denominator
means that we divide by two threes, then we recognize that there are two pairs
of inverse operations:

35

32 = 3 · 3 · 3 · 3 · 3
3 · 3

= 3 · 3 · 3 · 3 · 3÷ 3÷ 3
= 3 · 3 · 3 · (3÷ 3) · (3÷ 3)
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= 3 · 3 · 3
= 33

The net effect of dividing by 32 is that we removed two of the threes in the

product 35. This is why we say that division causes powers to subtract, 35

32 =
35−2 = 33.

All of the basic properties of powers are motivated by the idea that an
integer power corresponds to repeated multiplication. For each property, can
you think of how it would be a consequence of this idea?

Properties of Powers.

• Zero Power: b0 = 1 for b 6= 0

• Inverse Power: b−x = 1
bx

• Product with Common Base: bx by = bx+y

• Quotient with Common Base: b
x

by
= bx−y

• Power of a power: (bx)y = bxy

• Product with Common Exponent: bx cx = (bc)x

• Quotient with Common Exponent: b
x

cx
=
(
b

c

)x
We illustrate several additional properties in the context of integer powers.

For integer exponents, a power means repeated multiplication (similar to how
multiplication by an integer means repeated addition). So b3 = b · b · b. The
product properties are just about counting.

Example 1.7.1

b3 · b2 = (bbb) · (bb) = b5 = b3+2

(b2)3 = (bb)(bb)(bb) = b2·3

(ab)3 = (ab)(ab)(ab) = (aaa)(bbb) = a3b3

�
The zero power property is necessary for the power of a sum rule to remain

consistent. We know that bx+0 = bx. But the properties of powers also mean
bx+0 = bx · b0. For these to both be true requires bx = bx · b0 or that b0 = 1.

The properties of powers relating to products and quotients behave sim-
ilar to the distributive property of multiplication over addition. This is be-
cause multiplication originates as repeated addition, just as powers originate
as repeated multiplication. However, addition and powers have no convenient
properties. Many mistakes occur when students forget this and imagine that
powers distribute over addition like multiplication. (It doesn’t!)

Example 1.7.2 To illustrate that (a + b)2 6= a2 + b2, consider the numbers
a = 2 and b = 3. The first expression gives

(a+ b)2 = (2 + 3)2 = 52 = 25

while the second expression gives

a2 + b2 = 22 + 32 = 4 + 9 = 13.
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The proper way to expand the first expression is to think of the power as
repeated multiplication and apply the distributive property. This is often called
the FOIL method:

(a+ b)2 = (a+ b)(a+ b) = a2 + 2ab+ b2.

�

1.7.2 Exponent Operations and Their Inverses
Expressions have a dual interpretation. On the one hand, an expression is
a mathematical object that represents some numerical value. On the other
hand, an expression also represents a sequence of operations that act on other
values. For example, the expression 3x2 + 5 is a formula that for each value
of x represents a particular value. It also describes a sequence of operations:
“Take a value, x. Square it. Multiply by three. Add 5.”

Thinking of powers as operations will require some caution. In the expres-
sion, 23, the numbers 2 and 3 play different roles. The number 2 is called the
base and the number 3 is called the exponent. As an action, the expression 23,
raising 2 to the power 3, can be interpreted in two ways, depending on which
number we think of as being acted on. We could say that take the number 2
and apply the power 3. This is likely the more familiar interpretation. Alter-
natively, we could say that we take the number 3 and apply the base 2. The
second interpretation corresponds to the exponential operation.

Introducing variables might help make this distinction clearer. This corre-
sponds to thinking of the expression as the value of a function. We will let x
represent the number being acted on. The operation of a power 23 corresponds
to f(x) = x3 with x = 2. The same expression interpreted as an exponential
operation would be the formula g(x) = 2x with x = 3. An elementary power
function (applying a power) raises a value to a fixed power, f(x) = xp, for a
constant p. An elementary exponential function (applying a base) uses a
value as the exponent of a fixed base, g(x) = bx, for a constant b.

Power and exponential functions have corresponding inverse operations. A
root provides the inverse operation to an integer power. A logarithm provides
the inverse operation to an exponential. We begin by focusing on powers and
roots.

If we wish to solve the equation xn = 4 where n is a positive integer, we
might graph y = xn and y = 4 and look for where they intersect.

−4 −2 2 4

−5

5

x

y

y = x2

y = 4

−4 −2 2 4

−5

5

x

y

y = x3

y = 4



CHAPTER 1. FOUNDATIONAL PRINCIPLES 76

−4 −2 2 4

−5

5

x

y

y = x4

y = 4

−4 −2 2 4

−5

5

x

y

y = x5

y = 4

For even powers n, the equation xn = 4 has two solutions. The graph is
symmetric across the y-axis because the product of an even number of negative
values is positive, (−1)2 = 1. Notice that if we were trying to solve xn = −4,
there would be no solutions when n is even but there would be a single solution
when n is odd. The solution is called the nth root.
Definition 1.7.3 For an integer n > 1, the nth root y = n

√
x is the value such

that yn = x. If nis even, we require x ≥ 0 and y ≥ 0. If n is odd, there is no
restriction. ♦

A root can be written as a fractional power. The properties of exponents
imply that (xp)n = xpn. If p = 1

n , then (x 1
n )n = x. That is, x 1

n = n
√
x. This

equivalence means that for any rational number p = k
n , the power xp can be

computed using integer powers (repeated multiplication) and extracting roots:

x
k
n = ( n

√
x)k.

Note 1.7.4 When the base is positive, then the choice of representation in the
exponent does not matter. Negative values in the base create complications.
For example, we know that a fraction can have multiple representations, like
1
3 = 2

6 = 3
9 . Because (−2)3 = −8, we know that 3

√
−8 = −2. This is equivalent

to saying (−8)1/3 = −2. However, (−8)2/6 is undefined because the 6th root of
−8 is not a real number. On the other hand, it will be true that (−8)3/9 = −2
as well as for any other equivalent fraction with an odd denominator.

We can simplify expressions that have roots and powers applied consecu-
tively. For example, 3

√
a3 takes a value a, and then applies the cubing operation

followed by the cube-root operation. Because these are inverses, we recover the
original value,

3√
a3 = a.

We must be careful, again, when the inverse operations involve even powers.
For example, the expression

√
a2 does not actually simplify to a in all cases.

If a = −2, then squaring this gives a2 = 4 and then the square root gives√
a2 =

√
4 = 2. In general, when n is an even power, then n

√
an = |a|.

Applying the power first always makes an a positive value, and then the nth
root is also defined to return a positive value.

On the other hand, the expression (
√
x)2 = x rather than |x|. In this

situation, the first operation is the square root which requires that x ≥ 0.
Squaring the square root of x always recovers the value of x.

How would we define a power with an irrational value? We might approx-
imate the irrational power. That is, we find a rational number that is close to
the irrational number and use it instead. This should raise questions. Does
our choice of approximation matter? How close do we need to be? Calculus
helps us here by introducing the idea of limits. Limits will be central to the
ideas of approximation that occur throughout calculus.

Once we know that we can raise any positive base to an arbitrary number
as the exponent, we can think of an exponential as a valid operation for a given
positive base. Typical graphs of y = bx for b > 1 and for 0 < b < 1 are shown
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below. The special case when b = 1 corresponds to a horizontal line and is not
shown.
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The graphs suggest that for any y > 0, the equation bx = y will have a
unique solution x for each value y. The solution is called the logarithm of y
for the base b.
Definition 1.7.5 For any base b with b > 0 and b 6= 1, the logarithm with
base b of a value x > 0 is written logb(x). The value y = logb(x) is defined for
x > 0 as that value y such that by = x. ♦

Notice that both roots and logarithms are defined through the equation
that they solve. We can interpret them as operations that will cancel their
inverse operations. That is, the consecutive operations of an exponential and
a logarithm with the same base cancel one another. In a similar way, a power
and its corresponding root cancel one another, although we will have to be
careful with even powers because of the even symmetry.

Example 1.7.6 Solve 3
√
x = 2.

Solution. The equation 3
√
x = 2 has an isolated cube root on the left. The

inverse operation of the cube root is cubing. Starting with a value x, finding its
cube root, and then cubing the result just gets back to x. We use this inverse
operation in a balanced way to solve the equation.

3
√
x = 2

( 3
√
x)3 = 23

x = 23

The solution is x = 8. �

Example 1.7.7 Solve x4 = 4.
Solution. The equation x4 = 4 has an isolated integer power on the left.
The inverse operation is a fourth root. Because the power is even, there are
two solutions.

x4 = 4
4√
x4 = 4

√
4

x = ± 4
√

4

Because 4 = 22, we could rewrite this as

x = ±(22) 1
4 = ±2 2

4 = ±2 1
2 = ±

√
2.

�
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Example 1.7.8 Solve log3(x) = 2.
Solution. The equation log3(x) = 2 has an isolated logarithm. The inverse
operation is an exponential with the same base b = 3. We use the function
representation of this operation, exp3(x) = 3x. An equivalent equation is
formed by applying this exponential to both sides of the equation.

log3(x) = 2
exp3(log3(x)) = exp3(2) = 32

x = 9

This is saying that the equation log3(9) = 2 is equivalent to 32 = 9. Notice
that we could have just written down the inverse equation immediately, since
that is how the logarithm is defined. �

Example 1.7.9 Solve log4(x) = 3.
Solution. The equation log4(x) = 3 is defined by the inverse equation 43 = x.
So x = 64. �

Example 1.7.10 Solve 4x = 8.
Solution. The equation 4x = 8 has an isolated exponential. The inverse
operation is a logarithm with the same base b = 4.

4x = 8
log4(exp4(x)) = log4(8)

x = log4(8)

To go further on this problem, we need more properties.
For this particular problem, we can proceed if we recognize that both 4 and

8 are powers of 2. Because 4 = 22 and 8 = 23, we can rewrite our equation as

4x = 8 ⇔ 22x = 23.

This means that 2x = 3 or x = 3
2 . We can verify this, since 43/2 = (

√
4)3 =

23 = 8. That is, log4(8) = 3
2 . �

The previous example illustrated a way that we can simplify a logarithm
when the base and input are both powers of the same value. In that example,
we had log4(8) and the base 4 and input 8 were powers of 2. We used the
equivalence of the equations

x = log4(8) ⇔ 4x = 8
and then rewrote that equation in terms of the common base b to find x.

Example 1.7.11 Simplify log9( 1
27 ).

Solution. We start by assigning this value to the variable x so that we have
an equation,

x = log9( 1
27).

The equivalent equation using an exponential instead of a logarithm is

9x = 1
27 .

We recognize that 9 = 32 and 27 = 33 so that the equation can be rewritten

32x = 3−3.

This means that 2x = −3 or x = −frac32. That is, log9( 1
27 ) = − 3

2 �
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We will learn more general techniques for simplifying logarithms later. Most
scientific calculators only have logarithms for base b = 10 and for base b = e.
The logarithm for b = 10 is called the common logarithm and appears on a
calculator with out a base log. The logarithm for b = e is called the natural
logarithm and appears on a calculator as ln. We will later prove that every
logarithm can be found using one of these by the change of base formula

logb(x) = log(x)
log(b) = ln(x)

ln(b) .

Example 1.7.12 Solve 3x = 5.
Solution. The unknown x has an exponential with base b = 3 operation
acting on it. To isolate the variable, we need to apply the inverse operation to
both sides.

3x = 5
log3(3x) = log3(5)

x = log3(5)

We have solved the equation, but we don’t have a good sense of what that
number might be. We know that 31 = 3 and 32 = 9, so x = log3(5) must
be somewhere between 1 and 2. The change of base formula allows us to
approximate the value on a calculator,

x = log3(5) = ln(5)
ln(3) ≈ 1.46497.

�

1.7.3 Applications
We encountered equations that require roots and logarithms to solve when
we considered exponential and power function models for data. Recall that a
general power function has the form

f(x) = Axp,

where A and p are the model parameters. A general exponential function
has the form

f(x) = Abx,
where A and b are the model parameters, with b > 0 and b 6= 1.

Example 1.7.13 A colony of bacteria is observed to cover an area of 2.5 mm2.
Six hours later, the colony has expanded to cover a space of 100 mm2. Assuming
that the bacteria is growing according to an exponential growth model, develop
a model for the area of the colony as a function of the time since the first
observation. If the population continues to follow this model, at what time
will the bacteria colony fill a dish with 6000 mm2?
Solution. An exponential model relates the area of the colony C (mm2) as
a function of time t (hours) according to the formula

C = Abt,

where A and b are model parameters to be determined by the data. The first
observation, t = 0 and C = 2.5, corresponds to a parameter equation

2.5 = Ab0.
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The second observation, t = 6 and C = 100, corresponds to a parameter
equation

100 = Ab6.

Because b0 = 1, the first equation gives A = 2.5. Substituting this into the
second equation gives an equivalent equation

100 = 2.5 b6.

We solve the equation for b by isolating the variable. The expression cur-
rently has a product with 2.5, so we apply the inverse operation of dividing by
2.5 on both sides,

100
2.5 = b6.

The expression now has a power operation, and the inverse is a root,

b =
(

100
2.5

)1/6
= 6
√

40 ≈ 1.84931.

Consequently, our model for the colony area is given by

C = 2.5 · 1.84931t.

To answer the final question, we see that t is unknown but C = 6000.
Substituting this into the model equation, we obtain an equation only involving
t,

6000 = 2.5 · 1.84931t.

To isolate the variable, we first need to divide by 2.5,

6000
2.5 = 1.84931t.

Now, the variable has an exponential operation acting on it. The inverse
operation is a logarithm with base b = 1.84931, so that

t = log1.84931(2400) = ln(2400)
ln(1.84931) ≈ 12.6595.

The model predicts that the bacteria colony will fill the dish after abou 12.66
hours, which is approximately 12 hours and 40 minutes. �

Example 1.7.14 In the 1930s, a Swiss biologist named Max Kleiber observed
that the metabolic rate of mammals approximately follows a power law relation
with the mass of the animal. Let Q represent the average metabolic rate (in
kJ per day) and let M represent the average mass (in kg). A mouse has an
average massM = 0.021 kg and an average metabolic rate of Q = 20.9 kJ/day.
A horse has an average mass M = 400 kg and an average metabolic rate of
Q = 32000 kJ/day. Find a power law model that matches this data. Use the
model to predict the metabolic rate for a cat which has an average massM = 3
kg.
Solution. We start with the model equation, Q = AMp, with model param-
eters A and p. Using the data allows us to create a system of equations for our
parameters.

(M,Q) = (0.021, 20.9) ⇒ 20.9 = A 0.021p

(M,Q) = (400, 32000) ⇒ 32000 = A 400p
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To solve a system of equations, we solve one equation for one variable. For this
problem, we use the first equation to solve for A:

20.9 = A 0.021p ⇔ A = 20.9
0.021p .

We now substitute this expression in place of A into the other equation.

32000 = 20.9
0.021p 400p

32000 = 20.9 400p

0.021p = 20.9
(

400
0.021

)p
To solve for the remaining unknown, we need to apply inverse operations. The
current expression involves multiplication by 20.9, so the inverse operation is
division by 20.9.

32000
20.9 =

(
400

0.021

)p
Now the expression is an exponential of p with base b = 400

0.021 . The inverse
operation is the logarithm,

logb
(

32000
20.9

)
= p.

We use the change of base formula to find the decimal approximation,

p = ln(32000/20.9)
ln(400/0.021) ≈ 0.744187.

Knowing p, we go back to find the value for A,

A = 20.9
0.021p ≈ 370.45.

Our approximate power law model is therefore Q = 370.45 · M0.744187.
Using the average mass of a cat M = 3, we predict

Q = 370.45 · 30.744187 ≈ 839.067.

The observed metabolic rate for cats is actually Q = 546 kJ/day, which is
lower than predicted. This should not disappoint us too much, as Kleiber’s
law was really based on a regression model for many animals. Some values will
be above the model’s prediction and some will be below. �

1.7.4 Summary
• Properties of exponents are motivated by the idea that integer powers

correspond to repeated multiplication.

• Exponential functions (exponential growth or exponential decay) have
the form f(x) = A · bx, with the independent variable in the exponent.

• Power functions have the form f(x) = A · xp, with the independent
variable as the base of the power.

• Roots, such as the square root or cube root, are inverse operations for
the power operation:

xn = y ⇔ x = n
√
y.
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When n is an even integer, we require x ≥ 0 and y ≥ 0.

• Roots can be written as reciprocal powers:
n
√
x = x1/n.

• Logarithms are inverse operations for the exponential operation, defined
for every base b > 0 and b 6= 1:

bx = y ⇔ x = logb(y).

• The change of base rule allows us to find decimal approximations for any
base using the common or natural logarithm:

logb(x) = log(x)
log(b) = ln(x)

ln(b) .

1.7.5 Exercises

Identify a property of exponents to rewrite an equivalent expression. Note that
each property can be applied in either direction.

1. 3x+2

2. (2x)3

3. 2x · 3x

4. x3

43

5. 3u

34

6. 23x

7. A student made a mistake writing 3 · 2x = 6x. What did the student
do? Why was it incorrect?

8. A student made a mistake writing 2x · 3y = 6x+y. What did the
student do? Why was it incorrect?

Find an exact value for each root or logarithm. Do not use a calculator.

9.
√

9a2

10. 3
√
−8a6

11. log2(8)
12. log2( 1

8 )

13. log3( 1
81 )

14. log3(1)
15. log4(2)
16. log4(32)
17. log1/2(4)

18. log1/4(2)

19. log8( 1
2 )

20. log8(16)
21. log25( 1

125 )

Solve the equations.
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22. x7 = 4
23. 3x3 = 8
24. 4

√
x = 3

25. 3 3
√

2x = 4
26. 5x = 10
27. 32x = 4
28. log4(x) = 2
29. log3(2x) = 9
30. 4 log5(x) = 15
31. 3x2 − x6 = 0
32. 4 · x5 = 3
33. 4 · 5x = 3, writing solutions in terms of the natural logarithm ln.
34. 2 · 3−x = 3 · 2x, writing solutions in terms of the natural logarithm

ln. Hint: Find an equivalent equation with a single exponential after
using properties of exponents.

Applications.
35. Find a power law for y as a function of x that includes data (x, y) =

(1, 5) and (x, y) = (4, 10).
36. Find a power law for y as a function of x that includes data (x, y) =

(2, 20) and (x, y) = (4, 5).
37. Find a power law for y as a function of x that includes data (x, y) =

(2, 4) and (x, y) = (20, 8).
38. Find an exponential law for y as a function of x that includes data

(x, y) = (0, 5) and (x, y) = (4, 15).
39. Find an exponential law for y as a function of x that includes data

(x, y) = (0, 5) and (x, y) = (10, 2).
40. Find an exponential law for y as a function of x that includes data

(x, y) = (1, 5) and (x, y) = (6, 10).
41. The average body mass and life span of mammals have been observed

to follow an approximate power law. A mouse has an average body
mass of 0.021 kg and a life span of 1.5 years. A horse has an average
body mass of 400 kg and a life span of 40 years. Find a power function
model for the life span as a function of body mass. Predict the life
span of a typical hare, which has a body mass of 3.4 kg.

42. The fraction of carbon in organic matter that is radioactive (carbon-
14) decays exponentially from the time of death. At the time of death,
the fraction of radiocarbon would be 1.25 parts per trillion. A sam-
ple that is 1000 years old has a fraction of radiocarbon measured at
1.1075 parts per trillion. Model the fraction in parts per trillion as
an exponential function of time since death. Estimate the age of a
sample that has radiocarbon measured at 0.8 parts per trillion.

43. P-32 is a radioactive isotope of phosphorus used in labeling biological
molecules. P-32 has a half-life of 14.29 days. Suppose an experiment
begins with 10 µg of P-32. Find a parametrized model for the mass
(in µg) as a function of time (in days) measured from the start of the
experiment, t 7→ M , in order to determine how much P-32 remains
after 10 days and after 100 days.
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Hint. Create two constraints using t = 0 and t = 14.29.
44. The isotope of plutonium Pu-239 has a half-life of 24,110 years, which

is the time after which half of the mass has decayed. For an initial
mass of 1 kg, how much plutonium remains after 100 years?

45. An exponentially growing population that doubles in size every 5 years
currently has 1000 individuals.
(a) What will the population be in 4 years?

(b) How long does it take for the population to triple?
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1.8 Logarithms and Their Properties
We previously learned about the algebraic properties of exponents. Because
logarithms are the inverses of exponential operations, they inherit related alge-
braic properties. The properties of logarithms allow us to rewrite expressions
involving products and exponents in new ways.

In this section, we will introduce the properties of logarithms and how they
relate to the properties of exponents. These properties are closely related to the
logarithmic scale. We will learn new methods for solving equations involving
exponentials using the properties of the logarithm. In addition, we will learn
how to rewrite exponential functions in terms of other bases and justify the
change of base formula for logarithms.

1.8.1 The Logarithmic Scale
Historically, the logarithm was invented so that calculations involving multi-
plication and division could be solved using the much simpler operations of
addition and subtraction. Addition and multiplication share many of the same
properties—commutativity, associativity, and the existence of an identity and
inverses. These shared properties suggest that there might be a way to think
about multiplication in terms of addition.

The properties of exponents establish the relationship required to make this
connection. When two numbers can be written as powers of the same base,
say u = bx and v = by, then the product uv can be written as a power of
that base as uv = bx+y. Division u ÷ v can similarly be written as a power,
u ÷ v = bx−y. In this way, multiplication and division of numbers directly
corresponds to addition and subtraction of their associated powers for a given
base.

The logarithm relates a number and its associated power for a given base.
For every number u > 0 and base b > 0 with b 6= 1,

u = bx ⇔ x = logb(u).

We will try to develop an intuition by creating the map between a number and
its logarithm. In the process, we will develop something called a logarithmic
number line or logarithmic scale.

A map is a way of thinking about the relationship between two variables.
We use one variable as the independent variable, or input, for the map. This is
the value we start with. The relation tells us that this value for the independent
variable is associated with a particular value of the dependent variable. The
value of the dependent variable is the output of the map.

To make our example precise, we will create the map for a base b = 2.
However, the process could be done for any base b > 0 with b 6= 1. With a
base b = 2, we find log2(u) by solving the equation 2x = u. The logarithm is
the map u 7→ x. The equation is easy to solve when u is a known power of 2.

1 = 20 ⇔ (u, x) = (1, 0) ⇔ log2(1) = 0
2 = 21 ⇔ (u, x) = (2, 1) ⇔ log2(2) = 1
4 = 22 ⇔ (u, x) = (4, 2) ⇔ log2(4) = 2
8 = 23 ⇔ (u, x) = (8, 3) ⇔ log2(8) = 3

1
2 = 2−1 ⇔ (u, x) = (1

2 ,−1) ⇔ log2( 1
2 ) = −1

These simple logarithms are illustrated in the following map.
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u
0.5 1 2 4 8

x
-2 -1 0 1 2 3 4 5 6 7 8

log2

Now, instead of drawing two number lines, let us use a single number line
labeling the points with the input above the line and the output below the
line.

u
x

0.25

-2

0.5

-1

1

0

2

1

4

2

8

3

16

4
This relation could be extended to every point on the number line. The

value above the number line is just the value 2x where x is the value below
the number line. Some special values should be explicitly identified. The point
with x = 1

2 corresponds to u = 21/2 =
√

2 ≈ 1.4142. Similarly, the point with
x = 3

2 corresponds to u = 23/2 =
√

8 ≈ 2.8284.
The resulting locations of numbers above the number line is called a loga-

rithmic scale. A more detailed logarithmic scale is provided below. Because
consecutive integers are closer and closer together in a logarithmic scale, the
figure only shows the tick mark location for some of the values.

u

log2(u)

0.25 0.5 1 2 3 4 5 678 16

-2 -1 0 1 2 3 4

Figure 1.8.1 Logarithmic scale showing the logarithm base two, b = 2.
In our example, we developed the logarithmic scale using a base b = 2. We

could have done it with any base. The logarithmic scale with base b = 10,
corresponding to the common logarithm, is shown below.

u

log(u)

0.1 0.2 0.5 1 2 3 4 5 10 20 30

-1 0 1

Figure 1.8.2 Logarithmic scale showing the common logarithm, b = 10.
Comparing the logarithmic scales for bases b = 2 and b = 10, you should

notice that the logarithmic scale itself appears to be the same. The only
thing that is different is the scale of the tick marks below the number line
corresponding to the value of the logarithm.

1.8.2 Properties of the Logarithm
When considering the logarithmic scales, we always had logb(1) = 0. This
is because b0 = 1 for every valid base. This creates a mapping from the
multiplicative identity u = 1 to the additive identity x = 0. That is, the value
u = 1 becomes the origin of the logarithmic scale.

In a similar way, because b1 = b, the logarithm will always have logb(b) = 1.
Be careful that you do not think of this as a cancellation. Instead, think of the
logarithmic scale. The value u = 1 sets the origin. The logarithm measures
the position of each number as if using a ruler starting at u = 1. The value
u = b sets the length scale for the ruler.

The core properties of logarithms are summarized below.
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Theorem 1.8.3 Properties of Logarithms. For every base b > 0 with
b 6= 1 and values u > 0 and v > 0, logarithms satisfy the following properties.

• Identities Map: logb(1) = 0.

• The Base Sets the Scale: logb(b) = 1.

• Inverse Property: blogb(u) = u and logb(bx) = x.

• Product Rule: logb(u · v) = logb(u) + logb(v).

• Quotient Rule: logb
(u
v

)
= logb(u)− logb(v).

• Power Rule: logb(up) = p · logb(u).
Proof. The first two properties were proved in the paragraphs preceding the
theorem. For the remaining three properties, because u > 0, we know that
bx = u has a solution x = logb(u). Similarly, for v > 0, we know that there is a
value y = logb(v) so that by = v. The inverse property is simply stating what
it means to be a logarithm.

The power rule considers the logarithm of the value up. By rewriting u = bx,
we are looking for the logarithm of up = (bx)p. By the Power of a Power
property, we have up = b(xp), which means that log(up) = xp = p · logb(u).

The product rule considers the logarithm of the value u · v. By rewriting
u = bx and v = by, we are looking for the logarithm of uv = bx · by. By the
Product with a Common Base property, we have uv = bx+y, which means
that log(uv) = x + y = logb(u) + logb(v). The proof of the quotient rule for
logarithms is proved in a similar way. �

The properties of logarithms allow us to compute the logarithm of a product
(and quotient) in terms of the logarithms of the individuals factors.

Example 1.8.4 A reference table shows log(2) ≈ 0.30103, log(3) ≈ 0.47712
and log(5) ≈ 0.69897. Use properties of logarithms to determine log(1.2).
Solution. Start by writing 1.2 as a product of the factors 2, 3, and 5.

1.2 = 12
10 = 4(3)

2(5) = 2(3)
5

The properties of logarithms allow us to rewrite log(1.2) as

log(1.2) = log
(

2(3)
5

)
= log(2(3))− log(5) (Quotient)
= log(2) + log(3)− log(5) (Product)
≈ 0.30103 + 0.47712− 0.69897 = 0.07918.

�
Historically, the logarithm was invented so that multiplication and division

calculations could be solved using the much simpler operations of addition and
subtraction. Engineers and scientists would often reference logarithm tables
to find the logarithms of the factors and add the values by hand. Then they
would look in the table for the number that had the resulting logarithm. The
slide rule was a mechanical implementation, where the lengths corresponding
to logarithm values were added physically to get a new length. For an in-
teractive demonstration, check out http://educ.jmu.edu/~waltondb/webapp/log_

scale_explore.html.
Although modern calculators and computers have eliminated this particular

http://educ.jmu.edu/~waltondb/webapp/log_scale_explore.html
http://educ.jmu.edu/~waltondb/webapp/log_scale_explore.html
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need for logarithms in calculations, we still use logarithms in order to expand
symbolic formulas expressed as products and powers in terms of sums of the
logarithms of the factors. To expand a logarithm, we look at the structure of
the expression to which the logarithm is applied. There are likely many parts,
but we look at the final operation that is used to form that expression.

1. If the input of the logarithm is a product of expressions, then we expand
the logarithm by rewriting it as a sum of logarithms each with one of the
factors as input.

2. If the input of the logarithm is a quotient of expressions, then we expand
the logarithm by rewriting it as a difference of logarithms, adding the
logarithm of the numerator and subtracting the logarithm of the denom-
inator.

3. If the input of the logarithm is a power applied to an expression, then
we expand the logarithm by rewriting it as the value of the power times
the logarithm of the base.

4. If the input of the logarithm is a anything else, then the rules of loga-
rithms do not apply. In particular, we can not expand the logarithm of
a sum.

By changing any quotients into multiplication by negative powers, we can
reduce the process of expanding logarithms to only two rules: the product and
power rules.

Example 1.8.5 Expand log
(

4x3√2x+ 5
(x2 + 3)5

)
as far as possible.

Solution. Each factor of the expression inside the logarithm will get its own
term using the product and quotient rules for logarithms. If we think of every
division in terms of negative powers, then we only need to deal with products.
In particular, the inner expression can be rewritten

4x3√2x+ 5
(x2 + 3)5 = 4x3(2x+ 5) 1

2 (x2 + 3)−5.

The factors identified are 4, x3, (2x+5) 1
2 , and (x2+3)−5. Using the logarithm’s

product rule followed by the logarithm’s power rule, we find

log
(

4x3√2x+ 5
(x2 + 3)5

)
= log(4) + log(x3) + log

(
(2x+ 5) 1

2

)
+ log

(
(x2 + 3)−5)

= log(4) + 3 log(x) + 1
2 log(2x+ 5)− 5 log(x2 + 3).

Notice that we could have used the quotient rule of logarithms instead of neg-
ative powers to get the term −5 log(x2 + 3). �

The rules for expanding logarithms can also be used in reverse to collect
terms into a single logarithm.

Example 1.8.6 Collect the terms of

2 + 4 log x+ 2 log y − 1
2 log(x+ y)

to write the expression in terms of a single logarithm.
Solution. We first recognize that every logarithm times an expression can
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be rewritten as a logarithm with the expression in the exponent.

2 + 4 log x+ 2 log y − 1
2 log(x+ y) = 2 + log(x4) + log(y2) + log

(
(x+ y)−1/2

)
Now that the expression is a sum of logarithms. What about the isolated
number 2? Using the common logarithm with base b = 10, we know log(102) =
2.

2 + 4 log x+ 2 log y − 1
2 log(x+ y) = 2 + log(x4) + log(y2) + log

(
(x+ y)−1/2

)
= log(102 x4 y2 (x+ y)−1/2)

= log
(

100x4y2
√
x+ y

)
�

1.8.3 Using Logarithms to Solve Equations
The properties of logarithms help solve us equations, particularly where the
variable is in an exponent. Logarithm and exponential operations are invert-
ible, so we can use them as balanced operations on an equation to obtain new
equivalent equations. The properties of the logarithm can then be used to our
advantage.

Example 1.8.7 Solve the equation 3 · 23x = 5 using the logarithm base 10.
Solution. It is usually best to isolate the exponential term first.

3 · 23x = 5

23x = 5
3

We next apply the logarithm base 10 to both sides of this equation, which then
allows us to apply the logarithm power rule on the left. Then we can isolate x.

log10(23x) = log10( 5
3 )

3x · log10(2) = log10( 5
3 )

x =
log10( 5

3 )
3 log10(2)

Alternatively, we could have applied the logarithm at the very first. This
would require using the logarithm product rule on the left.

log10(3 · 23x) = log10(5)
log10(3) + log10(23x) = log10(5)
log10(23x) = log10(5)− log10(3)
3x log10(2) = log10(5)− log10(3)

x = log10(5)− log10(3)
3 log10(2)

�
The properties of logarithms allow us to compute logarithms with uncom-

mon bases using logarithms that we know using the change of base formula.
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Theorem 1.8.8 For any two exponential bases b and c,

logb(u) = logc(u)
logc(b)

.

Proof. Consider x = logb(u), which solves bx = u. If we solve this equation
using logc to both sides, we find the change of base formula.

bx = u

logc(bx) = logc(u)
x logc(b) = logc(u)

x = logb(u) = logc(u)
logc(b)

.

�
This theorem has a nice geometric interpretation in relation to the loga-

rithmic scale. The value logb(u) measures the distance in the logarithmic scale
from the origin at 1 to the location of u in terms of the scale set by the location
of b. The change of base formula is based on knowing the positions of u and
b on the logarithmic scale in terms of the base c. We take the position of u
and divide it by the length to get to b. In effect, this is a change of units
calculation, similar to finding a distance measured in inches when we know the
distance measured in centimeters.

Closely related to the change of base formula is the fact that we can rewrite
any power with a positive base using a composition with an elementary expo-
nential. We will soon discover that the number e is the natural exponential
base. Thus, every power can be rewritten in terms of the natural exponential
function. The logarithm with this base is the natural logarithm ln.

Example 1.8.9 Rewrite f(x) = 4 ·32x using the natural exponential function.
Solution. One approach is to use the inverse property, eln(u) = u, on the
factor with the power. Then use logarithm properties to simplify (expand) the
power.

f(x) = 4 · 32x

= 4 · eln(32x) (Inverse Property)
= 4 · e2x ln(3) (Power Rule)
= 4 · e2 ln(3) x (Commute)

Another approach is to just rewrite the base using the inverse property,
3 = eln(3), and then finish by using properties of powers.

f(x) = 4 · 32x

= 4 · (eln(3))2x (Inverse Property)
= 4 · e2x ln(3) (Power of Product)
= 4 · e2 ln(3) x (Commute)

�
We use base e for exponentials so much that we summarize the statement

as a theorem.
Theorem 1.8.10 Every exponential function f(x) = Abx can be written using
the natural exponential f(x) = Aekx where k = ln(b).
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Example 1.8.11 A population P is an exponential function of time t, P =
Aekt. Suppose that P = 500 when t = 0 and the population triples every 5
years. Find the formula for P .
Solution. This is an exponential model P = Aekt with unknown parameters
A and k. We use the data (t, P ) = (0, 500) and (t, P ) = (5, 1500) (the popula-
tion triples in 5 years) to create equations based on our model that constrain
the parameters. {

500 = Ae0k

1500 = Ae5k

The first equation gives A = 500. Substituting that into the second equation,
we can solve for k.

Ae5k = 1500
500e5k = 1500

e5k = 3
5k = ln(3)
k = 1

5 ln(3)

Using these parameters, we have our model

P = 500e 1
5 ln(3)t.

�

1.8.4 Summary
• The logarithmic scale is based on the inverse map of an exponential

function. The multiplicative identity u = 1 represents the origin of the
scale. The base b establishes the length scale used to calculate logarithms.

• The properties of logarithms are consequences of properties of exponents.

◦ logb(1) = 0 (Identities Map) and logb(b) = 1 (Base Sets Scale).
◦ blogb(u) = u and logb(bx) = x (Inverse Property).
◦ logb(uv) = logb(u) + logb(v) (Product Rule).
◦ logb(u÷ v) = logb(u)− logb(v) (Quotient Rule).
◦ logb(up) = p · logb(u) (Power Rule).

• To expand a logarithm is to identify if the input of a logarithm is a
product, quotient, or power, and then to rewrite that logarithm as a
sum of logarithms, a difference of logarithms, or a product with a loga-
rithm. This is repeated until no logarithm has an input that is a product,
quotient, or power.

1.8.5 Exercises
1. For an unknown base b, we have logb(2) = 0.3. Use the rules of logarithms

to find each of the following.
(a) logb(8)

(b) logb( 1√
2 )

(c) logb(4b2)
Can you identify the value b?
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2. For an unknown base b, we have logb(2) ≈ 0.3562 and logb(3) ≈ 0.5646.
Use the rules of logarithms to find each of the following.
(a) logb(6)

(b) logb(72)

(c) logb( 4
9 )

3. Expand log
(
3x5(2x+ 1)4) as far as possible.

4. Expand log
(

(x2 + 4)3

x4(3x+ 1)

)
as far as possible.

5. Expand log
(√

5(x2 + 1)
)
as far as possible.

6. Rewrite the expanded formula 2 + 3 log(x)− log(2x+ 1) as the logarithm
(base 10) of a single expression.

7. Rewrite the expanded formula 1
2 ln(x)−ln(x+1)−ln(x−1) as the logarithm

(base e) of a single expression.
8. Use the natural logarithm to solve the equation 4 · 5x = 3.
9. Use the natural logarithm to solve the equation 2 · 3−x = 3 · 2x.
10. Write the function f(x) = 4x using an exponential with base 10.
11. Write the function f(x) = 4x using an exponential with base e.
12. Write the function f(x) = 5 · 0.25x using an exponential with base e.
13. Write the function f(x) = x4 using an exponential with base e for x > 0.
14. Write the function f(x) = x2x using an exponential with base e for x > 0.
15. Find an exponential model y = Aekx satisfying the states (x, y) = (0, 3)

and (x, y) = (5, 9).
16. Find an exponential model y = Aekx satisfying the states (x, y) = (1, 3)

and (x, y) = (4, 6).
17. In a living organism, 1 gram of carbon would result in about 840 carbon-14

atoms disintegrating per hour. After death, the rate of radiocarbon dis-
integrations decays exponentially. Carbon-14 has a half-life of 5730 years,
meaning the rate has dropped to half its original value after this time.
Determine the radioactive disintegration rate for 1 gram of carbon using
the natural exponential base e. What is the radioactive disintegration
rate of the sample after 1000 years?

18. A money market account starting at $2000 grew by 10% in one year.
Determine the value of the money market account assuming the rate of
growth remains constant by using an exponential growth model. What
will be the value in 4 years? How long does it take for the value to double?
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1.9 Applications of Logarithms
The properties of logarithms are useful for a variety of applications. In this
section, we discuss using a logarithm to transform data. We will see that data
following an exponential model look linear in a semi-log transformation; data
following a power law model look linear in a log-log transformation. We also
consider an application to probability in relation to log-likelihood.

1.9.1 Logarithmic Transformations
Sometimes we look at data that are at many different scales. On a standard
number line, the numbers 1, 10, 100, and 1000 would be spread very far apart
while the numbers 0.1, 0.01, 0.001, and 0.0001 would be clustered very close
to 0. If we use the common logarithm (b = 10), then these numbers would
map to equally spaced integer from -4 to 3. The logarithm spaces values apart
according to the order of magnitude. Quality plotting tools allow us to scale
one or both axes according to the logarithmic scale.

Example 1.9.1 Brain size is strongly correlated with overall body mass in
mammals. However, mammals cover a wide range of different sizes. The graph
of brain size versus body mass for 96 species is shown in Figure 1.9.2, based
on data from The Statistical Sleuth by Ramsey and Schafer (2013). Because
the elephant is so large relative to many other species, its data point requires a
wide window in the figure. The majority of species, however, are much smaller
and form a crowded cluster of points near the origin.
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Figure 1.9.2 Plot of body mass (kg) and brain size (g) for 96 species of
mammals.

This suggests replotting the data using a logarithmic scale. The same data
a shown with logarithmic scales for both variables in the Figure 1.9.3. Using
a logarithmic scale on both axes is called a log-log plot. The transformed
data spreads the points out more uniformly across the figure. In addition, the
log-log plot suggests that the transformed data is approximately linear.
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Figure 1.9.3 Log-log plot of body mass (kg) and brain size (g) for 96 species
of mammals.

�
The previous example illustrated a dataset where transformed data look

linear. Let us work out what that relation must be like.
Suppose we have raw data with variables (x, y) and we transform the data

with logarithms. This creates two new variables, u = log(x) and v = log(y).
The log-log plot is a figure showing data (u, v) but with the axes showing the
original values on a logarithmic scale. If the transformed data are linear, there
must be a model

v = a u+ b.

We now substitute our original variables and solve for y. We collect terms
in the logarithm.

log(y) = a log(x) + b

= log(xa) + log(10b)
= log(10b · xa)

Thus, we find y = 10b · xa, which is a power law model. We summarize our
result as a theorem for future reference.
Theorem 1.9.4 Data (x, y) such that the transformed data (log(x), log(y)) (a
log-log plot) has a linear relation will satisfy a power law relation.

Another common transformation is a semi-log plot. This occurs when only
the dependent variable is transformed. In other words, only the y-axis is
transformed to a logarithmic scale. What relationship does this reveal?

Suppose we have raw data with variables (x, y) and we only transform y
with a logarithm,

v = log(y).

The semi-log plot is a figure showing data (x, v) but with the axes showing the
original values on a logarithmic scale. If the transformed data are linear, there
must be a model

v = a x+ b.

We now substitute our original variables and solve for y.

log(y) = a x+ b.
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To solve for y, we use the inverse operation to the logarithm, which is an
exponential.

y = 10a x+b.
Using the properties of exponents, we can rewrite this

y = 10a x · 10b = 10b · (10a)x.

Thus, we find y = ABx, with A = 10b and B = 10a, which is an exponential
model.
Theorem 1.9.5 Data (x, y) such that the transformed data (x, log(y)) (a semi-
log plot) has a linear relation will satisfy an exponential relation.

We can use the log-transformations to find the power law and exponential
relations for actual data. If we know that (x, y) satisfies a power law for given
data, then we know (log(x), log(y)) satisfies a linear model. We can calculate
the slope and intercept of the transformed linear model and then solve for y.
If we know that (x, y) satisfies an exponential model for given data, then we
can find the equation of a line for (x, log(y)) and then solve for y.

Example 1.9.6 Find the power law for (x, y) that includes data (x, y) = (2, 5)
and (4, 8).
Solution. Power law data is linear under a log-log transformation, u = log(x)
and v = log(y) The transformed points are (u, v) = (log(2), log(5)) and (u, v) =
(log(4), log(8)) The slope is calculated and simplified using properties of loga-
rithms,

m = ∆v
∆u = log(8)− log(5)

log(4)− log(2)

= log(8/5)
log(4/2)

= log(8/5)
log(2)

Using the point-slope form of a line, we have

v − log(5) = m(u− log(2))

= log(8/5)
log(2) (u− log(2))

Now we substitute back the original variables with u = log(x) and v =
log(y) and simplify using the properties of logarithms.

log(y)− log(5) = log(8/5)
log(2) (log(x)− log(2))

log(y/5) = log(8/5)
log(2) log(x/2)

The value that we used as a slope becomes the power, p = log(8/5)
log(2) =

log2(8/5),

log(y/5) = log
(x

2

)p
y

5 =
(x

2

)p
y = 5 ·

(x
2

)p
�
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1.9.2 Log-Likelihood
Suppose that we are performing an experiment that has a random outcome
from two possibilities. We do not know in advance the probabilities associated
with the two outcomes. We would like to repeat the experiment in order to
determine these probabilities.

In statistics, there is a method commonly used to estimate unknown param-
eters called the maximum likelihood principle. Each observation is assumed
to have outcomes governed by a probability distribution characterized by cer-
tain model parameters. The likelihood L is the product of the probabilities
densities associated with each observation. The maximum likelihood method
adopts the parameter values that makes the likelihood as large as possible.

For our experiment, where there are two different outcomes, the probability
distribution is characterized by one parameter, p, which gives the probability
of the first outcome (often called a success). The probability of the second
outcome (often called a failure) will be 1− p since probabilities must add to 1.
Suppose that we repeated the experiment ten times and counted six successes
and four failures. Then the likelihood will have a product of six factors with
p and four factors with 1 − p. Writing these with powers, the likelihood is a
function of p,

L = p6(1− p)4.

How will we maximize this value? Until we learn some calculus, we will
need to find the maximum using a graph. The graph of this formula is shown
below. (To make a graph, most graphing utilities require that you use the
independent variable x in place of p.)
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How do we interpret this graph? Because the parameter p is supposed to
be a probability, we require 0 < p < 1. But the graph doesn’t seem to show a
maximum there. If we redo the graph so that the domain only include [0, 1],
we can get a better picture.
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This graph has a maximum value at p = 0.6. We can also see why the
earlier graph didn’t show the maximum. The scale on the axis for L on the
restricted interval has a magnitude of order 10−3. If we had even more data
than ten observations, this magnitude would be even smaller. In practice,
because of this effect of the likelihood shrinking in magnitude with more data,
the value can even drop below the smallest number a computer can represent.

To avoid this issue, data scientists typically record the log-likelihood rather
than the likelihood. Maximizing the log-likelihood will always give the same
values as maximizing the likelihood itself. The log-likelihood is calculated as
the natural logarithm of the likelihood,

logL = ln(L).

Because the logarithm of a product is equal to the sum of the logarithms of
the factors, the log-likelihood is calculated by adding the logarithms of the
probability densities corresponding to the observations. For our example,

logL = ln
(
p6 (1− p)4)

= ln
(
p6)+ ln

(
(1− p)4)

= 6 ln (p) + 4 ln (1− p)

A graph of the log-likelihood logL versus p is shown in the figure below. The
maximum value again occurs at p = 0.6.
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Example 1.9.7 An exponential time is a random time until some event oc-
curs that is characterized by gaining no information by knowing how long has
already passed without the event yet occurring. The time until a radioactive
particle decays is an example of an exponential time. The mathematical model
for the probability density of an exponential time t has a single parameter,
usually represented by the Greek letter lambda λ,

f(t) = λe−λt.

In a series of five experiments, the observed exponential times were recorded
as t1 = 12.3, t2 = 4.6, t3 = 23.1, t4 = 0.4, and t5 = 10.5. Calculate the log-
likelihood for this collection of data, plot the log-likelihood, and determine the
maximum likelihood value for the parameter λ.
Solution. The logarithm of the density is

ln f(t) = ln
(
λe−λt

)
= ln(λ) + ln(e−λt)

Because the natural logarithm and the exponential with the natural base e are
inverses, we can simplify further to obtain

ln f(t) = ln(λ)− λt.



CHAPTER 1. FOUNDATIONAL PRINCIPLES 98

The log-likelihood is the sum of the logarithms of the densities using the
observed times. Each observation will result in adding ln(λ), so we obtain

logL = 5 ln(λ)− λ(12.3 + 4.6 + 23.1 + 0.4 + 10.5)
= 5 ln(λ)− 50.9λ

The parameter λ only needs to be a positive number. If we plot values 0 <
λ < 10 to explore where the maximum might be, we get the figure on the left.
It shows the graph steadily decreasing, which means the maximum is close to
zero. If we plot value 0 < λ < 0.5, we get the figure on the right. The maximum
value occurs at λ = 0.098231, which is our maximum likelihood estimate of the
parameter.
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1.9.3 Summary
• Transforming data with a logarithm allows us to view the distribution of

data spread over a wide range of magnitudes.

• Data that appear linear in a log-log plot (both axes in logarithmic scale)
follow a power law relation.

• Data that appear linear in a semi-log plot (only y-axis in logarithmic
scale) follow an exponential relation.

• Estimating parameters for probability distributions is frequently based
on maximum likelihood estimation. To avoid numerical underflow (expo-
nentially small magnitudes) of the likelihood, this is more common done
using the log-likelihood.

1.9.4 Exercises
1. Suppose data for (t,M) appear linear in a semi-log plot. If the data

include the points (t,M) = (2, 5) and (t,M) = (5, 2), find a linear model
for the tranformed data and use it to find the appropriate model for the
original data.

2. Suppose data for (P, S) appear linear in a log-log plot. If the data include
the points (P, S) = (2, 5) and (P, S) = (5, 2), find a linear model for the
tranformed data and use it to find the appropriate model for the original
data.

3. A random experiment has two possible outcomes, high or low. The prob-
ability the result is high is represented by p, with 0 < p < 1, and the
probability the result is low is represented by 1− p. Twenty independent
replicates of the experiment resulted in six highs and fourteen lows. Calcu-
late the formula for the likelihood and use it to compute the log-likelihood.
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With a graph, estimate the maximum likelihood value for p.
4. An experiment results in randomly distributed exponential times. The

probability density used in the likelihood has a single parameter λ,

f(t) = λe−λt.

Replicating the experiment six times results in measured times t1 = 0.826,
t2 = 0.293, t3 = 0.218, t4 = 0.024, t5 = 0.561, and t6 = 0.233. Calculate
the formula for the likelihood and use it to compute the log-likelihood.
With a graph, estimate the maximum likelihood value for λ.

5. A manufacturer tracks quality control by testing random samples for
proper performance. The number n of identified flaws is a random value
that occurs with a probability

f(n) = ane
−λλn,

where an does not depend on the model parameter λ. To find the maxi-
mum likelihood value for λ, the value of an does not matter. For five days
of quality control tracking, the number of observed flaws were recorded.
n1 = 4, n2 = 2, n3 = 5, n4 = 4, and n5 = 8. Calculate the formula for the
likelihood using an = 1 and use it to compute the log-likelihood. With a
graph, estimate the maximum likelihood value for λ.
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2.1 An Introduction to Functions
Overview. Calculus studies the relationships between variables. We have
been learning about relationships described by equations where a dependent
variable, say y, is equal to an expression involving only the independent vari-
able, say x. In mathematics, such relationships are most are generalized to
create the concept of functions. A function is a predictive relationship be-
tween an independent and a dependent variable which we interpret as a map,
x 7→ y, meaning that knowing x we can predict the value of y.

In this section, we will study an overview of the core concepts relating to
functions. Functions will generalize our idea of operations that can act on
expressions. We will learn how to think of a function as a map between two
variables. Associated with a function as a map are the sets known as the
domain, codomain, and range.

2.1.1 Models as Functions
We have previously used equations as models of relations between variables.
When we think of one variable as a dependent variable based on the other
variable as the independent variable, we are mentally thinking of the equation
as defining a map. Each model equation where one variable is defined as an
expression in terms of the other variable represents such a map. We define the
domain as the set of all possible values of the independent variable and the
range as the set of all resulting values of the dependent variable.

A graphical view of a map is using two number lines, one for the domain
and one for the range. For each value in the domain, we imagine that the map
defines an arrow originating at the point in the domain and ending at the point
in the range. If a value on the number line does not belong to the domain,
there just isn’t any arrow originating at that point.

Example 2.1.1 Consider a function defined by a linear relation with states
(x, y) = (1, 2) and (x, y) = (3, 8). We can find the equation of the line by finding
the slope and using the slope–intercept equation. The slope is interpreted as
the ratio of the change in the output to the change in the input. The increment
of the input is ∆x = x2 − x1 = 3 − 1 = 2. The increment of the output is
∆y = y2− y1 = 8− 2 = 6. The slope or rate of change is therefore m = 6

2 = 3.
The equation of the line using the point (x, y) = (1, 2) becomes

y − 2 = 3 (x− 1).

If we solve for y, we get y as an explicit function of x,

y = 3 (x− 1) + 2.

The interactive figure below illustrates the idea of a map. The top number
line contains the domain, while the bottom number line contains the range. A
slider on the top line allows you to choose a value in the domain. The arrow
dynamically moves to connect the point in the domain to the point in the
range.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.1.2 The linear function that maps x = 1 7→ y = 2 and x = 3 7→ y = 8
has rate of change m = 2.

This map view of the linear function gives an interesting visual interpreta-
tion of the slope. We consider the initial point (x, y) = (1, 2) as giving reference
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values on each number line. The map sends x = 1 7→ y = 2. As we move the
slider away from x = 1, the gap between the value of x and x = 1 defines ∆x.
The slope of the line then forces the gap from y = 2 and the value y coming
from x will be ∆y = 3 ∆x. That is, the slope is the scaling factor going from
∆x to ∆y. �

The algebraic interpretation of a map defined by an equation uses variable
substitution. To find the value of the dependent variable, we substitute the
assigned value of the independent variable into the equation. After we simplify
the expression, we determine the value of the dependent variable.

Example 2.1.3 In 1990, the population of Harrisonburg, Virginia, was 30,707.
In 2010, the population was 48,914. If the rate of change of the population
increased at a constant rate, find a model for the population of Harrisonburg
as a function of the year. What does the model predict for the year 2020?
Solution. The variables involved in the model are the year y and the popu-
lation P . By saying that the rate of change is constant means that the model
uses a linear function. The given data show y = 1990 7→ P = 30707 and
y = 2010 7→ P = 48914. We find the slope as the ratio of ∆P (change in
output) to ∆y (change in input).

m = ∆P
∆y

= 48914− 30707
2010− 1990

= 18207
20 = 910.35

Using the point-slope form of the line, we start with the known mapping
1990 7→ 30707 and the constant rate of change to give

P = 30707 + 910.35 (y − 1990).

The graph of this line is shown below.
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To find the predicted population for 2020, we use the model with substitu-
tion. Let y = 2020 and substitute this into the model:

P = 30707 + 910.35 (y − 1990)
= 30707 + 910.35 (2020− 1990)
= 30707 + 910.35 · 30
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= 58017.5

Consequently, the model predicts the map y = 2020 7→ P = 58017.5. Of course,
the real population will not be a non-integer value. This example reminds us
to distinguish between a prediction of a model and an actual value. �

Because we use functions to find values of the dependent variable by sub-
stitution, we have a special notation called function notation. The map or
function is assigned a name. The name of the function followed by an expres-
sion inside of parentheses represents the value of the dependent variable when
the input expression is substituted for the independent variable.

For example, if we write f : x 7→ y = 3x2, then the name of the function
is f . The equation defining the relation is y = 3x2. This is more commonly
written y = f(x) = 3x2. The expression f(1), substituting x with x = 1, we
find y = 3(1)2 = 3. More simply, we write f(1) = 3(1)2 = 3. Substitution
can involve entire expressions as well as single values. The expression f(2 +h)
represents the expression 3x2 when 2 + h is substituted for x,

f(2 + h) = 3 (2 + h)2.

Example 2.1.4 Suppose we have a function f : t 7→ B where t measures the
time in years since we opened a bank account and B measures the account
balance. If the account grows according to the model B = 500(1.02)t, we can
write f(t) = 500 (1.02)t. Find the balance after two, five, and ten years using
function notation.
Solution. The values that we want, using function notation, are f(2), f(5),
and f(10). Each of these expressions represent values for B when the value of
t is replaced by t = 2, t = 5, and t = 10. The three values are

f(2) = 500(1.02)2 = 520.20,
f(5) = 500(1.02)5 ≈ 552.04,
f(10) = 500(1.02)10 ≈ 609.50.

Thus, the model predicts balance values of B = 520.20 when t = 2, B = 552.04
when t = 5, and B = 609.50 when t = 10. �

Note 2.1.5 Although writing parentheses in mathematics next to a number or
a variable means multiplication, a function is not a variable. The parentheses
after the function do not mean multiplication but evaluation. It is unfortunate
that the same symbols have different meanings, so you will need to pay close
attention to the context. When reading aloud, a function expression like f(x)
should be read “f of x”.

If we have an equation involving two variables and can solve to isolate one
of the variables to be equal to some expression involving the other variable,
then the equation defines a function. The isolated variable is the dependent
variable (output) and the other variable is the independent variable. This is
a function because once you know the value of the independent variable, the
equation allows you to substitute that value and determine a single value of
the dependent variable. An equation where the dependent variable is isolated
defines the dependent variable as an explicit function of the independent
variable.
Example 2.1.6 Given the equation xy

x+y = 3, rewrite y as an explicit function
of x.
Solution. To show that y is a function of x, we need to solve the equation
for y. We can cross multiply the equation and then collect terms involving y.
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Once we factor the common factor of y, we can isolate the variable.

xy

x+ y
= 3

xy = 3(x+ y)
xy = 3x+ 3y

xy − 3y = 3x
(x− 3) y = 3x

y = 3x
x− 3

The equation shows that we have a function x 7→ y = 3x
x− 3 , an explicit

function of x. �
If an equation can be solved for two different values of the dependent vari-

able for a single value of the independent variable, then the equation does not
define the dependent variable as a function of the independent variable. We
will later learn that we can often restrict the equation to define an implicit
function.
Example 2.1.7 Show that x2 + y2 = 25 does not define y as a function of x.
Solution. The equation x2 + y2 = 25 defines a circle with radius r = 5. For
each value a with −5 < a < 5, the graph of the circle will intersect the vertical
line x = a at two different points. To demonstrate this, consider x = 3. When
we substitute x = 3 into the equation x2 + y2 = 25, we obtain the equation
9 + y2 = 25 which is equivalent to y2 = 16. There are two values, y = ±4, that
solve this equation. Because there are two values for the dependent variable
for this point, we see that the equation does not define an explicit function.

�

2.1.2 Domain and Range
The domain of a function is the set of possible input values for the function.
The domain might be all possible real numbers. It might also be a set restricted
by algebraic constraints or by physical considerations. A second set associated
with a function is the range. The range is the set of all possible output values
for the function. We often consider a set called the codomain, which is a set
to which all output values must belong. The range is always a subset of the
codomain.
Definition 2.1.8 Function. A function f is a rule or relation from a given
set D (the domain) to another set D′ (the codomain) such that every value
a ∈ D is related (mapped) to a unique value b ∈ D′. We write f : D → D′. If
D′ is not stated, it is assumed that D′ = R. ♦

A function must assign a value for the output for every value in the domain.
Functions using the same rule but for different domains are different functions.
Choosing a domain is part of the modeling process. The domain specifies
what type of values are acceptable for the independent variable (input). For
example, some modeling scenarios might require that the independent variable
must be an integer, so we choose a domain D = Z. Other modeling scenarios
might require that the independent variable is constrained to be between two
values a < b, so we choose a domain D = (a, b).

The codomain could always be chosen to be the set of real numbers R. In
mathematics, the codomain is usually required to distinguish different types
of functions, such as whether the value of the function is a real number, a
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complex number, or even maybe a more complicated object like a matrix.
For modeling, we would specify a codomain that is more precise in order to
characterize some aspect of a function. For example, if the output variable
is meant to represent a probability, then only values from 0 to 1 make sense,
and we choose D′ = [0, 1]. Frequently, we want to have a function that is
non-negative. We can communicate this by saying D′ = [0,∞).

Example 2.1.9 Consider a grocery store that charges $0.25 per ear of corn.
We can define a function n 7→ c that maps the number of ears purchased n to
the pre-tax subtotal to charge c in dollars. Describe the function.
Solution. The function is characterized by the rule and by the domain.
The rule is one of proportionality, c = 0.25n. The independent (input) vari-
able n is discrete and only makes sense for non-negative integers. We in-
clude n = 0 because a customer might not purchase corn. Consequently,
D = {0, 1, 2, . . .} = N0. If a store had a customer limit on how many ears
could be purchased, then our domain D would have to be modified.

If we named our function f , the following notation communicates our sum-
mary:

f : N0 → R;n 7→ c = 0.25n.

The notation states the name of the function f , the domain N0, the input and
output variables n and c, and the rule c = 0.25n. �

Example 2.1.10 Consider a grocery store that charges $0.25 per pound of
bananas. We can define a function w 7→ c that maps the weight of bananas
purchased w to the pre-tax subtotal to charge c in dollars. Describe the func-
tion.
Solution. The function is characterized by the rule and by the domain. The
rule is again one of proportionality, c = 0.25w. However, weight is a continuous
variable; the weight of bananas purchased could conceivably be any positive
real number. To allow for no purchase, we again include w = 0. The domain
is therefore an interval of values 0 ≤ w, written D = [0,∞). If we named our
function g, the following notation communicates our summary:

g : [0,∞)→ R;w 7→ c = 0.25w.

�
In the two previous examples, the formulas for two different functions de-

scribed the same calculation—multiply the input by 0.25. In the examples, we
used mapping notation to describe the functions. Mapping notation has the
advantage of being precise but a disadvantage in being a little cumbersome.
We can use function notation to define each function if we include a restriction
on the domain. For f we would write

f(n) = c = 0.25n, n = 0, 1, 2, . . . .

For g we would write

g(w) = c = 0.25w, w ≥ 0.

Notice that if we were to substitute a generic variable x for the input values,
we would have f(x) = 0.25x and g(x) = 0.25x. Nevertheless, the functions are
not the same because they have different domains.

The graphs of these functions are also related but different. The discrete
function f will have isolated points for its graph. The continuous function g
will have a connected graph. Both functions will have all points on their graphs
sitting on the line y = 0.25x.
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Figure 2.1.11 Graphs of the functions f : N0 → R;n 7→ c = 0.25n and
g : [0,∞) → R;w 7→ c = 0.25w, each overlaid with the graph of the line
y = 0.25x.

Unless specified otherwise, the domain of a function defined by a formula
will be the largest set of real numbers for which the formula is defined. This
type of domain is called the natural domain of the function or of the defining
expression. However, the codomain might include values that are not neces-
sarily in the range. For example, the function x 7→ y = 3 can be defined for a
domain R (all real numbers) and the range is the set with a single value {3}.
The codomain could be defined to be any set that includes 3, such as the set
of non-negative numbers [0,∞) or the set of all real numbers R. The default
codomain will be R.
Definition 2.1.12 For a function f defined by a formula, such as y = f(x),
the natural domain is the set of all real numbers for which the formula is
defined. ♦

Definition 2.1.13 For a function f : D → D′, the range is the set of all
values y for which there exists a state (x, y). That is, there exists x ∈ D so
that f(x) = y. ♦

We find the natural domain by identifying which operations might not be
defined for all values and then solve either equations or inequalities that will
identify where the function is defined. Our elementary operations and functions
use the following constraints to find the domain.

• Division is undefined if the denominator equals zero.

• Even roots (e.g., square roots) and irrational powers are undefined if the
inner expression is negative.

• Logarithms are undefined if the inner expression is non-positive (zero or
negative).

The inequalities that arise in finding the domain can be solved directly or by
using factor analysis.

Example 2.1.14 Determine the domain of f(x) = 2x+ 3
x2 − 4 .

Solution. Because f(x) is defined as a quotient, the domain will be the set
of all values where x2 − 4 6= 0. We solve this inequality by factoring and
considering the complementary equation x2 − 4 = 0, since a product can only
equal zero if one of the factors equals zero.

x2 − 4 = 0
(x+ 2)(x− 2) = 0

x+ 2 = 0 or x− 2 = 0
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x = −2 or x = 2

This means f(x) is defined for all inputs except x = −2 or x = 2.
To describe the domain using intervals, we think of the real number line

and remove x = ±2. A graphical representation of the set using a number line
is shown below. Intervals are read from the line left-to-right. It starts at −∞
and continues until −2, then goes from −2 to 2, and finally goes from 2 until
+∞. We write

D = (−∞,−2) ∪ (−2, 2) ∪ (2,+∞).

−2 2
D

�
Sometimes finding the domain of a function involves performing sign anal-

ysis (such as for a square root or a logarithm). We identify end points of
intervals where the expression of interest might change sign by solving equa-
tions. These end points only occur where the expression equals zero or where
the expression itself is undefined (a discontinuity). We test the sign of the
expression in each of the resulting intervals by using test points or counting
the number of negative factors. Testing the sign at single points is often more
efficient than counting negative factors.

Example 2.1.15 Find the domain of the function g(x) = log4(x2 − x− 6).
Solution. The logarithm in g(x) will only have a real value when the input
expression is positive, x2−x− 6 > 0. Our task becomes determining the signs
of the expression x2 − x − 6. To illustrate the process of testing points in
intervals, we first find possible sign-changing points. The expression is always
defined (no discontinuities) so we just solve for zeros x2−x−6 = 0 by factoring.

x2 − x− 6 = 0
(x− 3)(x+ 2) = 0

x− 3 = 0 or x+ 2 = 0
x = 3 or x = −2

If we mark these points on a number line, we can easily identify the intervals to
test for signs. It is helpful to use the same number line to record the resulting
signs, so we can label x-values below the line and the resulting sign or value of
the expression above the line.

x2 − x− 6
x−2

0

3

0

The number line shows we need to test the intervals (−∞,−2), (−2, 3), and
(3,∞). Choosing one value from each interval, we can evaluate the expression
at that point and identify the sign.

x = −3 ⇒ x2 − x− 6 = (−3)2 − (−3)− 6 = 6
x = 0 ⇒ x2 − x− 6 = 02 − 0− 6 = −6
x = 4 ⇒ x2 − x− 6 = 42 − 4− 6 = 6

We can now update the number line we started by recording either + or −
above each interval that we tested. These signs are identical to what we would
get by using the number of negative factors for values in each interval. In fact,
we could test the intervals by thinking about the factors instead of completely
evaluating the expression’s value.
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x2 − x− 6
x−2

0

3

0+ − +

We were finding the domain of g(x) = log4(x2 − x − 6), which requires
x2− x− 6 > 0. Based on our summary, we need to find all values which result
in the expression having a positive sign. So our solution is the set D formed
from the union of intervals (−∞,−2) and (3,∞),

D = (−∞,−2) ∪ (3,∞).

A visualization of the domain on the number line might also help solidify the
connections between the sign analysis number line and the domain set.

−2 3
D

�

Example 2.1.16 Find the domain of the function h(x) =
√

4x
x2 − 9 .

Solution. A square root (any even root) requires that the input expression
is non-negative. Our domain is to solve the inequality

D = {x : 4x
x2 − 9 ≥ 0}.

To use sign analyis, we need to know the zeros and discontinuities and then
test each resulting interval. Discontinuities occur when we try to divide by
zero.

x2 − 9 = 0
(x+ 3)(x− 3) = 0

x+ 3 = 0 or x− 3 = 0
x = −3 or x = 3

Zeros for a quotient require that the numerator equals zero.

4x = 0
x = 0

Our sign analysis number line will have three points.
4x

(x+ 3)(x− 3)
x−3

und

0

0

3

und

Checking one point in each resulting interval gives us the sign. To find
the sign, we count the number of negative factors, including the factors in the
denominator.

x = −4 ⇒ 4x
(x+ 3)(x− 3) = 4(−4)

(−4 + 3)(−4− 3) = (−)
(−)(−)

x = −1 ⇒ 4x
(x+ 3)(x− 3) = 4(−1)

(−1 + 3)(−1− 3) = (−)
(+)(−)

x = 1 ⇒ 4x
(x+ 3)(x− 3) = 4(1)

(1 + 3)(1− 3) = (+)
(+)(−)

x = 4 ⇒ 4x
(x+ 3)(x− 3) = 4(4)

(4 + 3)(4− 3) = (+)
(+)(+)
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The signs can be summarized on the number line.

4x
(x+ 3)(x− 3)
x−3

und

0

0

3

und− + − +

We interpret our analysis to find the domain of h(x). The domain must
include intervals where the inner expression is positive, (−3, 0) and (3,∞),
along with points where the expression equals zero, x = 0. The set is visualized
below. We do not include the points where the expression was undefined,
x = ±3. The domain is the set

D = (−3, 0] ∪ (3,∞).

−3 0 3
D

�

2.1.3 Other Representations for Functions
A function can be defined by rules other than formulas. Any method that
creates a unique output result for each given input value in the domain is a
valid function. When the domain is a small finite set, we can simply define
the output values with a table. We could also define a function through a
graph of the pairs (x, y). Sometimes, a function can be defined according to
an algorithm that is not described by a formula.

Example 2.1.17 One round of a game called “Pig” involves the throw of a
single six-sided die. If the die shows one dot, the round scores 100 points. If
the die shows five dots, the round scores 50 points. Any other face on the die
results in 0 points.

The score for a round is a function of the thrown face. The input for the
function, or independent variable, is the number of dots showing on the thrown
die’s face, say D. The output for the function, or dependent variable, is the
score for the round, say S. The domain involves six possible values,

D = {1, 2, 3, 4, 5, 6}.

The range has three values, R = {0, 50, 100}.
The function can be characterized by a table. The table has two columns,

one for the input (dots on the die) and one for the output (round score). The
key feature of this table representing a function is that every value in the
domain appears as exactly one entry in the input column. The function maps
D 7→ S We can never allow a single input value to map to two different output
values.

Number of Dots (D) Score for Round (S)
1 100
2 0
3 0
4 0
5 50
6 0

A graph of this function has exactly six points, corresponding to the six
values in the domain. Each point is a state (D,S) appearing in the table.
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Notice how the graph and the table show the same information in different
ways.

2 4 6

20

40

60

80

100

D

S

The inverse relation using the same table (S,D) is not a function. Multiple
die throws correspond to the same score. Thus, knowing the score S is not
enough information to know the value of the number of dots showing on a
throw D. �

2.1.4 Summary
• A function is a relation between an independent variable (input) and a

dependent variable (output) such that for each value of the input, there
is exactly one value for the output.

• An equation in two variables defines a relation. When we can solve the
equation for one variable (dependent) as a single expression of the other
variable (independent), the expression defines an explicit function.

• Function mapping notation x f7→ y indicates that y is a function of x and
f is the name of the function.

• Function evaluation notation f(�) uses substitution of whatever appears
between the parentheses (�) in place of the independent variable.

2.1.5 Exercises

For each function defining a map between two variables, interpret the stated
function value by indicating the value of each variable.

1. Suppose that P represents the population size in millions and B rep-
resents the birth rate in hundreds of births per month. If f : P 7→ B,
interpret f(30) = 12.

2. Suppose that t represents time in seconds and h represents the height
of an object above the ground in meters. If g : t 7→ h, interpret
g(2) = 3.

3. Suppose that n represents the number of items a company will sell in
thousands and p represents the price the company charges per item
in dollars. If h : p 7→ n, interpret h(2) = 5.

For each function, illustrate how the function maps values between variables.
Draw two parallel number lines, with the top number line corresponding to the
independent variable. Mark the given domain as shaded segments or points,
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as appropriate. Choose three different values in the domain and then indicate
with arrows how the function maps these values.

4. f : [0, 1]→ R;x 7→ y = 2x− 5

5. g : [−1, 1]→ R; s 7→ T = 1
s+ 2

6. h : 0, 1, 2, 3, 4, 5→ R;n 7→ p = 10− 2n
7. F : N→ R; t 7→ x = 2t

Find the natural domain for each function defined by an equation.
8. f(x) = x2 − 4x+ 3

9. g(x) =
√
x2 − 4x+ 3

10. h(x) = log
(
x2 − 4x+ 3

)
11. f(x) = x2 − 1

x2 − 4

12. g(x) =
√
x2 − 1
x2 − 4

13. h(x) = log
(
x2 − 1
x2 − 4

)
14. f(x) = 2x

x2 − x− 6

15. g(x) =
√

2x
x2 − x− 6

16. h(x) = log
(

2x
x2 − x− 6

)
17. A function f : x 7→ y is defined by a table shown below.

(a) Graph the points represented by the function.

(b) What are the domain and range of f?

(c) What is f(3)?

(d) What value or values of x satisfy f(x) = 4?

x y

1 4
2 2
3 1
4 3
5 4

18. A function g : x 7→ y is defined by a graph shown below.
(a) What are the domain and range of g?

(b) What is g(4)?

(c) What value or values of x satisfy g(x) = 3?

(d) Find the table representation for g.
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Applications
19. Let C be the temperature measured in degrees Celsius, and let F

be the temperature measured in degrees Fahrenheit. The function
g(x) = 9

5x + 32 defines the map g : C 7→ F , and h(x) = 5
9 (x − 32)

defines h : F 7→ C.
(a) What is the value and interpretation of g(30)?

(b) What is the value and interpretation of h(70)?
20. A spring force scale uses the distance a spring is stretched to determine

the force that is applied to the spring. We calibrate the scale by using
known forces (e.g., weights) and record the corresponding location of
the tip on a ruler. Let F be the force (Newtons) applied to the spring
and let L be the corresponding location (centimeters). The following
table is used for calibration.

F (N) 0 10.0
L (cm) 20.0 42.5

(a) Find a linear equation relating the variables F and L.

(b) Determine functions g and h so that g : F 7→ L and h : L 7→ F .
What are the corresponding equations using evaluation nota-
tion?

(c) Suppose a force of 5 N is applied to the spring. What will be
the location of the tip of the ruler? Which function was used?

(d) Suppose a force is applied that results in the tip having a location
of 28.7 cm. What was the force? Which function was used?

21. The cost C of materials for a project depends on the required area
A of materials needed. The unit price is $3.50 per m2. The project
involves making two squares, each of them having sides with length s
(meters).
(a) Find f : A 7→ C.

(b) Find g : s 7→ A.

(c) How much would a project with s = 4 cost? How is each function
used in order to answer this question?
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2.2 Constructing Functions
Overview. We have learned that functions provide a map between two vari-
ables of a system. In modeling, the functions are almost always defined by
formulas, with the dependent variable being equal to an expression involving
only the independent variable. As we analyze these functions with calculus,
the rules of computation for limits, derivatives, and integrals will depend on
how a function is algebraically put together.

This section focuses on how expressions and functions are constructed. We
start by reviewing elementary functions that represent basic operations on the
independent variable. These will serve as the building blocks for our functions.
We will then consider the basic arithmetic operations of addition, subtraction,
multiplication, and division.

2.2.1 Elementary Functions
Every expression defining a function can be interpreted as a combination of
various operations. Operations that act on a single expression are functions.
Operations that combine multiple expressions include the binary arithmetic
operations, particularly addition and multiplication. In order to characterize
expressions, we first review the elementary operations that can be considered
as elementary functions. We will consider an elementary operation to be a
single operation on the variable.

The simplest operations are the constant functions and the identity func-
tion. As an operation, the constant function ignores the variable and always
gives the same value for the output. The identity function, on the other hand,
has no net change with the variable and returns an output that matches the
input.

Definition 2.2.1 A constant function is a function that has the same output
value for every input value, f(x) = c for some constant c. ♦

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.2.2 The constant function f(x) = 3 as a map x f7→ 3.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.2.3 The graph of the constant function y = f(x) = 3 in the (x, y)
plane.

Definition 2.2.4 The identity function is a function where the output value
is the same as the input value, f(x) = x. ♦

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.2.5 The identity function f(x) = x as a map x f7→ x.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.2.6 The graph of the identity function y = f(x) = x in the (x, y)
plane.

The four basic arithmetic operations of addition, subtraction, multiplica-
tion, and division can be used as functions. Because these binary operations
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require two operands (the expressions being acted on), the elementary arith-
metic operations will involve the variable and a particular constant.

For example, x 7→ x+ 4 is an elementary operation that adds the constant
4 to the independent variable. Similarly, x 7→ 4x is an elementary operation
that multiplies the input by 4. Because subtraction is really addition with an
additive inverse (the negation) of a number, an operation like x 7→ x − 4 is
equivalent to x 7→ x + −4. Likewise, division is really multiplication with a
multiplicative inverse (the reciprocal) of a number, so an operation like x 7→
x÷ 4 is equivalent to x 7→ 1

4x.
This motivates two new elementary operations: the constant sum and the

constant multiple.

Definition 2.2.7 For every real number (constant) c, we can define the con-
stant sum operation

x 7→ x+ c

and the constant multiple operation

x 7→ cx.

♦
A constant sum represents a mapping that maintains a constant offset be-

tween the input and output. For example, the function x 7→ x − 3 has an
output that is always 3 units to the left of the input. We can think of the con-
stant sum as a shift or translation. This mapping is illustrated in the following
interactive figure.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.2.8 The constant sum f(x) = x− 3 as a map x f7→ x− 3.
A constant multiple represents a mapping that maintains a constant scaling

or ratio between the input and output. For example, the function x 7→ 2x
has an output that is always twice the value of the input. We can think of
the constant multiple as stretching or squeezing by a scale. This mapping is
illustrated in the following interactive figure.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.2.9 The constant multiple f(x) = 2x as a map x f7→ 2x.
There are two more arithmetic operations possible with constants. Taking

a constant and subtracting the variable, as in x 7→ 4 − x, is not equivalent to
a constant sum because we are not adding something to x. Similarly, dividing
a constant by a variable, as in x 7→ 4 ÷ x, is not equivalent to a constant
multiple. These operations each involve two steps. The first step to each,
however, introduces a new elementary operation.

Definition 2.2.10 The negation or additive inverse operation is the function
x 7→ −x, defined for all x. The reciprocal or multiplicative inverse operation
is the function

x 7→ ÷x = 1
x
,

defined for all x 6= 0. ♦
The negation operation maps a value x to its opposite value. This corre-

sponds to a reflection on the numberline across zero.
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A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.2.11 The negation f(x) = −x as a map x f7→ −x.
The reciprocal operation maps a value x to its multiplicative inverse. The

product of a number and its inverse always equals 1. We could think of this
operation as a multiplicative reflection across 1 for positive values and across
−1 for negative values.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.2.12 The reciprocal f(x) = ÷x = 1/x as a map x f7→ ÷x.
The other elementary functions that we have studied can also be considered

to be elementary operations. These include the basic powers and roots and
exponentials and logarithms.

Definition 2.2.13 The elementary power function with power p is the
function that raises the variable to a constant power,

powp(x) = xp.

Because roots are also powers, roots are also elementary operations,

pow−1
p (x) = p

√
x = x(1/p).

♦

Definition 2.2.14 The elementary exponential function with base b,
where b > 0 and b 6= 1 is the function that raises a constant base to the
power of the variable,

expb(x) = bx.

Logarithms, as the inverses of exponentials, are included as elementary func-
tions as well,

exp−1
b (x) = logb(x).

♦
Additional elementary functions that we study later are the trigonometric

functions. Trigonometric functions are used in relation to triangles as well as
cyclic or periodic behavior. There are two fundamental trigonometric func-
tions, the sine and cosine functions, from which the others are defined. We
will study these functions in more depth later, but for the purpose of summary
include the following table here.

sin(x) sine
cos(x) cosine

tan(x) = sin(x)
cos(x) tangent

sec(x) = 1
cos(x) secant

cot(x) = cos(x)
sin(x) cotangent

csc(x) = 1
sin(x) cosecant

The trigonometric functions are periodic, which implies that they must not
be one-to-one. Inverse trigonometric functions are defined to solve equations
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for a limited interval and provide additional elementary functions for our use.

sin−1(x) = arcsin(x) arcsine
cos−1(x) = arccos(x) arccosine
tan−1(x) = arctan(x) arctangent
sec−1(x) = arcsec(x) arcsecant

The arccotangent and arccosecant functions can be defined but are not used
in practice.

2.2.2 Algebraic Combinations and Composition
Functions defined by a formula are generally formed by combining these oper-
ations and functions into more complicated expressions. One of the most valu-
able skills in calculus is the ability to recognize how a formula is constructed.
Many rules in calculus are named according to which operation forms the ex-
pression of interest. The basic operations of combination are the arithmetic
operations of addition (a sum), subtraction (a difference), multiplication (a
product), and division (a quotient) along with the operation of function
composition.

Composition occurs whenever we apply a function or operation to an ex-
pression rather than a simple variable. That is, x4 is a simple power operation,
but (2x+1)4 is a composition because the power acts on the expression 2x+1.
We use the arithmetic operations when we take two expressions and combine
them. We use composition when we apply a function or operation to a single
expression. The expression on which a composition acts is called the input
expression or inner expression.

Most formulas involve more than one operation. An expression is classified
by the last operation that would be applied. The order of operations deter-
mines the priority with which operations are applied. In algebra, you may
have learned the acronym PEMDAS, which stands for Parentheses, Exponents,
Multiplication, Division, Addition, and Subtraction. Subtraction is really the
addition of an inverse, so differences can be classified as sums. The same tech-
nically applies for division being multiplication, but this is less frequently used.
We will change the meaning of E to stand for Every function, including powers
and exponentials, as all functions have higher precedence than the arithmetic
operations.

Example 2.2.15 Classify each function by the last operation that is applied,
and then classify each component expression. Make note of when a binary
operation involves a constant instead of two variable expressions.

1. f(x) = x2 − 3x sin(x)

2. g(x) = (2x+ 1)(x− 3)

3. h(x) = (x2 + 3)4

4. j(x) = 2xy√
3x− 1

5. k(x) = 5e2x

Solution.

1. The function f(x) = x2 − 3x sin(x) is a difference of the expressions x2

and 3x sin(x). The first component expression x2 is a power function
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(p = 2) of x; the second component expression 3x sin(x) is a product of
3x and sin(x). (We could also have used a sum of x2 and −3x sin(x).)

2. The function g(x) = (2x+ 1)(x−3) is a product of the expressions 2x+ 1
and x − 3. The first expression 2x + 1 is the constant sum of 2x and 1
while the second expression is the constant sum of x and −3.

3. The function h(x) = (x2 +3)4 has the power (p = 4) as its last operation.
Because we treat powers as functions, this is a composition. The inner
expression is u = x2 + 3, and the operation is the elementary power
pow4(u) = u4. The inner expression is a sum of x2 and the constant 3.

4. The function j(x) = 2xex√
3x− 1

is a quotient of expressions 2xex and
√

3x− 1. The first expression 2xex is a product of 2x and ex; the sec-
ond expression

√
3x− 1 is a square root (a function) of the expression

u = 3x − 1, meaning this is a composition with the operation would
be
√
u. We could also think of the square root as an elementary power

function,
√
u = pow1/2(u) = u1/2.

5. The expression 5e2x is a constant multiple of 5 with e2x. the expression
e2x is a natural exponential function (base e) in composition, eu, with
the expression u = 2x.

�
Although binary operations like addition and multiplication are defined in

terms of two operands, we often see them in expressions involving more than
two terms, such as a+b+c or 3xy. By convention, the operations are performed
left to right as (a + b) + c or (3x)y. Because addition and multiplication are
commutative and associative, this order doesn’t matter; we act as if it were
one sum or one product. In calculus, however, all of the rules are based on the
binary nature of the operations. When classifying the structure of a formula,
we should identify exactly two operands.

One of the most common ways to combine expressions in mathematics is
to create a sum of constant multiples of those expressions. Such a combination
is called a linear combination. The calculus operations of limits, integrals,
and derivatives all satisfy a linearity in that they preserve linear combinations.
It is therefore useful to recognize them.

Definition 2.2.16 Given a finite set of expressions, u = (u1, u2, . . . , un), and
the same number of constants, c = (c1, c2, . . . , cn), the linear combination
of the expressions u with coefficients c is the sum of constant multiples of the
expressions

c1u1 + c2u2 + · · ·+ cnun.

♦
The non-negative integer powers of x are the powers x0 = 1, x1 = x, x2,

x3, etc. Linear combinations of non-negative integer powers establish a family
of functions called polynomials.

Definition 2.2.17 Let n be a non-negative integer. A polynomial of degree
n is a function that can be written in the form

f(x) = anx
n + · · ·+ a2x

2 + a1x+ a0,

where a0, a1, . . . , an are constants called the coefficients. The term with the
highest power anxn is called the leading term and an is called the lead-
ing coefficient. A single term akx

k is called a monomial of degree k. A
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polynomial with exactly two terms is called a binomial. ♦

Example 2.2.18 The polynomial f(x) = 3x3 + x2 − 5x + 8 is a linear com-
bination of the powers (1, x, x2, x3). The degree of the polynomial is n = 3,
and the coefficients are (c0, c1, c2, c3) = (8,−5, 1, 3). The leading coefficient is
c3 = 3. �

Example 2.2.19 Write down the polynomial f(x) of degree n = 4 with coef-
ficients (c0, c1, c2, c3, c4) = (16, 0,−8, 0, 1).
Solution. Because c1 = 0 and c3 = 0, we skip the terms with powers x1 = x
and x3. We usually write polynomials in decreasing powers, so we have

f(x) = 1x4 + 0x3 +−8x2 + 0x1 + 16x0

= x4 − 8x2 + 16.

�

2.2.3 Models From Arithmetic
Understanding how functions are constructed also helps us develop models.
When a quantity has contributions from multiple sources, we might create a
model for each source and then add the contributions. Multiplication often
combines factors that affect a single contribution. Division is used when the
quantity of interest is defined as a ratio.

Example 2.2.20 Suppose that a population of an diploid organism has a trait
characterized by a single gene. That gene has two alleles, a dominant allele
A and a recessive allele a. The dominant trait will be present in two possible
ways. Either the individual has two copies of the dominant allele (homozygous
dominant) or the individual has one copy of each allele (heterozygous). If
the population is subject to random mating that is independent of this trait,
then the probability that an individual in the next generation will exhibit the
dominant genotype can be calculated knowing the proportion of all alleles that
are dominant.

Because there are two distinct ways to exhibit the dominant genotype,
the probability of exhibiting the dominant genotype will be the sum of the
probabilities of being homozygous dominant and heterozygous. This is often
described as the sum rule of probability, which states that the probability of
some outcome that can be attained through multiple pathways is the sum of
the probabilities of each of the possible pathways. To calculate the probability
of each pathway, we use a product rule associated with sequential events. When
a pathway requires that a sequence of random outcomes occur, the probability
of that individual pathway is the product of the probabilities of the individual
outcomes along the pathway.

We can create a diagram showing all of the pathways by creating a decision
tree. An individual receives one allele from each parent. Our tree will consider
which allele is received from each parent. Let us call p the proportion of alleles
in the current generation with the dominant allele. The remaining alleles must
be recessive, and we call q = 1− p the proportion of alleles that are recessive.
The probability associated with receiving an allele from a parent will be equal
to the proportion of that allele in the population.
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a

a −→ aaq

A −→ aA

p
q

A

a −→ Aaq

A −→ AA

p

p

Figure 2.2.21 Tree showing inheritance of alleles from two parents.
There are three pathways that result in the dominant trait: AA, Aa, and

aA. The probabilities associated with each pathway are p2, pq = p(1− p), and
qp = (1−p)p, respectively. Consequently, the probability that an offspring will
have the dominant trait will be

f(p) = p2 + p(1− p) + (1− p)p.

The structure of this unsimplified formula reveals a direct relation to the tree.
A slightly simplified version,

f(p) = p2 + 2pq = p2 + 2p(1− p),

combines the two pathways resulting in a heterozygous genotype. �

Example 2.2.22 Suppose a population of plants reproduces annually and is
subject to density dependence. Density dependence typically results from the
effects of competition and crowding with other individuals. The number of
seeds each plant can produce is likely to depend on the population density.
In addition, the probability that individual seeds will germinate and grow to
maturity in the subsequent generation also depends on the population density.
If we could characterize these dependencies as functions, then we could create
a function that would predict the population size in a subsequent generation.

Let P0 represent the population size of the current generation. The sub-
script 0 refers to the number of generations in the future. We wish to create a
function f : P0 7→ P1, where P1 is the population one generation in the future.
Suppose that S0 measures the average number of seeds produced by each plant
in the current generation. The function s : P0 7→ S0 characterizes the depen-
dence of seed production on the population size so that s(P0) gives the average
number of seeds per plant in a population of size P0. Now suppose that σ(P0)
is another function that gives the success probability for an individual seed to
survive to maturity coming from a population of size P0.

We can use these elements to construct our function f(P0). The total
number of seeds produced will be the current population size P0 times the
average number of seeds produced per plant. This means that P0s(P0) gives
the total number of seeds produced. Not all seeds survive to maturity, so we
multiply this by the success probability to give

f(P0) = P0 s(P0)σ(P0).

Thus, the function used to project the subsequent generation’s population size
is constructed as a product of terms. If there were other ways that seeds could
mature to new plants, we would add similar models for those other terms. �
Example 2.2.23 At the beginning of 2018, the US national debt was 20.493
trillion dollars. At the end of the year, the debt had risen to 21.974 trillion
dollars. At the beginning of 2018, the US population was 326.2 million. A year
later, the population was 328.2 million.

Develop a model for the per capita debt as a function of time, where per
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capita debt is calculated as the ratio of the total debt to the total population
size.
Solution. The per capita debt will be the total debt D (trillions of dollars)
divided by the total population P (millions of individuals). To create a model,
we need to make some modeling choices for t 7→ D and t 7→ P , where tmeasures
the year.

The simplest model might be to use linear functions for both. For a change
in time ∆t = 1 (year), we can see that

∆D = 21.974− 20.493 = 1.481
∆P = 328.2− 326.2 = 2.0

which are also slopes (dividing by ∆t = 1 year). Consequently, our linear
models for D and P are given by

D = 20.493 + 1.481(t− 2018)
P = 326.2 + 2.0(t− 2018)

The per capita debt according to this model will be approximated by

f(t) = D

P
= 20.493 + 1.481(t− 2018)

326.2 + 2.0(t− 2018) .

We expect that populations and debt grow exponentially. Consequently,
an exponential model for our functions might be more appropriate. Using
exponential models, D = Abt and P = B at, we use our data to find equations
for the model parameters.

t = 2018 ⇒ 20.493 = Ab2018

⇒ 326.2 = B a2018

t = 2019 ⇒ 21.974 = Ab2019

⇒ 328.2 = B a2019

We might use the 2018 equations to solve for A and B,

A = 20.493
b2018

B = 326.2
a2018

Then we substitute our results into the 2019 equations:

21.974 = 20.493
b2018 b2019 = 20.493b

b = 21.974
20.493

328.2 = 326.2
a2018 a

2019 = 326.2a

a = 328.2
326.2

Our models can now be written down:

D = Abt = 20.493
b2018 bt = 20.493 bt−2018

= 20.493
(

21.974
20.493

)(t−2018)



CHAPTER 2. FUNCTIONS TO MODEL RELATIONSHIPS 121

P = B at = 326.2
a2018 a

t = 326.2 at−2018

= 326.2
(

328.2
326.2

)(t−2018)

The function for the per capita debt is then calculated as a ratio,

f(t) = D

P
= 20.493 bt−2018

326.2 at−2018

= 20.493
326.2

(
21.974(326.2)
20.493(328.2)

)t−2018

≈ 6.2823× 10−2 (1.0657)t−2018

Because we modeled the units of the debt as trillions of dollars and of the
population as millions of individuals, the units for the per capita debt is in
trillions of dollars per millions of individuals. To make sense of the units, it
would help to go back to simple units of dollars and individuals. We would
need to multiply D by 1012 to account for each debt unit representing a trillion
dollars. Similarly, we multiply P by 106 to account for each population unit
representing a million individuals. The per capita debt is the ratio, so we
multiply the numerator by 1012 and the denominator by 106, with a net effect
of multiplying by 106.

2015 2016 2017 2018 2019 2020 20210

20,000

40,000

60,000

80,000

linear
exponential

Figure 2.2.24 Models of US Per Capita Debt around 2018 in dollars per
person.

�

2.2.4 Piecewise-Defined Functions
It is often the case that we use different models for different parts of the
domain. When we introduced restricted domains, we defined functions by
stating an inequality that specified the domain. For example, the equation

f(x) = x2, x ≥ 0

defines a function with a domain [0,∞) based on the restriction x ≥ 0. If we
wanted a different rule for x < 0, say

f(x) = −x, x < 0,

then the function now has domain (−∞, 0).
Functions that do this are called piecewise-defined functions. A piecewise-

defined function allows us to specify rules on different parts of the domain. The
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notation is similar to restricted domains, but we group all of the rules with a
curly brace. The function

f(x) =
{
x2, x ≥ 0,
−x, x < 0

is defined for all values x so that the domain is (−∞,∞).

−3 −2 −1 1 2 3

2

4

(a) f(x) = x2, x ≥ 0

−3 −2 −1 1 2 3

2

4

(b) f(x) = −x, x < 0

−3 −2 −1 1 2 3

2

4

(c) f(x) =
{
x2, x ≥ 0,
−x, x < 0

Figure 2.2.25 Comparison of functions with restricted domains and a piecewise-
defined function.

Piecewise functions appear when there is a sudden change in behavior. The
income tax structure in the United States is called a graduated tax because
the tax rate increases as the amount of taxable income increases.
Example 2.2.26 For 2019, the first three IRS tax brackets for single individ-
uals are as follows:

1. If taxable income is not over $9700, then the tax is 10% of the taxable
income.

2. If taxable income is over $9700 but not over $39475, then the tax is $970
plus 12% of the excess over $9700.

3. If taxable income is over $39475 but not over $84200, then the tax is
$4543 plus 22% of the excess over $39475.

Create a piecewise function that calculates the tax given the taxable income.
Solution. The taxable income I is the independent variable. The “if” state-
ments describing the taxable income levels describe the intervals of the do-
main. The first tax bracket is for 0 ≤ I ≤ 9700, the second bracket is for
9700 < I ≤ 39475, and the third bracket is for 39475 < I ≤ 84200. Notice
how the phrase “not over” is interpreted as including the stated value. The
description of the tax amount uses percentages, which we will need to trans-
late as a decimal multiplication. In addition, the phrase “excess over” will be



CHAPTER 2. FUNCTIONS TO MODEL RELATIONSHIPS 123

interpreted as subtraction. Putting the pieces together, we create the function

f(I) =


0.10I, 0 ≤ I ≤ 9700,
970 + 0.12(I − 9700), 9700 < I ≤ 39475,
4543 + 0.22(I − 39475), 39475 < I ≤ 84200.

The function could be extended further if we had additional information for
the remaining tax brackets. �

The absolute value function is a particularly important mathematical func-
tion defined piecewise. For values that are negative, the absolute value returns
the opposite (positive) value. For zero or for values that are already positive,
the absolute value returns the original value.

Definition 2.2.27 The absolute value function is defined as

abs(x) = |x| =
{
−x, x < 0,
x, x ≥ 0.

♦

2.2.5 Summary
• Functions defined by formulas are typically constructed from elementary

functions: constant functions, the identity function, power functions,
exponential functions, logarithms, and trigonometric functions.

• Combinations of expressions can be arithmetic (sum, difference, product,
or quotient) or the composition of functions.

• An expression is classified by the last operation used to construct that
expression.

• Binary operations involving a constant operand are special cases. They
can be constructed using only constant sums, constant multiples, and
reciprocals.

• A parametrized family of functions is a set of functions that have the
same structure with different constants. The constants that can change
are called parameters.

• Common parametrized families of functions are linear, exponential, and
power functions.

Parametric Formula Description
f(x) = mx+ b linear, slope-intercept
f(x) = Axp power
f(x) = Abx exponential, general base b
f(x) = Aekx exponential, natural base e

• A polynomial is a linear combination of simple powers (1, x, x2, . . . , xn),
or, in other words, a sum of constant multiples of these powers,

f(x) = anx
n + · · ·+ a2x

2 + a1x+ a0.

The constant multiples (a0, a1, . . . , an) are called the coefficients. The
term anx

n is called the leading term.

• A piecewise-defined function uses different rules for different portions of
the domain.
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2.2.6 Exercises
1. Classify each elementary function.

(a) f(x) = π

(b) g(x) = x

(c) h(x) = xπ

(d) j(x) = πx

(e) k(x) = sin(x)
2. Classify each function according to the last operation. Then classify the

component expressions. Make note if the operation involves a constant
expression.
(a) f(x) = 4x4

(b) g(x) = 23x + 5

(c) h(x) = 35x−1

(d) j(x) = 3
√
x+ 1

x2

(e) k(x) = 4x2e3x

(f) m(x) = x2(3x− 1)
(x2 + 1)4

3. For each polynomial, determine the degree and list the coefficients.
(a) f(x) = 3x2 + 5x− 1

(b) f(x) = x3 − 2x+ 8

(c) f(x) = x4 − 1

(d) f(x) = x4 + 4x3 + 6x2 + 4x+ 1

Find the equation of the function x 7→ y, if possible, for each of the following
parametric models satisfying the states (x, y) = (0, 3) and (x, y) = (5, 9).

4. linear function
5. power function
6. exponential function
7. quadratic function of the form y = a+ bx2

8. quadratic function of the form y = ax+ bx2

Find the equation of the function x 7→ y, if possible, for each of the following
parametric models satisfying the states (x, y) = (1, 3) and (x, y) = (4, 6).

9. linear function
10. power function
11. exponential function
12. quadratic function of the form y = a+ bx2

13. quadratic function of the form y = ax+ bx2

14. a function the form y = ax

x+ b
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Use the description of each relation to create a corresponding piecewise-defined
function.

15. The marginal tax rate is the percentage rate applied to the amount of
taxable income that falls in the tax bracket. Based on the example, we
see the marginal tax rate is 10% for income no greater than $9700, 12%
for income greater than $9700 and no greater than $39475, and 22%
for income greater than $39475 and no greater than $84200. Define
the function that takes the taxable income and returns the marginal
tax rate for these three brackets.

16. Many bulk supplies are sold at a discount when enough items are pur-
chased at once. An online gem store sells packages with two amethyst
beads. If you purchase fewer than 15 packages, each package costs
$10.89. If you purchase at least 15 packages but fewer than 50, each
package costs $8.57. If you purchase at least 50 packages but fewer
than 100, each package costs $6.42. If you purchase at least 100 pack-
ages, each package costs $5.87. Define the function that takes the
number of packages ordered and returns the per package cost. Be
clear about the domain.

17. For the gem example in Exercise 2.2.6.16, define the function that
takes the number of packages ordered and returns the total cost of
the order.

18. An electronic scooter can be unlocked for $1.00 and then you are
charged $0.15 per minute of use. Partial minutes are rounded up
to the next minute, so a rental of two minutes and fifteen seconds
would be charged for three minutes or $1.45 total. Define a piecewise
function that gives the cost for rental times up to five minutes. What
is the domain?

19. A car has a gas tank that holds 12 gallons and drives 35 miles per
gallon. The owner starts with a full tank of gas, drives 300 miles,
refills the tank, and then drives another 200 miles. Define a piecewise
function that gives the amount of gas in the tank as a function of total
distance traveled. What is the domain? Are there any ambiguities?
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2.3 Chains and Function Composition
Overview. When we studied how formulas are constructed, we introduced the
idea of function composition. Composition occurs whenever a function uses an
expression rather than a simple variable as its input. In this section, we study
the application of composition in terms of creating a chain of relationships
between dependent variables. Given a complex formula that involves composi-
tion, we will learn to identify these chains. We will also consider applications
of chains using formulas, graphs, and tables.

2.3.1 Composition and Chains of Relationships
An algebraic formula typically contains many different operations. If the for-
mula involves a single variable, then that formula could be used to define a
function. The function is the map that takes a value for the variable as its
input and returns the value of the expression as the output. We could think of
the function as a new operation; the formula provides the detailed instructions
on how to perform that operation.

Composition occurs whenever the output of one function acts as the input
to another function. For example, f(x) = (ln(x))2 takes the value of x, uses
that as the input to ln, the natural logarithm, and then squares the result.
This is a composition of the logarithm function with the squaring function. If
we introduced the power function pow2(x) = x2, then the expression could be
rewritten

(ln(x))2 = pow2
(

ln(x)
)
.

The parentheses of function notation illustrate that the expression ln(x) acts
as input to the pow2 function.

Because a function should be interpreted as a map between an independent
variable and a dependent variable, we can think of function composition as
a chain of relationships between more than two variables. In our working
example, suppose we introduce the dependent variable y = (ln(x))2. The
calculation involves two steps: first we compute the logarithm, then we square
the result. The result of that first operation is an intermediate variable, most
commonly chosen as u, and we say u = ln(x). The final operation is an action
applied to u, namely y = u2. The chain of relationships could be expressed as
the system of equations {

u = ln(x),
y = u2.

The logarithm is used as the map x
ln7→ u while the squaring function is the

map u pow27→ y. The overall calculation f(x) = (ln(x))2 provides the map x f7→ y.
When functions used in a composition are named, a composition operation

is represented by a small circle between their names. For our example, we
would have f(x) = pow2 ◦ ln(x). Because the convention for function notation
places the input on the right of the function name (and inside parentheses),
the function name on the right of the circle is the inner function that defines
the intermediate variable. The function name on the left of the circle is the
outer function that completes the calculation.

Many formulas can be interpreted as compositions. To identify a composi-
tion, you need to be able to identify that the calculation performs some action
on the result of an intermediate expression. However, you need to be careful
that you are not using the original independent variable except in the inter-
mediate expression. The intermediate expression itself can appear multiple
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times. It is often helpful to try to write down a chain of variables to represent
the composition. Start by identifying the intermediate expression and assign
it to some intermediate variable, such as u. This defines the inner function.
Then try to write the original expression only in terms of the new variable,
substituting every instance of the intermediate expression by your variable.
The resulting expression is the outer function.

Example 2.3.1 Express y = 2
3(x− 2)2 + 1 as a composition.

Solution. There are multiple ways we could express our relation as a com-
position. We can interpret the order of operations as a sequence of operations
acting on the original input x.

1. Take x.

2. Take the value and subtract 2.

3. Square the result.

4. Multiply the result by 3.

5. Take the result and add 1.

6. Divide 2 by the result.

Because each step in the operation takes the result of all prior steps, we could
define the intermediate expression after any of the operations.

Suppose we define the intermediate operation to be all of the steps through
squaring the result. Our intermediate variable defines our inner function,

u = g(x) = (x− 2)2.

The remaining steps in our description describe the outer function.

1. Take u.

2. Multiply the value by 3.

3. Take the result and add 1.

4. Divide 2 by the result.

As an equation, this becomes

y = h(u) = 2
3u+ 1 ,

which exactly corresponds to replacing the expression (x − 2)2 in the origi-
nal equation with the intermediate variable u. The composition defines the
equation

y = h ◦ g(x).

Choosing a different expression for our intermediate variable results in a
different choice for the composition. For example, if we had chosen an inner
function to be

u = p(x) = x− 2,

then the outer function would need to be

y = r(u) = 2
3u2 + 1 .
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Thus, we also have y = r ◦ p(x). Similarly, if we had chosen

u = Q(x) = 3(x− 2)2 + 1

then our outer function would be

y = S(u) = 2
u

to give y = S ◦Q(x). �

Did you ever have to learn about an algebra topic completing the square?
If so, did you find yourself asking the question “Why are we doing this?” One
answer could be that a quadratic expression is not written in a way that it can
be interpreted as a composition, but after completing the square it is.

Example 2.3.2 Consider the expression x2 + 6x− 3. The expression is not a
composition because it involves addition of two unrelated terms that involve the
variable x. Completing the square is a strategy where the expression involving
only the x2 and x terms is recognized as matching the corresponding terms of a
squared binomial term. In this case, because 6÷ 2 = 3, we see that x2 + 6x− 3
has the same x2 and x terms as (x+ 3)2 = x2 + 6x+ 9. Consequently, because
we now know that

x2 + 6x = (x+ 3)2 − 9,

we can write
x2 + 6x− 3 = (x+ 3)2 − 12.

This new representation expresses our quadratic as the composition of three
simple operations: adding 3, squaring, and subtracting 12. �

When we are given two functions and compute their composition, we use
substitution to simplify our work. It is important to think about inputs and
outputs of functions. Function notation is about substitution, using whatever
expression appears as the input in place of the independent variable. Be careful
that you don’t think about multiplying by a function—we apply a function.
Otherwise, you are liable to make algebra errors.

Example 2.3.3 Suppose f(x) = 2x2− 1 and g(x) = 2x+ 5. Compute f ◦ g(x)
and g ◦ f(x).
Solution. Because function notation has the input on the right, composition
places the inner function to the right and the outer function to the left. We
start with f ◦ g(x) = f

(
g(x)

)
. Using the idea of a chain, we have an interme-

diate variable u = g(x) = 2x + 5. The composition asks for f(u) = 2u2 − 1,
substituting the independent variable with u. When we substitute the inner
function in place of u, we get

f ◦ g(x) = f(u) = 2(2x+ 5)2 − 1.

Notice how the expression replacing u is placed inside parentheses.
Next, we find g ◦ f(x). We now have an intermediate variable u = f(x) =

2x2 − 1. The outer function then compute g(u) = 2u+ 5. Using substitution,
this gives

g ◦ f(x) = g(u) = 2(2x2 − 1) + 5.
Once we have our expression using substitution, we could expand and sim-

plify the results:

f ◦ g(x) = 2(2x+ 5)2 − 1 = 8x2 + 40x+ 49
g ◦ f(x) = 2(2x2 − 1) + 5 = 4x2 + 1
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This example should make it clear that the order of composition is important.
�

2.3.2 Linking Maps through Chains
Composition corresponds to linking functions together, with the output of one
function becoming the input to another function. In the context of a physical
system, we are considering where the state involves multiple variables, say
(A,B,C, . . .). Suppose we know one function, f : A 7→ B, that determines
the value of B knowing the value of A. Then suppose know another function,
g : B 7→ C, that predicts the value of C from the value of B. If we link
these together in a chain, we can start with a value of A, compute the value
of B = f(A), and then use that value of B to compute the value of C = g(B).
Together, this composition creates a map g ◦ f : A 7→ C. Using substitution,
we have C = g

(
f(A)

)
, the output of f becoming the input to g.

A
a

B
b

f

C
c

g

The following dynamic figure allows us to explore how composition links
two functions together in a chain. The first (inner) function or map is g : x 7→
u = x + 3. The second (outer) function is f : u 7→ y = u2. As you change
the value of the input x, you can see where the functions map. The combined
action f ◦ g(x) = (x+ 3)2 represents a single function that is the composition
of the steps.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.3.4 f ◦ g(x) = (x+ 3)2

In the preceding subsection, we looked at composition in terms of formulas.
Maps between variables can also be represented in tables and graphs. We can
interpret composition by thinking through the relations between variables as
we work through the linked maps.

Example 2.3.5 Suppose f and g are functions defined (at least partially)
according to the following table. Find each of the following values.

1. f ◦ g(2)

2. g ◦ f(2)

3. f ◦ f(4)

4. g ◦ g(0)
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x f(x) g(x)
-4 2 4
-3 3 1
-2 2 -1
-1 1 -2
0 0 -3
1 -1 0
2 -2 2
3 -3 3
4 -2 4

Solution. When evaluating a function with the table, notice that the columns
for f(x) and g(x) use an independent variable x. This means that we will find
the input value in the x column and then find the corresponding out value in
the function’s column.

1. To find f ◦ g(2), we expand the substitution f ◦ g(2) = f
(
g(2)

)
. The

inner function is evaluated first to find g(2) = 2. That is, we find 2 in
the column for x (placeholder for the input), and looking in the column
of g(x) we find 2 as the output. This output is used in the chain linking
the function as the input for f ,

f
(
g(2)

)
= f(2) = −2.

2. To find g ◦ f(2), we will expand g ◦ f(2) = g
(
f(2)

)
. We start with the

inner function f(2) = −2. We then use the output as the input of the
outer function, g(−2) = −1. Consequently,

g
(
f(2)

)
= g(−2) = −1.

3. Continuing this pattern, we have

f ◦ f(4) = f
(
f(4)

)
= f(−2) = 2.

4. Similarly, we have

g ◦ g(0) = g
(
g(0)

)
= g(−3) = 1.

�

Example 2.3.6 Suppose f and g are functions with graphs as shown below.
Find each of the following values.

1. f ◦ g(2)

2. g ◦ f(2)

3. f ◦ f(2)

4. f ◦ g ◦ g(0)
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−4 −2 2 4
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y = f(x)

−4 −2 2 4
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4

x

y = g(x)

Solution. To evaluate a function when given a graph, we find the value of
the input along the x-axis. This is analogous to looking in the column of x
in a function’s table. Once we find the x-value, we imagine a vertical line at
that point and find the point that is included in the graph that intersects our
line. If there is no point included in the graph, then the value of x is not in
the domain. For composition, we will use the original input to evaluate the
inner function. Once we know the output value, we will use that result when
we evalute the outer function.

1. To evaluate f ◦ g(2) = f
(
g(2)

)
, we evaluate g(2) using the graph on the

right. The vertical line at x = 2 intersects our graph at the point (2,−1),
so we have g(2) = −1. Using that output as the input of f , we find
x = −1 on the x-axis of the graph on the left. The vertical line intersects
that graph at (−1, 3) so that f(−1) = 3. Putting this together gives

f
(
g(2)

)
= f(−1) = 3.

2. When we evaluate g ◦f(2), we repeat the process but with f as the inner
function and g as the outer function.

g ◦ f(2) = g
(
f(2)

)
= g(−3) = 3.

3. When we evaluate f ◦ f(2), the same function is used as the inner and
outer function. This means that when we find the output f(2) = −3, we
use the same function to evaluate f(−3) = −3. Consequently, we have

f ◦ f(2) = f
(
f(2)

)
= f(−3) = −3.

4. When an expression has more than one composition, we proceed through
the chain from the inside out. The expression f ◦g◦g(0) has an innermost
function g. The vertical line x = 0 intersections the graph of g at the
point (0, 1). The open points at (0, 0) and (0, 2) represent end-points of
the graph segments immediately to the left and to the right of the point
but are not included as actual points. Consequently, g(0) = 1 which is
now the input of the next g operation. We have

f ◦ g ◦ g(0) = f ◦ g(1) = f(2) = −3.

�

2.3.3 Applications of Composition
In modeling settings, composition arises in the context of chains of related
variables. Whenever we model relationships between variables, we ideally cre-
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ate functions to describe these relations. A chain occurs when we know a
relation between, say, A and B and another relation between B and C. Each
of these relations might be based on observations or experiments. The chain
allows us to identify a relation between A and C, even if a direct observation
or experiment is not possible or convenient.

Example 2.3.7 The radius r, circumference C, and area A of a circle are all
related. The equation C = 2πr defines C as a function of r and the equation
A = πr2 defines A as a function of r. Use composition to define the function
C 7→ A.
Solution. The final output should be area A, which we can compute if we
know r. We can use the relation between C and r to solve for r as a function
of C. That is, we want to create a composition of C 7→ r and r 7→ A.

C = 2πr
C

2π = r

This equation defines C 7→ r, so that we have a chain

r = C

2π ,

A = πr2.

Composition corresponds to substitution of r by its formula,

A = πr2 = π
( C

2π

)2
= πC2

22π2 = C2

4π .

�

Example 2.3.8 Suppose you are blowing up a balloon with air. What is the
radius of the balloon as a function of time?
Solution. The question is intentionally somewhat vague in order to illustrate
the modeling process. Without more information, the question is ill-posed and
there is not a clear answer. What simplifying assumptions could we make that
will allow us to create a reasonable answer?

1. What shape is the balloon? We could make a simplifying assumption
that it is approximately a sphere.

2. How fast is air being added? If we pretend to blow air in a balloon, we
can time how long each breath takes. With a quick internet search, we
can discover the typical amount of air blown per breath.

3. Keep things steady. It adds complications to the process if we try to
account for inhaling between breaths or slowing down because we are
tired. Let us replace human breaths blowing up the balloon with a model
that would correspond to steady airflow that matches the average rate of
filling.

With our assumptions identified, we can start to establish our model using
equations. A sphere has a relationship between volume and radius according
to the equation V = 4

3πr
3. Because we want the radius r as the final output

variable, we need V 7→ r which we find by solving for r.

r = 3

√
3V
4π =

(
3V
4π

)1/3
.
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Our information about filling the balloon will give us a model for t 7→ V . I
found a result showing that there is about 1/2 liter of air exhaled in a breath,
which corresponds to 500 cm3. With a timer, I approximated that each steady
blow takes about 5 seconds, including inhalation to prepare for the next breath.
This means that the balloon is gaining 100 cm3

s . If air flows at a steady rate,
the relation t 7→ V is linear and starts at V = 0 when t = 0. This gives us our
second function in the chain,

V = 100t.

The composition of the chain t 7→ V 7→ r will give us a model for t 7→ r, which
we create using substitution:

r = 3

√
300t
4π .

�
Our examples have included questions where a function was composed with

itself. This actually occurs in practical settings, such as where a function maps
from the value of some quantity to the value of the same quantity at a later
time.
Example 2.3.9 A population’s growth and decline depend on how the popula-
tion size relates to its carrying capacity. If the population is below its capacity,
then abundance of resources will lead the population to grow. If the popula-
tion is too large, then physical constraints will cause the population to decline.
Mathematical ecologists study possible behaviors for populations through the
use of projection functions. A projection function maps the value of the
population size at one time to the next observed population size. That is,
knowing the size of the population this year, a projection function allows us to
predict the population size next year. Composition of the function with itself
then allows us to predict two years away.

Suppose the size of a population (in thousands) has been modeled by an
annual projection function f(x) = 1.6x− 0.32x2. If the population is currently
400, what will it be next year? in two years? What is the function that projects
the population size two years from the present?
Solution. A population of 400 corresponds to a current population value
x = 0.4 (thousands). The projection function uses this value to predict one
year into the future. When we evaluate the function, we find

f(0.4) = 1.6(0.4)− 0.32(0.4)2 = 0.5888,

corresponding to a population prediction of 588.8. If we use the function again
with an input x = 0.5888, the function will predict one year from next year, or
two years away. This gives

f(0.5888) = 1.6(0.5888)− 0.32(0.5888)2 ≈ 0.83114.

The model therefore predicts approximately 589 individuals in one year and
831 individuals the next year. (The calculation stays exact; the interpretation
rounds.)

We found the projected population in two years through composition f ◦
f(0.4) ≈ 0.83114. The process of computation would be the same for any cur-
rent population value x. Consequently, we can create a function that projects
the population size in two years by computing the composition f ◦ f(x) using
substitution.

f ◦ f(x) = f
(
f(x)

)
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= f(1.6x− 0.32x2)
= 1.6(1.6x− 0.32x2)− 0.32(1.6x− 0.32x2)2

We have replaced each x in the formula 1.6x − 0.32x2 with the expression
1.6x−0.32x2. We can use a computer to help expand and simplify this algebraic
formula,

f ◦ f(x) = 2.56x− 1.3312x2 + 0.32768x3 − 0.032768x4.

f(x) = 1.6*x - 0.32*x^2
show( f(f(x)).expand ().simplify () )

�

2.3.4 Summary
• A chain of related variables is where knowing A you can predict B, and

knowing B you can predict C, and so on. Composition is using A and
the chain to find C.

• Composition f ◦ g is evaluation of the outer function f with an input
using the output of the inner function g,

f ◦ g(x) = f
(
g(x)

)
.

As maps, if g : x 7→ u and f : u 7→ y, then

x
f◦g7→ y = x

g7→ u
f7→ y.

2.3.5 Exercises

Rewrite each function as a nontrivial composition of two functions. (Nontrivial
means that neither function should be the identify function x 7→ x.)

1. f(x) = (x2 − 4x)5

2. f(x) =
√

3x+ 1

3. f(x) = 4e−x2

4. f(x) = 2 sin(3x) + 1

5. f(x) = 2
(ex + 1)2

6. f(x) =
√
x− 3√

x

7. f(x) = sin2(x) + 4 sin(x) + 3

8. f(x) = ex − e−x

ex + e−x

Using the given functions, compute and simplify the expressions listed.
9. Given p(x) = x2 − 1 and r(x) = 2x+ 1.

(a) p ◦ r(x)

(b) r ◦ p(x)

(c) p ◦ p(x)



CHAPTER 2. FUNCTIONS TO MODEL RELATIONSHIPS 135

(d) r ◦ r(x)
10. Given k(x) = ex and h(x) = 1− x2.

(a) k ◦ h(x)

(b) h ◦ k(x)

(c) k ◦ k(x)

11. Given C(x) = 2
x− 3 and D(x) = e1/x.

(a) C ◦D(x)

(b) D ◦ C(x)

(c) D ◦D(x)
12. Given f and g defined by the table below and h(x) = 2x− 1.

x −4 −3 −2 −1 0 1 2 3 4
f(x) 4 1 2 0 −2 3 −1 −3 −4
g(x) 2 −2 4 3 −3 −1 0 1 −4

(a) f ◦ g(2)

(b) g ◦ f(−2)

(c) f ◦ f(−2)

(d) f ◦ h(2)

(e) h ◦ g(1)
13. Given f and g defined by the graphs below.

−4 −2 2 4

−4

−2

2

4

x

y = f(x)

−4 −2 2 4

−4

−2

2

4

x

y = g(x)

(a) f ◦ g(3)

(b) g ◦ f(3)

(c) f ◦ g(1)

(d) g ◦ f(1)

(e) f ◦ g(−3.25)

(f) g ◦ f(−1.25)

Applications
14. The perimeter P and area A of a square are each functions of the

length of the sides s by P = 4s and A = s2. Find perimeter as a
function of area, P 7→ A.

15. The volume of a sphere is related to the radius of the sphere by the
equation V = 4

3πr
3. Suppose the radius is a function of time defined
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by r = 1 + 2t. Find the volume as a function of time, t 7→ V .
16. The cost C of materials for a project depends on the required area

A of materials needed. The unit price is $3.50 per m2. The project
involves making two squares, each of them having sides with length s
(meters).

(a) Find A f7→ C.

(b) Find s g7→ A.

(c) Use composition to find s 7→ C. Is this f ◦ g or g ◦ f?

(d) How much would a project with s = 4 cost? How much area
of materials will be required? What function is used for each
calculation?

17. The density of plants (number of plants per square meter) on a plot
of land from year to year has been modeled by the projection function
f(x) = 2.8x−0.18x2. The plot in the current year is observed to have
3.50 plants per square meter.
(a) What is the predicted density of plants in one year?

(b) What is the predicted density of plants in two years?

(c) What is the predicted density of plants in three years?

(d) Find the function that predicts the density of plants two years
from the present.
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2.4 Inverse Functions
Overview. A function defines a map from one variable A to another variable
B, A 7→ B. In the context of the function, we call A the independent variable
and call B the dependent variable. Knowing A, the function provides the rule
to determine B. There are times when knowing B, we wish to find the value
of A. This corresponds to using the function to solve an equation. When each
value of B results in only a single value of A, the relation defines a new function
B 7→ A. In this case, the inverse relation is called the inverse function.

This section discusses the general concept of inverse functions. We will
learn to compute inverse functions for given functions by solving equations
and by interpreting tables and graphs. Because not all functions are defined
by equations that can be solved, the definition of an inverse function will need
to be more general and will involve function composition. We will identify
attributes of functions that indicate if an inverse function exists. The calibra-
tion of instruments using standardized measurements will illustrate a practical
application of inverse relations.

2.4.1 Finding Inverse Functions
When we think of a function as a map between variables, say f : A 7→ B, we
think of f as the rule that goes from an input value on the A number line
to a corresponding predicted output value on the B number line. An inverse
function would be a rule that goes in the reverse direction, B 7→ A. A function
and its inverse function allow us to go back and forth between the two variables
in either direction.
Definition 2.4.1 A function representing a map f : A 7→ B has an inverse
function, which we write f−1 : B 7→ A, if the equation f(a) = b is equivalent
to f−1(b) = a for every state (A,B) = (a, b). ♦

We first illustrate the idea of an inverse function with a function defined
by a simple map and no formula.

Example 2.4.2 Imagine a theater that has a promotional wheel so that the
price of a ticket is based on which number you spin. The prices are listed in
the table below.

Spin Price
1 $2
2 $5
3 $8
4 $10

We introduce variables for the system. Let S represent the result of the
spin and let P represent the price of a ticket. The map f : S 7→ P can be
visualized using number lines. It represents the idea that if you know what
spin was achieved, then you will be able to know the price of the tickets.

S
1 2 3 4

P
2 5 8 10

f

The inverse map f−1 : P 7→ S reverses the direction of the arrows. The
inverse indicates that knowing the price of the tickets is enough information to
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know the result of the customer’s spin.

S
1 2 3 4

P
2 5 8 10

f−1

Based on this system, we see that f(1) = 2 because when S = 1 we have
P = 2. The equivalent inverse equation is f−1(2) = 1 because a price P = 2
comes from S = 1. Similarly, f(2) = 5 and f−1(5) = 2 are equivalent. Because
the system is defined by the table and not a formula, f(5) and f−1(3) each
have no meaning. In the first case, f(5) has no meaning because S = 5 is not
a possibile spin. In the second case, f−1(3) has no meaning because P = 3 is
not a possible ticket price. �

You might have realized a possible problem. What happens if two input
values map to the same output value? We wouldn’t know which arrow to follow
for the reverse mapping. A function that guarantees that different input values
always have different output values is called one-to-one. A function that is
not one-to-one has at least one value that is the output to two or more different
input values.

Theorem 2.4.3 If a function f : A 7→ C is one-to-one, then the inverse
f−1 : C 7→ A is also a function. If f is not one-to-one, then the inverse
relation is not a function.

When an algebraic equation defines the relation between the variables, we
can attempt to solve the equation for either of the variables. If both variables
can successfully be written as dependent variables, the corresponding formulas
define the inverse functions.
Example 2.4.4 A rope of length 100 centimeters is cut into exactly five pieces
Two of the pieces are of one length, and the other three pieces are of another
length. Let d be the length of the ropes in the group of two. Let t be the
length of the ropes in the group of three.

Find the functions f : d 7→ t and g : t 7→ d. Interpret the meaning of f(10)
and g(10).
Solution. We start by finding an equation relating d and t. The total length
of the five pieces of rope added together must equal the original length of rope.
This results in an equation

2d+ 3t = 100.

With this equation, we can solve for each of the state variables in turn.
Solving for d, we subtract 3t and divide by 2:

d = 100− 3t
2 .

Solving for t, we subtract 2d and divide by 3:

t = 100− 2d
3 .

The function f was defined as the map d 7→ t, so we use the equation with
t as the dependent variable,

t = f(d) = 100− 2d
3 .
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We can find and interpret f(10). With 10 as an input, we find f(10) =
100−2(10)

3 = 80
3 = 26 2

3 . To interpret this, we recall that the input represents
a value for d. The equation represents the state d = 10 and t = 262

3 If the
group of two has length 10 centimeters, then the group of three has length 26 2

3
centimeters.

The function g was defined as the map t 7→ d, so we now use the equation
with d as the dependent variable,

d = g(t) = 100− 3t
2 .

With t = 10 as an input, we find g(10) = 100−3(10)
2 = 70

2 = 35. The function
tells us that d = 35 when t = 10. The group of two has length 35 centimeters
whenever the group of three has length 10 centimeters.

The functions f and g are inverse functions to each other. If we used a
placeholder variable instead of the state variables, we would write

f(x) = 100− 2x
3

with its inverse function

f−1(x) = g(x) = 100− 3x
2 .

Similarly, g−1(x) = f(x). �

A function might be defined through a graph. You may remember some-
thing about the graph of the inverse being a reflection of the graph of the
original. The following example will help clarify where that idea originates.

Example 2.4.5 Consider the function defined by the following table. Create
a table representing the inverse function. Compare the graphs of the function
and its inverse.

x −4 −3 −2 −1 0 1 2 3 4
f(x) 4 2 1 0.5 0 −0.5 −1 −2 −4

Solution. Functions represent maps between variables, so let us say that
f : A 7→ B. This gives us a physical interpretation of the values in the table.
The row for x corresponds to values of the inputA. The row for f(x) correspond
to values of the output B. If we were to relabel our table with our variables,
we would create the following table.

A −4 −3 −2 −1 0 1 2 3 4
B 4 2 1 0.5 0 −0.5 −1 −2 −4

An inverse function f−1 would be the map B 7→ A. The row associated
with B now represents the independent variable while the row for A represents
the dependent variable. Because we usually sort the values of the independent
variable, we would reorder the columns while keeping the states for (A,B)
together.

x = B −4 −2 −1 −0.5 0 0.5 1 2 4
f−1(x) = A 4 3 2 1 0 −1 −2 −3 −4

A graph of the function is formed by points created from ordered pairs.
The graph y = f(x) corresponds to points (x, y) = (A,B), because f : A 7→ B.
The graph y = f−1(x) corresponds to points (x, y) = (B,A), because f−1 :
B 7→ A. For example, the state (A,B) = (−1, 0.5) corresponds to the point
(x, y) = (−1, 0.5) on the graph y = f(x) and to the point (x, y) = (0.5,−1) on
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the graph y = f−1(x). This state is highlighted using a star in the graphs of
the two functions below.

−4 −2 2 4

−4

−2

2

4

x = A

y = f(x) = B

−4 −2 2 4

−4

−2

2

4

x = B

y = f−1(x) = A

�
From our example, we see that the graph of an inverse function takes each

point on the graph of the original function and reverses the role of the coor-
dinates. Reversing the coordinates of every point in the graph geometrically
corresponds to reflecting the graph across the line y = x. This result can help
us remember graphs of inverse pairs.

Example 2.4.6 The graph of y = 2x is fairly easy to construct. It is expo-
nential growth that doubles every integer increment of x. So we include, for
example, the points (0, 1), (1, 2), and (2, 4). The inverse function of the expo-
nential is the logarithm with base b = 2. The graph of the logarithm is the
reflection of the exponential graph across y = x and includes the corresponding
points (1, 0), (2, 1), and (4, 2).

−4 −2 2 4

−2

2

4

6

x

y = 2x

−2 2 4 6

−4

−2

2

4

x

y = log2(x)

�
Now consider a function that is defined as a composition of operations.

When we solve the equation to find the inverse function, we will discover that
the inverse corresponds to applying the inverses of the original operations in
the reverse order.

Example 2.4.7 Consider the function f(x) = 5
3x+ 2 corresponding to a map

a
f7→ b = 5

3a+ 2 .

The inverse function is found by solving for a in the equation. Cross-multiplying
the equation gives

b(3a+ 2) = 5.

Dividing by b then gives
3a+ 2 = 5

b
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from which we get

a =
5
b − 2

3 .

Although we would normally simplify this equation, we have successfully
solved for a and so have a formula for the inverse,

b
f−1

7→ a =
5
b − 2

3 .

To simplify the fraction so that there is not a fraction in the numerator, we
can multiply top and bottom by the value b giving

a = 5− 2b
3b = 5

3b −
2
3 .

Using a placeholder variable, like x, instead of the physical variables a and b,
the pair of inverse functions are

f(x) = 5
3x+ 2 ,

f−1(x) =
5
x − 2

3 = 5
3x −

2
3 .

�
Let us consider the operations involved in the previous example. The func-

tion f(x) = 5
3x+ 2 involved the following sequence of operations:

1. Take the value of x.

2. Multiply by 3.

3. Add 2.

4. Divide 5 by the result.

The inverse function f−1(x) =
5
x − 2

3 did the inverse operations in the reverse
order:

1. Take the value of x.

2. Divide 5 by the value.

3. Subtract 2.

4. Divide by 3.

This should make sense. Solving the equation for the original independent
variable is accomplished by starting at the end and working backwards. This
is summarized in the following theorem. The proof captures the idea of solving
the equation by working in reverse.

Theorem 2.4.8 Suppose f(x) = g ◦ h(x) and g and h each have inverse
functions. Then f−1(x) = h−1 ◦ g−1(x).
Proof. The composition corresponds to a chain. Suppose the independent
variable is a and the ultimate dependent variable is c so that f : a 7→ c. Then
there is an intermediate variable b = h(a) so that c = g(b). The inverse function
f−1 is the map going from c to a, f−1 : c 7→ a. Because g has an inverse and
c = g(b), we can apply c 7→ b = g−1(c). Then, because h has an inverse and
b = h(a), we can similarly apply b 7→ a = h−1(b). Combining the chain, we
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have
a = h−1(b) = h−1(g−1(c)

)
= h−1 ◦ g−1(c).

The result follows by using a generic independent variable x. �

2.4.2 Inverse Functions and Composition
When we discussed inverse functions earlier in (((Unresolved xref, reference
"subsection-inverse-functions"; check spelling or use "provisional" attribute))) ,
we thought of them as inverse maps. Given an equation defining the map x 7→
y, if we could solve the equation for the input x as a single expression involving
y, then this new equation defined the inverse function. Inverse functions undo
one another’s operations.

Let us consider the calculations involved in the previous example. The
function f took an input and performed the following operations in order:

• Multiply by 3.

• Add 2.

The inverse function f−1 took an input and performed related operations:

• Subtract 2.

• Divide by 3.

The functions are inverse because they will exactly undo one another’s opera-
tions.

Consider what happens if you create a chain and apply f−1 immediately
after f :

• Multiply by 3.

• Add 2.

• Subtract 2.

• Divide by 3.

The middle two steps cancel one another’s effects, so this would be the same
as the simpler chain of steps:

• Multiply by 3.

• Divide by 3.

Again, the operations cancel each other out. The output will always be the
same as the original input,

f−1 ◦ f(x) = x.

The following interactive figure shows this composition as a chain of maps.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.4.9 Composition y = f−1◦f(a), corresponding to chain a f7→ b
f−1

7→ y.
As the functions are inverses, this always yields y = a.

A composition in the reverse order, f ◦ f−1(x), also results in exact cancel-
lation.
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A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.4.10 Composition y = f ◦ g(b), corresponding to chain b g7→ a
f7→ y.

As the functions are inverses, this always yields y = b.
Simplifying the composition of inverse functions algebraically reveals the

cancellation directly.

Example 2.4.11 For f(x) = 3x+2 and f−1(x) = x− 2
3 compute and simplify

f ◦ g(x) and g ◦ f(x).
Solution. Using substitution and algebraic simplification, we find the values
requested.

f ◦ g(x) = f
(
g(x)

)
= f

(x− 2
3

)
substitute g(x)

= 3
(x− 2

3

)
+ 2 substitute f(�)

= x− 2 + 2 = x

g ◦ f(x) = g
(
f(x)

)
= g
(
3x+ 2

)
substitute f(x)

= (3x+ 2)− 2
3 substitute g(�)

= 3x
3 = x

�
Inverse functions will always simplify in this way: the composition of inverse

functions cancel to just leave the input. Functions are not always defined
by an equation, so we shouldn’t define inverses through solving equations.
Mathematicians actually define inverse functions in terms of the property of
composition.

Definition 2.4.12 Two functions f and g are inverses of one another, and we
write g = f−1 and f = g−1, if for every x in the domain of g, we have

f ◦ g(x) = f
(
g(x)

)
= x,

and for every x in the domain of f , we have

g ◦ f(x) = g
(
f(x)

)
= x.

♦
It is time for a comment about real variables. In science, variables repre-

sent physical measurements and the variables are the objects of study. These
variables can be related by functions. However, in mathematics, it is the func-
tion itself that is being studied. For simplicity, mathematics textbooks have
adopted an approach where x is almost universally the independent variable
of every function and y is the dependent variable. This makes it easier to
remember the role each variable plays, but it can lead to confusion in actual
applications.
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Example 2.4.13 An enzyme is a protein that helps catalyze a chemical reac-
tion. For many enzymes, the rate of reaction R and the concentration of the
reactant C satisfy a relation called Michaelis-Menten kinetics

R = aC

C +K
,

where a and K are parameters that characterize the particular reaction. Phys-
ically, we require C ≥ 0. In mathematics, this relation might be characterized
by a function

f(x) = ax

x+K
.

We would then say R = f(C). This is equivalent to mapping notation

C
f7→ R = aC

C +K
.

To find the inverse function, most mathematics textbooks say to write y =
f(x), switch all x and y and then solve for y. The only reason to switch the
variables is to preserve x as the independent variable of the relation. This is
an artificial requirement. We might as well just solve for C as a function of R.
Start by cross-multiplying to eliminate the denominator in the equation.

R = aC

C +K

R(C +K) = aC

RC +KR = aC

Because we are solving for C, we need to collect C terms on one side of the
equation and then factor.

RC − aC = −KR
C(R− a) = −KR

C = −KR
R− a

Multiplying the numerator and denominator each by −1, we get an equivalent
and simpler explicit function

R
g7→ C = KR

a−R
.

As the functions come from the same relation, we know g = f−1.
This equation shows that C is the dependent variable and is a function

of the independent variable R. Mathematically, using x as the independent
variable, we would have written

f−1(x) = Kx

a− x
.

However, this equation loses the context of what the input variable x and the
output value represent. In applications, it is better to include the variables so
that their interpretation can be preserved. �

Recall that the composition of inverse functions should result in the input
of the inner function. Consider how that applies in the context of actual vari-
ables. Recall the earlier example relating a reaction rate R and the reactant
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concentration C. We had inverse functions C f7→ R and R
g7→ C. Composi-

tion applies these operations one immediately after the other, with the inner
function applied first. Composition f ◦ g applies g to the input followed by f ,
which would be written in mapping notation with the variables as

R
g7→ C

f7→ R.

The original input is the value R and the final output is also the value R. So
the comoposition is equal to the original input. Algebra should verify that this
actually works.

Example 2.4.14 For the inverse functions of Michaelis-Menten kinetics,

C
f7→ R = aC

C +K
,

R
g7→ C = KR

a−R
,

show that the composition of functions cancel.
Solution. To compute f ◦ g(x), we use g(x) as the input to f . Using mean-
ingful variables, g takes a reaction rate as input, so we compute f(g(R)) and
simplify. Recall that function evaluation is just substitution of the input in a
formula.

f
(
g(R)

)
= f

( KR
a−R

)
=

a
(
KR
a−R

)(
KR
a−R

)
+K

We replaced the C as input to f with the formula for g(R). To simplify this,
we can clear the denominator of the fractions inside the fraction by multiplying
numerator and denominator by (a−R).

f
(
g(R)

)
=

a
(
KR
a−R

)
(a−R)(

KR
a−R +K

)
(a−R)

= aKR

KR+K(a−R)

= aKR

KR+Ka−KR

= aKR

Ka
= R

Using the placeholder variable x, we have f ◦ g(x) = x, as required for inverse
functions.

The algebraic verification that g undoes the evaluation of f ,

C
f7→ R

g7→ C,

follows a similar calculation. To compute g ◦ f(x), we use f(x) as the input
to g. In context, f takes a reactant concentration C as input, so we compute
g(f(C)) and simplify.

g
(
f(C)

)
= g
( aC

C +K

)
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=
K
(
aC
C+K

)
a−

(
aC
C+K

)
=

K
(
aC
C+K

)
(C +K)(

a− aC
C+K

)
(C +K)

= aKC

a(C +K)− aC

= aKC

aC + aK − aC

= aKC

aK
= C

�

2.4.3 Summary
• A function is a relation between an independent variable (input) and a

dependent variable (output) such that for each value of the input, there
is exactly one value for the output.

• An equation in two variables defines a relation. When we can solve the
equation for one variable (dependent) as a single expression of the other
variable (independent), the expression defines an explicit function.

• A linear function x 7→ y is a relationship between variables that have a
constant rate of change. The rate of change equals the slope between two
states (x1, y1) and (x2, y2) and is the ratio of the change in the output
to the change in the input:

m = ∆y
∆x = y2 − y1

x2 − x1
.

• Function mapping notation x f7→ y indicates that y is a function of x and
f is the name of the function.

• Function evaluation notation f(�) uses substitution of whatever appears
between the parentheses (�) in place of the independent variable.

• Composition f ◦ g is evaluation of the outer function f with an input
using the output of the inner function g,

f ◦ g(x) = f
(
g(x)

)
.

As maps, if g : x 7→ u and f : u 7→ y, then

x
f◦g7→ y = x

g7→ u
f7→ y.

• Two functions f and g are inverses of one another if f ◦ g(x) = x for all
x in the domain of g and g ◦ f(x) = x for all x in the domain of f . This
means that inverse functions cancel one another when applied in a chain:

f ◦ f−1(x) = x and f−1 ◦ f(x) = x.

• If an equation can be solved for each variable in terms of the other (e.g.,
x 7→ y and y 7→ x), the relation is one-to-one. The two resulting functions
are inverse functions.
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2.4.4 Exercises

For each equation, determine if the relation defines functions x 7→ y and y 7→ x
by solving the equation for the dependent variable.

1. For the equation 3x− 5y = 10, do the following.
(a) Determine if x 7→ y.

(b) Determine if y 7→ x.
2. For the equation 2xy − 6 = 4x− 3y, do the following.

(a) Determine if x 7→ y.

(b) Determine if y 7→ x.
3. For the equation 6x+ 4y − 3xy = 0, do the following.

(a) Determine if x 7→ y.

(b) Determine if y 7→ x.
4. For the equation x2 + 3y = 25, do the following.

(a) Determine if x 7→ y.

(b) Determine if y 7→ x.

Given a function, compute and simplify the expressions listed.
5. Suppose f(x) = 2

3x+ 4. Simplify each of the following expressions.
(a) f(5)

(b) f(t)

(c) f(t2 − 1)

(d) 3f(2x)− 8

6. Suppose g(x) = 4
x+ 1 . Simplify each of the following.

(a) g(1)

(b) g( 1
x )

(c) 1
g(x)

(d) g
( 1
x − 1

)
7. Suppose f(x) = 2x− 5, g(x) = 1

2x+ 5, and h(x) = 1
2 (x+ 5). Simplify

each of the following.
(a) f ◦ g(x)

(b) f ◦ h(x)

(c) g ◦ f(x)

(d) g ◦ h(x)

What conclusion can be drawn?

8. Suppose f(x) = 3
x+ 2 and g(x) = 3

x
− 2. Simplify each of the follow-
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ing.
(a) f(x− 2)

(b) g( 1
x )

(c) f ◦ g(x)

(d) g ◦ f(x)

Is g = f−1?

Applications
9. Let C be the temperature measured in degrees Celsius, and let F

be the temperature measured in degrees Fahrenheit. The function
g(x) = 9

5x + 32 defines the map g : C 7→ F , and h(x) = 5
9 (x − 32)

defines h : F 7→ C.
(a) Use algebra to verify that g and h are inverse functions.

(b) What is the value and interpretation of g(30)?

(c) What is the value and interpretation of g ◦ h(30)?
10. A spring force scale uses the distance a spring is stretched to determine

the force that is applied to the spring. We calibrate the scale by using
known forces (e.g., weights) and record the corresponding location of
the tip on a ruler. Let F be the force (Newtons) applied to the spring
and let L be the corresponding location (centimeters). The following
table is used for calibration.

F (N) 0 10.0
L (cm) 20.0 42.5

(a) Find a linear equation relating the variables F and L.

(b) Determine functions g and h so that F g7→ L and L h7→ F . What
are the corresponding equations using evaluation notation?

(c) Suppose a force of 5 N is applied to the spring. What will be
the location of the tip of the ruler? Which function was used?

(d) Suppose a force is applied that results in the tip having a location
of 28.7 cm. What was the force? Which function was used?

11. The perimeter P and area A of a square are each functions of the
length of the sides s by P = 4s and A = s2. Find perimeter as a
function of area, P 7→ A.

12. The volume of a sphere is related to the radius of the sphere by the
equation V = 4

3πr
3. Suppose the radius is a function of time defined

by r = 1 + 2t. Find the volume as a function of time, t 7→ V .
13. The cost C of materials for a project depends on the required area

A of materials needed. The unit price is $3.50 per m2. The project
involves making two squares, each of them having sides with length s
(meters).

(a) Find A f7→ C.

(b) Find s g7→ A.

(c) Use composition to find s 7→ C. Is this f ◦ g or g ◦ f?
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(d) How much would a project with s = 4 cost? How much area
of materials will be required? What function is used for each
calculation?
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2.5 Transformations of Functions
Overview. As a final section in the chapter on functions, we turn our atten-
tion to transformations. We think of functions as a relation between variables,
x 7→ y. In general, a transformation maps the state (x, y) to another pair (u, v).
Sometimes, we will think of starting with a function x 7→ y and describe the
transformation by describing what happens to each of the coordinates, x 7→ u
and y 7→ v. This is how we might normally think about elementary transfor-
mations including translations or shifts, scaling or stretching, and reflections.

In modeling settings, on the other hand, we might think of (u, v) as being
physical variables which show a relationship similar to a well-known mathe-
matical relationship. That relationship might seen in a graph as a parabola,
as exponential growth or decay, or as periodic cycles that look like a sine wave.
Here, we might think of (x, y) as describing the mathematically simple func-
tion. In order to understand the function u 7→ v based on the function x 7→ y,
we will more naturally think of the transformation as finding a way to map
u 7→ x and y 7→ v.

The overarching theme in transformations is that to find u 7→ v, we will
need to compute the composition u 7→ x, x 7→ y, and y 7→ v. Elementary
transformations that include translations, scaling, and reflections correspond
to u 7→ x and y 7→ v that are linear functions. We will explore some examples
where nonlinear transformations allow us to transform a linear function x 7→ y
in order to find exponential and power function relations. These correspond
to semi-log and log-log transformations.

2.5.1 Elementary Transformations
The elementary transformations of a graph include translation, scaling, and
reflection. In algebra courses, we are often given a summary of the equations
of such transformations.

Elementary Transformations of Graphs.

Suppose we know the graph of a function y = f(x). The following
equations define the specified transformations of that graph.

• Vertical translation, shifting the graph c units vertically,

y = f(x) + c.

• Horizontal translation, shifting the graph c units horizontally,

y = f(x− c).

• Vertical scaling, stretching or compressing all vertical coordinates
by a factor a,

y = af(x).

• Horizontal scaling, stretching or compressing all horizontal coor-
dinates by a factor a,

y = f(x
a

).

• Vertical reflection across the horizontal axis,

y = −f(x).



CHAPTER 2. FUNCTIONS TO MODEL RELATIONSHIPS 151

• Horizontal reflection across the vertical axis,

y = f(−x).

There are some key patterns to these equations of transformation. All of the
vertical transformations occur outside the function, while all of the horizontal
transformations occur on the input to the function. Vertical transformations
involve arithmetic consistent with the operation. For example, to move the
graph up 3 units, you add +3 to the output of the function. Horizontal trans-
formations involve arithmetic opposite of the desired operation. To move a
graph 3 units to the right, you add −3 to the independent variable.

The following interactive graphs allow you to explore transformations of
the graph y = sin(x) by dragging sliders.

Example 2.5.1 Explore horizontal and vertical translations using the equation

y = sin(x+ a) + b

using parameters a and b. Notice that because the input to the sine function
is x+a = x−−a, the direction of translation is opposite the value of a chosen.
The values a = 0 and b = 0 correspond to no transformation.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.5.2
�

Example 2.5.3 Explore horizontal and vertical scaling using the equation

y = b sin(ax)

using parameters a and b. Notice that negative multiples result in reflections.
The values a = 1 and b = 1 correspond to no transformation.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.5.4
�

We will explore a new approach to understanding transformations that will
help us understand more complicated transformations. This approach will also
help us understand why horizontal transformations seem to be opposite of what
we want.

We start by thinking of the original graph y = f(x) as a relation between
two variables. The transformation will define a relation between two other
variables, which usually will have some physical interpretation that we want
to model. In this section, we will name the physical variables u and v. If our
physical variables should be named x and y, then we need a way to distinguish
between the original relation and the transformed relation representing physical
variables. We might use uppercase X and Y or decorate the variables x̃ and
ỹ.

In our general approach to transformations, we will describe the transfor-
mation as the composition of a chain of mappings. Because we ultimately want
a function u 7→ v, we start with the physical variable u and need to map it
to the mathematical variable x, u 7→ x. The original function f provides the
relation x f7→ y. Then we need to find a map from the mathematical dependent
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variable y to the physical dependent variable v, y 7→ v. This is summarized by
the following notation:

u 7→ x
f7→ y 7→ v.

On the other hand, when we geometrically describe a transformation, we
usually describe how we take the original graph in (x, y)-coordinates in order
to find the graph for the physical relation in (u, v)-coordinates. Describing
the horizontal transformation corresponds to a mapping x 7→ u. Our com-
position requires the inverse mapping u 7→ x, which explains why horizontal
transformations use operations that are the inverse of what we expect.

The elementary transformations correspond to coordinates that are mapped
using linear functions for u 7→ x and y 7→ v. The slope affects scaling and reflec-
tion and a non-zero intercept corresponds affects translation. If we know where
corresponding points are found in the original and the transformed graphs, then
we can find linear functions that map the coordinates. We use these functions
to find the equation of the transformed graph.

Example 2.5.5 Find the equation of a parabola whose vertex is at (2, 3) and
which has another point at (4, 5) by finding a transformation of y = x2 using
the points (0, 0) and (1, 1).
Solution. Our original graph uses coordinates (x, y). For our transformed
graph, we will use coordinates (u, v). Based on the description of the problem,
we need a transformation of coordinates

(x, y) = (0, 0) 7→ (u, v) = (2, 3)

and
(x, y) = (1, 1) 7→ (u, v) = (4, 5).

We will work with one coordinate variable at a time.
The transformation of x-coordinates, u 7→ x, is illustrated in the following

map. The u-coordinate u = 2 of the vertex should map to the x-coordinate
x = 0, and the u-coordinate u = 4 of the second point should map to the x = 1.

u

2 4

x

0 1

This map is a linear function. To find the equation of the function, we need
the slope,

∆x
∆u = 1− 0

4− 2 = 1
2 .

Using the given point (u, x) = (2, 0) and the point–slope equation, we find

x = 1
2(u− 2) = u− 2

2 .

The transformation of y-coordinates is similar, illustrated as another map
below. The given points correspond to y = 0 7→ v = 3 and y = 1 7→ v = 5.

y

0 1

v

3 5
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The equation for the map y 7→ v requires the slope,

∆v
∆y = 5− 3

1− 0 = 2,

and the known point (y, v) = (0, 3). The transformation is given by

v = 2y + 3.

We find the equation of the transformation by finding the composition
represented by the chain, 

x = u− 2
2 ,

y = f(x) = x2,

v = 2y + 3.

Simplifying this composition gives

v = 2
(u− 2

2

)2
+ 3.

If we wanted our transformed variables to be (x, y), then the resulting equation
would be

y = 2
(x− 2

2

)2
+ 3.

A graph of y = x2 and the transformation are shown in the figure below.

−4 −2 2 4

−5

5

10

x

y

�
To find the equations used in the composition for a transformation, you

don’t need to use the same points for both maps. All that you need to do
is find the linear equation required to transform each coordinate separately.
Sometimes, it is more convenient to choose different features to describe u 7→ x
and y 7→ y. The following example illustrates this for a sinusoidal graph.

Example 2.5.6 The sine function y = sin(x) is a periodic function with a
period 2π and range [−1, 1]. Key points on the graph include (0, 0), (π2 , 1),
(π, 0), ( 3π

2 ,−1), and (2π, 0). Any graph that is an elementary transformation
of the sine function is called sinusoidal.
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π
2

π 3π
2

2π

−2

−1

1

2

x

y

Use transformations of the sine function to model the height H (in cm) of a
mass bouncing on a spring as function of time t (in s). The mass completes one
cycle every 2 seconds and reaches a maximum height of 10 cm and minimum
height of 2 cm. The mass is known to be at its minimum at t = 0.
Solution. In order to find our model t 7→ H, we need to determine a compo-
sition of maps

t 7→ x
sin7→ y 7→ H.

We will need to find the functions relating the independent and dependent
variables separately.

We start by finding the map corresponding to the independent variables,
t 7→ x. Because our mass is at its minimum at t = 0 and the sine function is
at its minimum at x = 3π

2 , we can use the point (t, x) = (0, 3π
2 ). We use the

period to find a second point. The mass will return to its minimum at t = 2.
The sine function returns to its minimum at x = 3π

2 + 2π.
We use the points (t, x) = (0, 3π

2 ) and (t, x) = (2, 3π
2 + 2π) to find the

transformation t 7→ x. First, we find the slope or rate of change,

∆x
∆t = 2π

2 = π.

Then we write down the equation using the point–slope form of a line,

x = π(t− 0) + 3π
2 = πt+ 3π

2 = π(t+ 3
2 ).

To find the transformation for the dependent variables y 7→ H, we can use
the minimum and maximum values. The sine function has minimum y = −1
and maximum y = 1. The mass has minimum height H = 2 and maximum
height H = 10. Our map y 7→ H includes the points (y,H) = (−1, 2) and
(y,H) = (1, 10). The equation is based on the slope or rate of change

∆H
∆y = 10− 2

1−−1 = 4

and the point–slope equation

H = 4(y − 1) + 10 = 4y + 6.

We put these together as a chain or composition,

t 7→ x 7→ y 7→ H,
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using the individual relations found above,
x = π(t+ 3

2 ),
y = sin(x),
H = 4y + 6.

Combining these equations, we find our model equation

H = 4 sin
(
π(t+ 3

2 )
)

+ 6.

A graph shows that this model matches the description given.

−4 −2 2 4

−5

5

10

15

t

H

�
In general, a sinusoidal graph can be characterized by a centerline v = c,

an amplitude A, a period p, and a phase shift u = φ. The standard period of
the elementary sine and cosine functions is 2π. The phase shift φ is the value
of the physical variable u = φ that corresponds to x = 0. These two pieces of
information completely determine the map u 7→ x, with slope ∆x

∆u = 2π
p , with

a point–slope equation
x = 2π

p
(u− φ).

The centerline v = c physically corresponds to the elementary centerline of
y = 0. The amplitude A corresponds to the elementary amplitude of 1. Con-
sequently, the slope of the transformation map y 7→ v is ∆v

∆y = A so that the
point–slope equation of the map is

v = Ay + c.

The composition of the chain of mappings with the sine function results in

v = A sin
(

2π
p

(u− φ)
)

+ c,

while a composition with the cosine function results in

v = A cos
(

2π
p

(u− φ)
)

+ c.

We use the sine function when the phase shift corresponds to where the graph
crosses the centerline v = c; the cosine function is used when the phase shift
corresponds to the locations of maximum values at v = c+A.
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2.5.2 Nonlinear Transformations of Linear Relations
A surprising number of useful functions are nonlinear transformations of linear
relations. That is, suppose that we are interested in a model for two variables
x 7→ y. It is often the case that there are nonlinear coordinate transformations
x 7→ u and y 7→ v such that the relationship for the transformed variables
u 7→ v is linear.
Example 2.5.7 Consider a general exponential model y = Abx. Because the
logarithm is one-to-one, we can find an equivalent equation by applying the
logarithm to both sides.

y = Abx

ln(y) = ln(Abx)
ln(y) = ln(A) + ln(b) · x

If we define a transformed variable v = ln(y) and note that ln(A) and ln(b) are
just numbers, then we discover that v is a linear function of x,

v = ln(b) · x+ ln(A).

�
The previous example means that if we have two variables (x, y) such that

(x, ln(y)) is linear, then the original variables have an exponential relation.
Graphing utilities (like spreadsheets) often have an ability to change an axis
to a logarithmic scale. Our result tells us that if the y-axis is logarithmic
and the x-axis is left alone (linear scale), then the data being viewed have an
exponential relation. This type of graph is called a semi-log plot.

By finding the equation of the transformed variables, we can find the orig-
inal exponential model.

Example 2.5.8 Suppose a population grows exponentially such that P = 500
when t = 5 and P = 1500 when t = 12. Use a semi-log transformation to find
the model t 7→ P .
Solution. Because we are told the model t 7→ P is exponential, we know
that t 7→ ln(P ) is linear. We first transform the data points to the transformed
variables, although we don’t need the decimal values.

(t, P ) = (5, 500) ⇒ (t, ln(P )) = (5, ln(500))
(t, P ) = (12, 1500) ⇒ (t, ln(P )) = (12, ln(1500))

The transformed data are linear, so we find the slope,

∆ ln(P )
∆t = ln(1500)− ln(500)

12− 5 =
ln( 1500

500 )
7 = ln(3)

7 .

Knowing the slope, we can use the point–slope form using ln(P ) as our depen-
dent variable,

ln(P ) = ln(3)
7 (t− 5) + ln(500).

We find the original model by now solving for P . This involves applying
the exponential (base e) to both sides of the equation and then use properties
of logarithms and exponents to simplify the result.

ln(P ) = ln(3)
7 (t− 5) + ln(500)
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eln(P ) = e
ln(3)

7 (t−5)+ln(500)

P = e
ln(3)

7 (t−5) · eln(500)

= e
ln(3)

7 (t−5) · 500

= 500eln(3) t−5
7

Our model for the population is therefore

P = 500eln(3) t−5
7 = 500 · 3

t−5
7 ,

illustrated in the figure below.

−5 5 10 15

500

1,000

1,500

2,000

t

P

�
While we found that exponential models look linear in a semi-log plot, a

power function model will look linear in a log-log plot. This means that both
coordinate axes are transformed with a logarithm.

Example 2.5.9 In 1967, Lasiewski and Dawson published an article in The
Condor relating the body mass M (in kg) and resting metabolic rate R (in
kcal/day) for birds. They tabulated the recorded body mass and metabolic rate
for individual birds based on published studies. The following table includes
twelve of these birds. Graph the data and determine if the data appear linear
in a log-log plot. Then use a linear regression of transformed data to estimate
the model
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Table 2.5.10 Selected body mass and resting metabolic rate of birds,
as tabulated in Lasiewski and Dawson (1967).

Bird M (kg) R (kcal/day)
Rufous hummingbird 0.0038 1.5
Common nighthawk 0.075 9.5
Common wood pigeon 0.150 17.0
Northern bobwhite 0.194 23.0
Wood duck 0.485 65
Pacific gull 1.21 127
Great horned owl 1.450 108
Wood stork 2.5 201
Brown pelican 3.51 264
Sandhill crane 3.89 168
Trumpeter swan 8.88 418
Andean condor 10.32 351

Solution. After entering the data into a spreadsheet or other graphing utility,
we generate a scatterplot of the points (M,R), as shown below on the left. You
should see that the relationship of the data is increasing and concave down. If
we modify both axes to use a logarithmic scale, as shown below on the right,
we see that the transformed relationship looks reasonably linear. This suggests
using a linear relation on the transformed coordinates.
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To form the linear model, we need to generate actual transformed values
and not just a graph using logarithm scales. In the spreadsheet, we will create
two new columns for ln(M) and for ln(R). For example, suppose the mass
M of Selasphorus rufus appears in the spreadsheet in cell B2 and we want to
generate the transformed variable ln(M) in cell D2. In cell D2, we would type
the formula =ln(B2). Copying this formula and pasting it into other cells will
preserve the relative location. If you paste it into cell D3, you will discover it
automatically changed the formula to =ln(B3).

Once we have new columns ln(M) and ln(R), we can create a new scat-
terplot of data (ln(M), ln(R)) using linear scales. This new graph will have
the same appearance as the original data using logarithmic scales, except that
the axes show the logarithm of the data rather than the original data using
logarithmic scales. With this new graph, we can find the linear trend line. The
graph below shows the graph of the transformed data, along with a trend line
using the formula

y = 0.7356x+ 4.4192.

We change the variables to those plotted to give a transformed model

ln(R) = 0.7356 ln(M) + 4.4192.
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We find the model of the relation for the original variables M 7→ R by
solving for R and simplifying. To eliminate the logarithm, we apply the inverse
operation of the natural exponential. Because our data are approximate, we
can use decimal approximations for our formulas.

ln(R) = 0.7356 ln(M) + 4.4192
eln(R) = e0.7356 ln(M)+4.4192

R = e0.7356 ln(M) · e4.4192

= eln(M0.7356) · 83.030
= 83.030 ·M0.7356

We see that the model is a power function, R = 83.030M0.7356. The figure
below shows the original data using linear axes along with this approximating
model.
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2.5.3 Summary
• Elementary transformations of a graph of a function include translation,

scaling, and reflection.

• Vertical transformations are applied to the output of the function directly.

• Horizontal transformations are applied to the input of the function as
inverse operations.

• Elementary transformations can be found using linear functions that map
the original coordinates (x, y) to the transformed coordinates (X,Y ) with
x
Tx7→ X and y Ty7→ Y using composition,

X
T−1

x7→ x 7→ y
Ty7→ Y.

◦ Addition by a constant (intercept) corresponds to translation.
◦ Multiplication by a constant (slope) corresponds to rescaling.
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◦ A negative multiple (slope) corresponds to reflection.

• Nonlinear transformations using invertible maps can also be useful. A
common transformation is the logarithm, corresponding to viewing a
graph with logarithmic scales.

• Data (x, y) that appear linear on a semi-log plot (with the y-axis in
logarithmic scale) means that (x, ln(y)) will have a linear relation. Sub-
sequently, x 7→ y will be an exponential model.

• Data (x, y) that appear linear on a log-log plot (with both axes in loga-
rithmic scale) means that (ln(x), ln(y)) will have a linear relation. Sub-
sequently, x 7→ y will be a power function model.

2.5.4 Exercises
1. Find the equation of a parabola with a vertex at (3, 2) and a second point

at (6, 0).
2. View a graph of y = |x|, which forms the shape of a “V”. Find the equation

of a transformation that moves the vertex to (−3, 2), opens downward, and
has a second point at (0, 0).

3. The function f(x) = x

1 + x
is a simple increasing, concave down function

that passes through f(0) = 0 and has a horizontal asymptote y = 1 and
half-saturation constant x = 1. This basic function is often used to model
the reaction rate of enzyme-catalyzed reactions.

Suppose that C is the concentration of a reactant in an enzyme-
catalyzed reaction and V is the rate of reaction. Use transformations
of y = x

1+x to find a model for C 7→ V such that the (C, V ) = (0, 0) is
a possible state, the saturating rate is V = 50, and the half-saturation
occurs at C = 80.

4. The Gaussian function f(x) = e−
1
2x

2 is symmetric about x = 0 with a
maximum f(0) = 1, has a horizontal asymptote y = 0 as x → ±∞, and
has inflection points at x = ±1. This function is often used in statistics
to describe normally distributed data.

The height of individuals in a population were recorded and observed
to have a normal distribution. A histogram plot showing the number of
individuals N with the same height H, rounded to the nearest centimeter,
could be modeled H 7→ N as a transformation of f . The maximum in
the histogram (line of symmetry) is at H = 152 cm with N = 250. The
inflection points were observed to be at H = 144 cm and H = 160 cm.
The horizontal asymptote is still N = 0. Find a Gaussian curve to model
the distribution.

5. Find an equation for a sinusoidal graph (x, y) with a period 10, a center
line (midpoint between the maximum and minimum) of y = 8, and has a
maximum at (x, y) = (2, 11).

6. The number of hours of daylight H is a periodic function of the time D,
measured in days after the year begins. The cycle repeats every 365 days.
The longest day is on the summer solstice, which occurs at D = 172.25,
with H = 14.85. The shortest day is the winter solstice, which occurs
at D = 354.75, with H = 9.48. Find a sinusoidal model for D 7→ H.
Use your model to determine the number of hours of daylight on pi-day,
D = 72.
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7. The cosine is another trigonometric function with period 2π and range
[−1, 1] and has the identical graph shape as sine. However, the maximum
for cosine occurs at cos(0) = 1 and the minimum occurs at cos(π) =
−1. Find the equation of cosine in terms of the sine function by using
transformations.

8. The square of the cosine function, cos2(x), has the same shape as the
sine and cosine graphs, except that the period is π and the minimum and
maximum values are 0 and 1, respectively. We know cos2(0) = 1 and
cos2(π2 ) = 0. Find the equation of cos2(x) in terms of the sine or cosine
function by using transformations.

9. The square of the sine function, sin2(x), has the same shape as the sine
and cosine graphs, except that the period is π and the minimum and
maximum values are 0 and 1, respectively. We know sin2(0) = 0 and
sin2(π2 ) = 1. Find the equation of sin2(x) in terms of the sine or cosine
function by using transformations.

10. A population P grows exponentially in time t such that P = 500 when
t = 2 and triples every 12 years. Use the semi-log transform to find a
linear model t 7→ ln(P ) and then find the model t 7→ P . What was the
population when t = 0?

11. In a simple electrical circuit, the voltage V on a capacitor decays expo-
nentially as a function of time t. After t = 5 seconds, we find V = 8
volts; after another 5 seconds, we find V = 6.4 volts. Use the semi-log
transform to find a linear model t 7→ ln(V ) and then find the exponential
model t 7→ V . When will the circuit reach V = 1 volt?

12. During childhood development, the head grows at a different rate than
the rest of the body. This is why the heads of young children look larger
proportional to their body than older children and adults. Such growth
is called allometry and is often observed to follow a power law.

According to the World Health Organization’s statistics for child de-
velopment, the median circumference C of the head for a one-year-old girl
is 45 cm and the median height H is 74.5 cm. For a five-year-old, the me-
dian head size is C = 50 cm and the median height is H = 109.5 cm. Use
a log-log transform to find a linear model ln(H) 7→ ln(C) and then find
the power function model H 7→ C. If this pattern continues, predict the
head circumference for a ten-year-old where the median height is H = 140
cm.

13. Chemical reactions generally occur at a rate R that is proportional to a
power of the reactant concentration C. Such a reaction will have a graph
(C,R) that appears linear in a log-log plot. Suppose you have a reaction
such that R = 0.5 when C = 0.2 and R = 1.5 when C = 0.4. Use a log-log
transform to find a linear model ln(C) 7→ ln(R) and then find the power
function model C 7→ R.
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2.6 Describing the Behavior of Functions
Overview. We have been learning about how functions are constructed and
how they are defined. In many instances, before we construct a formula for
a function, we need to identify what behavior we are attempting to model.
At other times, we have a formula and we need to know what behavior that
predicts. We need specific language that we can use to describe behavior.

In this section, we will focus on three types of behavior: monotonicity,
concavity, and end behavior. Monotonicity will describe where a function is
increasing or decreasing. Concavity will describe where the slope ro rate of
change of a function is increasing or decreasing. In a graph, concavity describes
whether the curve is bending up or bending down. We also discuss simple
end behavior including unbounded growth (tending to infinity) and horizontal
asymptotes.

Our emphasis is in learning the language of behavior, describing graphs
using this language, and creating graphs based on a description of a function.
As our study of calculus develops, we will learn mathematical tools that will
allow us to determine function behavior more precisely.

2.6.1 Functions Have Shapes
We often describe functions according to the shape of their graphs. The dif-
ferent possible shapes we see in graphs correspond to specific behaviors of the
functions. We will focus on two aspects of a graph: monotonicity and concav-
ity.

2.6.1.1 Monotonicity

The monotonicity of a function deals with whether the function is increasing
or decreasing. We start with the mathematical definitions of increasing and
decreasing functions. We will explore the ideas graphically in terms of maps
and then graphs.

Definition 2.6.1 Monotonicity. A function f is increasing on a subset S
of the domain (usually an interval) if for every x1, x2 ∈ S,

x1 < x2 implies f(x1) < f(x2).

A function f is decreasing on a subset S of the domain (usually an interval)
if for every x1, x2 ∈ S,

x1 < x2 implies f(x1) > f(x2).

♦
One way to think of monotonicity is that the function retains an ordering

of the sets. An increasing function preserves the order, so that if two inputs are
in a particular order, x1 < x2, then the resulting outputs have the same order,
f(x1) < f(x2). A decreasing function reverses the order, so that if inputs have
an order, x1 < x2, then the outputs must have the opposite order f(x1) >
f(x2). A function that is not monotone (neither increasing or decreasing) does
not maintain a sense of order uniformly over the set. Sometimes the outputs
might have the same order as the inputs, and sometimes the outputs might
have the opposite order.
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Example 2.6.2 The function f(x) = 2x+ 1 is a linear function with positive
slope m = 2. We can show that f is an increasing function. Suppose x0 < x1.
Multiplying both sides of an inequality by a positive number preserves the
ordering, as does adding the same value to both sides:

x0 < x1

2x0 < 2x1

2x0 + 1 < 2x1 + 1
f(x0) < f(x1)

This is visualized in the following figure.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.6.3 Dynamic illustration of the function f(x) = 2x + 1 as a map
x 7→ y showing that f is increasing.

Thinking of the map dynamically, we see that as we increase the input,
the output also increases. This is captured in the graph of the function in the
(x, y) plane. The graph shows y-values increasing as viewed from left to right,
which is corresponding to x-values increasing.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.6.4 The graph of the function y = f(x) = 2x+ 1 in the (x, y) plane.
�

Example 2.6.5 The function f(x) = −2x+3 is a linear function with negative
slopem = −2. We can show that f is an decreasing function. Suppose x0 < x1.
Multiplying both sides of an inequality by a negative number reverses the
ordering, while adding the same value to both sides preserves the order:

x0 < x1

−2x0 > −2x1

−2x0 + 3 > −2x1 + 3
f(x0) > f(x1)

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.6.6 Dynamic illustration of the function f(x) = −2x + 3 as a map
x 7→ y showing that f is decreasing.

The map shows that the order of outputs is always opposite to the order
of the inputs. Thinking of the map dynamically, we see that as we increase
the input, the output decreases. The graph of the function in the (x, y) plane
captures the same information. Viewing the graph from left to right (as x
increases), the y-values decrease.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.6.7 The graph of the function y = f(x) = −2x + 3 in the (x, y)
plane.

�
Some functions are not monotone because the map does not retain the

ordering of the sets. Dynamically, this is because the output will sometimes
increase and sometimes decrease as the input is increased.
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Example 2.6.8 The function f(x) = x2 is not a linear function and is not
monotone. We can show this by illustrating that the function is inconsistent
in ordering the output values relative to the input values. Consider x0 = −2
and x1 = −1. We have f(x0) = 4 > f(x1) = 1, so for these inputs the order is
reversed. However, for x0 = 1 and x1 = 2, we have f(x0) = 1 > f(x1) = 4 and
the order is preserved. This function is not increasing or decreasing, but is a
combination.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.6.9 Dynamic illustration of the function f(x) = x2 as a map x 7→ y
showing that f is not monotone.

We can see graphically that f is decreasing on (−∞, 0] because for any
two inputs in this interval, the order of the outputs is reversed. We can also
see that f is increasing on [0,∞) because for any two inputs in that interval,
the order of the outputs is preserved. This point where monotonicity switches
corresponds to the vertex of the parabola y = x2.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.6.10 Dynamic illustration of the function f(x) = x2 as a map x 7→ y
showing that f is not monotone.

�
One of our goals in calculus will be to develop a method to determine the

intervals on which a function is increasing or decreasing. When we motivated
monotonicity with linear functions, we saw that a positive slope implied an in-
creasing function and a negative slope implied a decreasing function. Calculus
will develop a more general sense of the slope of a function using the derivative
such that we will describe monotonicity based on the signs of the derivative.

Note 2.6.11 When listing intervals on which a function is increasing or de-
creasing, it is important not to use a union of the intervals. The reason is
that we are saying that the function is increasing on each of the intervals indi-
vidually and not on the set formed by the union. If listing multiple intervals,
simply form a comma-separated list.

2.6.1.2 Concavity

Concavity describes how the graph of a function in the (x, y) plane bends. If
the graph bends upward, we say the function is concave up. If the graph
bends downward, we say the function is concave down.

(a) Concave up (b) Concave down

Figure 2.6.12 Comparison of concave up and concave down graphs
As with monotonicity, these attributes of functions apply over intervals

rather than at individual points. When a graph changes concavity at a point,
for example switching from bending up to bending down, the function has an
inflection point. A technical definition of concavity that depends on the
concept of a derivative will be provided later.
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However, we can capture the essential idea by thinking about how the slope
is changing between points. A function that has an increasing slope or rate
of change over an interval is concave up on the interval. A function that has
decreasing slope or rate of change is concave down.

Definition 2.6.13 Concavity. A function f is concave up on a subset S
of the domain (usually an interval) if for every x1, x2, x3 ∈ S, the slope or rate
of change is increasing,

x1 < x2 < x3 implies f(x2)− f(x1)
x2 − x1

<
f(x3)− f(x2)

x3 − x2
.

A function f is concave down on a subset S of the domain (usually an
interval) if for every x1, x2, x3 ∈ S, the slope or rate of change is decreasing,

x1 < x2 < x3 implies f(x2)− f(x1)
x2 − x1

>
f(x3)− f(x2)

x3 − x2
.

♦
This definition is not very easy to use directly. When we learn more about

derivatives to describe the slope at individual points, we will have a much
better method known as the second derivative test for concavity. However, the
following examples will illustrate what is happening.

Example 2.6.14 The function f(x) = x2 is concave up on (−∞,∞) (the
entire domain). We will not prove that this is true because this is too difficult
without derivatives. But we can illustrate the idea.

Consider the graph y = f(x) = x2 and the particular values x1 = −4,
x2 = −2, and x3 = −1. We will calculate the slope or rate of change between
(x1, y1) = (−4, 16) and (x2, y2) = (−2, 4) and between (x2, y2) and (x3, y3) =
(−1, 1).

m12 = y2 − y1
x2 − x1

= 4− 16
−2−−4 = −12

2 = −6

m23 = y3 − y2
x3 − x2

= 1− 4
−1−−2 = −3

1 = −3

We can see that the slope or rate of change is increasing, m12 < m23. These
slopes are illustrated in the following figure.

−4 −2 0 2 4
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15

20

(x1, y1)

(x2, y2)

(x3, y3)

m12 = −6

m23 = −3

This is not a proof of concavity because we only illustrated the order for
three specific points. Use the following dynamic figure to convince yourself that
for any three points we might choose, the slopes increase from left to right.
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A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.6.15
The reason that f has an inflection point at x = 0 is that point is where f

has the steepest negative slope. To the left, x < 0, the slope decreases; to the
right, x > 0, the slope increases. �

Example 2.6.16 The function f(x) = x3 − 3x changes concavity at x = 0.
f is concave down on (−∞, 0] and concave up on [0,∞). When three points
are chosen with x ∈ (−∞, 0], the slope is decreasing. When the three points
are chosen with x ∈ [0,∞), the slope is increasing. This can be verified in
the following dynamic figure. However, the three points must all be in either
(−∞, 0] or in [0,∞).

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.6.17
�

2.6.1.3 Combining Monotonicity and Concavity

The shape of a graph of a function is often defined in terms of the monotonicity
and concavity combined. There are four basic shapes that correspond to the
four quadrants of a circle, illustrated in the figure below. A curve that has
a positive and increasing slope is increasing and concave up. A curve that
has a positive but decreasing slope is increasing and concave down. A curve
that has a negative but increasing (becoming less negative) slope is decreasing
and concave up. A curve that has a negative and decreasing (becoming more
negative) slope is decreasing and concave down.

(a) Increasing,
Concave up

(b) Increasing,
Concave Down

(c) Decreasing,
Concave up

(d) Decreasing,
Concave Down

Figure 2.6.18 Basic shapes defined by monotonicity and concavity.
We can describe the shape of a graph by stating intervals on which the

function satisfies each of the possible behaviors. The intervals are separated by
points where the graph reaches either a maximum or minimum value (changes
in monotonicity) or where the slope of the graph reaches an extreme and begins
to bend the other direction (changes in concavity or points of inflection).

Example 2.6.19 The graph of a function y = f(x) is shown below, with
labeled extreme points and inflection points. Describe the shape of the graph
by giving intervals of monotonicity and concavity.
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Solution. Intervals for monotonicity are based on the function increasing or
decreasing. The end-points of these intervals are the extreme points for the
function. When the graph extends beyond the frame of the figure, we assume
the function behavior continues as shown. Intervals always are read from left to
right. The end-point of an interval is included (closed) if the behavior extends
up to and including that point.

The function f is decreasing on (−∞,−3], increasing on [−3, 3], and de-
creasing on [3,∞). Notice that the extremes at x = −3 and x = 3 are included
in two intervals. The continuous function is decreasing on (−∞,−3) as an
open interval. Because f decreases up to and including x = −3, we include the
end-point.

Intervals for concavity are based on where the slope is increasing or decreas-
ing. Intervals on which the graph bends upward, f is concave up. Intervals on
which the graph bends downward, f is concave down. Notice our graph has
inflection points (where the concavity changes) at x = −1, x = 0, and x = 1.
At these points, the graph starts to bend in the opposite direction.

The function f is concave up on (−∞,−1], concave down on [−1, 0], concave
up on [0, 1], and concave down on [1,∞). We include the inflection points as the
end points of the intervals (closed) because the slope is increasing or decreasing
up to and including those points. �

2.6.2 End Behavior
End-behavior of a function describes what happens to a function as the size
of the input grows. Consider the possibilities of a linear function, y = f(x) =
mx + b. So long as the slope is non-zero, the function is unbounded, meaning
that the graph eventually goes above every level and eventually goes below
every level (on opposite sides of the graph).

If the slope is positive, m > 0, then the function is increasing. We say
f(x)→ +∞ as x→ +∞, which we read as “the value of f(x) tends to positive
infinity as the value of x goes to positive infinity”. This is because the y-values
will eventually rise above any level on the right side of the graph (for sufficiently
large positive values x). We also say f(x) → −∞ as x → −∞ because the y-
values are below any specified value on the left side of the graph (for sufficiently
large negative values x). When the slope is negative, m < 0, the unbounded
behavior is reversed.
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f(x)→ −∞
x→−∞

f(x)→ +∞
x→+∞

(a) Positive slope (m > 0)

f(x)→ +∞
x→−∞

f(x)→ −∞
x→+∞

(b) Negative slope (m < 0)

Figure 2.6.20 Unbounded behavior of linear functions with positive and neg-
ative slopes.

For consistency in notation to describe the tendency of a function (as op-
posed to the value of a function), we use limits to describe unbounded behavior.

lim
x→−∞

f(x) = −∞ means f(x)→ −∞ as x→ −∞

lim
x→−∞

f(x) =∞ means f(x)→ +∞ as x→ −∞

lim
x→∞

f(x) = −∞ means f(x)→ −∞ as x→ +∞

lim
x→∞

f(x) =∞ means f(x)→ +∞ as x→ +∞

When the graph of a function f behaves more and more like a constant
function (horizontal line) for larger and larger values of the independent vari-
able, we say f has a horizontal asymptote. A horizontal asymptote y = L
on the right side (large, positive values for x) uses the limit statement

lim
x→∞

f(x) = L,

which means that the value of f(x) approaches the constant value L as x →
+∞. When f has a horizontal asymptote y = L on the left side (large, negative
values of x), we use the limit statement

lim
x→−∞

f(x) = L.

Example 2.6.21 The graph of a function y = f(x) is shown below. This
function has two horizontal asymptotes: y = −2 as x → −∞ and y = 1 as
x→ +∞. We write

lim
x→−∞

f(x) = −2,

lim
x→+∞

f(x) = 1.
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�
A function can also have unbounded behavior near a particular input value,

say at x = a. Using limit notation, this means that at least one of the following
must be true.

lim
x→a−

f(x) = +∞

lim
x→a−

f(x) = −∞

lim
x→a+

f(x) = +∞

lim
x→a+

f(x) = −∞

The graph has a vertical asymptote at x = a, meaning that the graph of
the function approaches closer and closer to this vertical line.

Example 2.6.22 The graph of a function y = f(x) is shown below with two
vertical asymptotes. The vertical asymptote at x = 0 corresponds to left- and
right-limits

lim
x→0−

f(x) = −∞,

lim
x→0+

f(x) = +∞,

The vertical asymptote at x = 2 only corresponds to the right-limit

lim
x→2+

f(x) = +∞.

−6 −4 −2 2 4 6

−4

−2

2
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It is hard to tell from a graph alone where a vertical asymptote occurs. Us-
ing only the limited graph window, it is not obvious that the vertical asymptote
is at exactly x = 0 since the graph is still fairly far away from that vertical line
from this perspective. �

Note 2.6.23 A common false impression about horizontal asymptotes is that
the graph of a function can not cross the asymptote. A function can not cross
a vertical asymptote, but that is only because a function can not intersect a
vertical line at more than one point. An asymptote only requires that the
graph behaves more and more like the line.

When a function physically relates two variables, x 7→ y, a horizontal
asymptote indicates that for sufficiently large values of the independent vari-
able, the dependent variable is essentially a constant. A common description
in physical settings for this constant is a saturation value. We think of the
quantity measured by the independent variable as a control variable. The de-
pendent variable can be thought of as a response. As the control variable is
increased, the response will pass through some of its range of values. However,
there will come a point where even though you continue to increase the control
variable, the response is no longer able to change very much at all. That is,
the response has saturated.

Example 2.6.24 An enzyme is a protein that helps catalyze a chemical re-
action. The rate or velocity of reaction V depends on the concentration of
the reactant C. Commonly, the function C 7→ V is increasing, concave down,
and has a horizontal asymptote, known as Michaelis–Menten reaction kinetics.
The physical domain is C ∈ [0,∞). Because the relation is increasing, we know
that adding more reactants will raise the reaction rate. Because the relation
is concave down, we know that the degree to which the rate increases slows
down as more reactants are added. The horizontal asymptote means that this
increase in the reaction rate saturates to some maximum rate Vmax,

lim
C→∞

V = Vmax.

The reactant concentration where the reaction rate is halfway to the maximum
value is called the half-saturation value, and is usually represented with a
constant K.

K

Vmax

C

V

Figure 2.6.25 Michaelis–Menten reaction kinetics with saturating rate Vmax
and half-saturation constant K.

�
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Example 2.6.26 Imagine a crop of plants growing in a field. The total biomass
harvested B depends on the number of seeds S that are sown. If very few seeds
are sown, the biomass harvested will be small. For more seeds sown, we expect
the biomass would increase. However, if too many seeds are sown, then the crop
will be overcrowded, resulting in a lower harvest. We expect that there might
be an optimal number of seeds S∗ for which the biomass is at a maximum.

Describe the behavior of the function S 7→ B and sketch a possible graph.
Solution. The function S 7→ B will have a physical domain of S ∈ [0,∞).
Because B is a maximum at S = S∗, the function is increasing on [0, S∗] and
decreasing on [S∗,∞). The simplest assumption for concavity would be that
the function starts concave down. However, a concave down and decreasing
function will eventually approach −∞, which is not physically possible for
our physical scenario. Therefore, the function must change concavity at some
inflection point after S∗, say at S = S†. Our function would be concave down
on [0, S†] and concave up on [S†,∞). Continuing to increase the number of
seeds will result in ever smaller biomass due to overcrowding until it approaches
some saturating biomass B∞,

lim
S→∞

B = B∞.

S∗ S†

B∞

S

B

Figure 2.6.27 Possible graph of (S,B) with maximum at S = S∗ and inflection
point at S = S†.

Note: The asterisk and dagger are decorations so that the symbols S∗ and
S† represent general constants. We don’t know actual values for the maximum
and inflection point, so we can’t use numbers. The symbols are place-holders
for values that would be determined experimentally. Similarly, the symbol B∞
represents the value for the biomass harvested when the number of seeds sown
saturates the system. �

2.6.3 Summary
• Describing the monotonicity of a function is determining intervals on

which the function is increasing or decreasing.

• A function f is increasing on a set S if the function is order preserving:
For all x1, x2 ∈ S, we must have

x1 < x2 ⇒ f(x1) < f(x2).
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This corresponds to a graph that is rising left to right (positive slopes).
A function f is decreasing on a set S if the function is order reversing:
For all x1, x2 ∈ S, we must have

x1 < x2 ⇒ f(x1) > f(x2).

This corresponds to a graph that is falling left to right (negative slopes).

• Describing the concavity of a function is determining intervals on which
the function is concave up or concave down.

• A function f is concave up on a set S if the slope or rate of change is
increasing on S: For all x1, x2, x3 ∈ S, we must have

x1 < x2 < x2 ⇒ f(x2)− f(x1)
x2 − x1

<
f(x3)− f(x2)

x3 − x2
.

The graph will be bending upward.
A function f is concave down on a set S if the slope or rate of change
is decreasing on S: For all x1, x2, x3 ∈ S, we must have

x1 < x2 < x2 ⇒ f(x2)− f(x1)
x2 − x1

>
f(x3)− f(x2)

x3 − x2
.

The graph will be bending downward.

• A point of inflection is a point where a function is continuous and
changes concavity.

• Lists of intervals of monotonicity and concavity should be separated by
commas and not joined by unions.

• Limits as x→ ±∞ describe end behavior.

◦ To say f(x)→ +∞ means values of f(x) eventually rise above any
possible value.

◦ To say f(x)→ −∞ means values of f(x) eventually fall below any
possible value.

◦ To say f(x) → L means values of f(x) eventually approaches a
horizontal asymptote y = L.

2.6.4 Exercises

Each of the following problems asks you to prove that the given function is
either increasing or decreasing on a particular interval.

1. Prove that f(x) = 5x − 12 is an increasing function by showing that
whenever x1 < x2, we have f(x1) < f(x2).

2. Prove that f(x) = −3x − 2 is a decreasing function by showing that
whenever x1 < x2, we have f(x1) > f(x2).

3. Prove that f(x) = x2 is an increasing function on [0,∞) by showing
that whenever 0 < x1 < x2, we have f(x1) > f(x2).

Hint: Show that f(x2) − f(x1) > 0 by factoring and determining
the signs of the factors.

4. Prove that f(x) = x2 is a decreasing function on (−∞, 0] by showing
that whenever x1 < x2 < 0, we have f(x1) > f(x2) or f(x2)−f(x1) <
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0.
Hint: Show that f(x2) − f(x1) < 0 by factoring and determining

the signs of the factors.

Consider each of the following graphs of functions. Use the graph to determine
the intervals of monotonicity for that function.

5.

−4 −2 2 4

−4

−2

2

x

y = f(x)

6.

−4 −2 2 4

−10

−5

5

10

x

y = f(x)

7.

−4 −2 2 4

−10

−5

5

10

x

y = f(x)

Each of the following problems asks you to illustrate the concavity of the given
function.

8. Illustrate that f(x) = 1
x

is concave up on (0,∞) by showing that
the slope is increasing for the sequential points x1 = 1

2 , x2 = 1, and
x3 = 2.

9. Illustrate that f(x) = 1
x
is concave down on (−∞, 0) by showing that

the slope is decreasing for the sequential points x1 = −2, x2 = −1,
and x3 = − 1

2 .
10. Illustrate that f(x) = 2x is concave up on (−∞,∞) by showing that

the slope is increasing for the sequential points x1 = −1, x2 = 0, and
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x3 = 1.
11. Illustrate that f(x) = 2−x is concave up on (−∞,∞) by showing that

the slope is increasing for the sequential points x1 = −1, x2 = 0, and
x3 = 1.

Consider each of the following graphs of functions, which includes turning
points and inflection points. Use the graph to determine the intervals of mono-
tonicity and concavity for that function.

12.

−10 −5 5 10

−5

5x = −5

x = 5

x

y = f(x)

13.

−10 −5 5 10

−10

−5

5

10

x = −6

x = −2
√

3 x = 2
√

3

x = 6

x

y = f(x)

14.

−10 −5 5 10

−10

−5

5

10

x = −6

x = −4

x = −2 x = 2

x = 4

x = 6

x

y = f(x)

Use the graphs to answer the questions about limits. Assume that the behavior
of the graph shown in the window continues outside the window.

15.
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−4 −2 0 2 4
−10

−5

0

5

10

(a) lim
x→−∞

f(x)

(b) lim
x→+∞

f(x)

16.

−4 −2 0 2 4
−10

−5

0

5

10

(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→−∞

f(x)

(d) lim
x→+∞

f(x)
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3.1 Rate of Accumulation and the Derivative

3.1.1 Overview
For functions which are defined as the accumulation of a given rate,

f(x) = f0 +
∫ x

x0

f ′(z) dz, (3.1.1)

we can describe their monotonicity and concavity using the signs and mono-
tonicity of their corresponding rates of accumulation f ′(x). Of course, most
functions are not written using an accumulation formula representation. For
polynomials, where we know simple accumulation formulas, we know how to
calculation the corresponding rate of accumulation f ′(x). What about other
functions?

This raises a central question of calculus: Which functions can be expressed
as an accumulation? And if a function can be expressed as an accumulation,
how do we find the formula for the rate of accumulation that will be the
integrand in that representation?

This question will be partially resolved through the definition of the deriva-
tive. The derivative will provide a new interpretation of the concept of rate of
change that is not directly connected to accumulation and definite integrals.
At that point, we will have two potential concepts of the rate—the rate of
accumulation and the derivative. The connection between these two rates as
representing the same thing will ultimately be established through the Fun-
damental Theorem of Calculus. Anticipating this eventual equality, we will
adopt the name derivative as being equivalent to the rate of accumulation.

In this section, we will use known elementary accumulation functions and
their corresponding rates to compute the rate of accumulation for simple poly-
nomials. The process of finding a rate of change inherits the linearity properties
of integration. Using elementary formulas and linearity, we will learn to iden-
tify its rate of change or derivative of any polynomial. Once we have a rate of
change, we can express the polynomial as an accumulation function. We can
also classify the monotonicity and concavity of the polynomial.

3.1.2 The Rate of Accumulation
When a function is defined as an accumulation function in terms of a definite
integral (3.1.1), it is easy enough to determine the rate of accumulation or
derivative by identifying the function in the integrand. We just need to express
the function as a constant (the initial value) plus an integral from the initial
point. The function inside the integral, called the integrand, will be the rate
of accumulation.

Example 3.1.1 If f(x) is defined as f(x) = 3 +
∫ x

1
z2 − 5z dz, then the

integrand z2 − 5z must be f ′(z). Changing variables means f ′(x) = x2 − 5x is
the rate of accumulation or derivative. �

Example 3.1.2 Find G′(x) for G(x) = 4− 3
∫ x

1

1
z
dz.

Solution. Because G(x) is not yet written as a constant plus an integral, we
need to use properties of integrals to put it in the standard form of an ac-
cumulation function. The (((Unresolved xref, reference "thm-definite-integral-
constant-multiple"; check spelling or use "provisional" attribute)))constant mul-



CHAPTER 3. ACCUMULATION AND RATES OF CHANGE 178

tiple rule allows us to treat −3 as a constant multiplied inside the integral,

G(x) = 4 +
∫ x

1

−3
z
dz.

Now that G(x) is an accumulation function, we can find the rate to be

G′(x) = −3
x

.

�
The elementary accumulation formulas for simple powers 3.3.3 can be in-

terpreted as complementary rules used to find the rate of accumulation or
derivative for simple powers. As an example, consider the known accumula-
tion formula ∫ x

0
z2 dz = 1

3x
3.

If we multiply both sides of the equation by 3 to clear the fraction and move
the constant inside the integral, we have an equivalent statement

x3 =
∫ x

0
3z2 dz.

That is, we have just found that for the function f(x) = x3 the derivative is
the rate of accumulation f ′(x) = 3x2. Every accumulation formula that we
know provides a corresponding rate of accumulation for simple powers.

Theorem 3.1.3 The Power Rule for the Rate of Accumulation. The
elementary accumulation formulas lead to the following elementary rates of
accumulation for powers of the independent variable.

• If f(x) = x, then f ′(x) = 1.

• If f(x) = x2, then f ′(x) = 2x.

• If f(x) = x3, then f ′(x) = 3x2.

• If f(x) = x4, then f ′(x) = 4x3.
Proof. Each formula follows by applying the same technique described above
for f(x) = x3 on the corresponding accumulation formula. �

You might have noticed a pattern in these formulas, that the rate of accu-
mulation involves a power that has been reduced by one from the accumulation
function and that the power for the accumulation has become a constant mul-
tiple. Without creating more accumulation formulas, we can not prove that
this pattern will always be true. In mathematics, we call a pattern that we
believe might be true a conjecture.
Conjecture 3.1.4 Power Rule for Rate of Accumulation. For any
constant power n, the function f(x) = xn has a rate of accumulation f ′(x) =
nxn−1.

This conjecture happens to be true, but we will need to wait to develop the
process of differentiation to prove it.

Example 3.1.5 For f(x) = x10, what does the conjecture about the power
rule predict will be f ′(x)?
Solution. The function f is an elementary power function with n = 10. The
power rule shown in the conjecture states that

f ′(x) = 10x9.
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The reason this is a conjecture right now is that we would currently need
to write x10 as an accumulation function

x10 =
∫ x

0
10z9,

but we don’t currently have a rule for a definite integral with a power that
high. That would require knowing the limit of a Riemann sum∫ x

0
10z9 = lim

n→∞

n∑
k=1

10(kx
n

)9 x

n
.

Without knowing a sum accumulation for
n∑
k=1

k9, we can’t justify this integral.

�
We will need one more simple rate of accumulation to deal with constant

terms. A constant function sees no change, so the accumulation must always
be zero, and that will come from a rate of accumulation that is zero.

Theorem 3.1.6 Rate of Accumulation for Constants. If f(x) = c for
some constant c (a constant function), then f ′(x) = 0.

Proof. Because
∫ b

a

0 dx = 0, we can write f(x) = c+
∫ x

a

0 dz for any value a.

Thus, the rate of accumulation f ′(x) = 0. �

The linearity properties of definite integrals imply that rates of accumula-
tion also satisfy the same linearity properties.

Theorem 3.1.7 Linearity of Rates of Accumulation. If f(x) has a
rate of accumulation f ′(x) and g(x) has a rate of accumulation g′(x), then
the function h(x) = c1f(x) + c2g(x) with constants c1 and c2 has a rate of
accumulation h′(x) = c1f

′(x) + c2g
′(x).

Proof. Using a common initial point at x = a, we can write

f(x) = f(a) +
∫ x

a

f ′(z) dz,

g(x) = g(a) +
∫ x

a

g′(z) dz.

Because h(x) = c1f(x) + c2g(x), we can use the linearity properties of definite
integrals to rewrite

h(x) = c1

(
f(a) +

∫ x

a

f ′(z) dz
)

+ c2

(
g(a) +

∫ x

a

g′(z) dz
)

= c1f(a) + c2g(a) + c1

∫ x

a

f ′(z) dz + c2

∫ x

a

g′(z) dz

= (c1f(a) + c2g(a)) +
∫ x

a

(c1f ′(z) + c2g
′(z)) dz

Since h(a) = c1f(a)+c2g(a), we can see that h(x) has been written in the form
of an accumulation with a rate of accumulation h′(x) = c1f

′(x) + c2g
′(x). �

A polynomial is a linear combination of simple powers. Consequently, the
derivative of a polynomial will be the same linear combination of the derivatives
of those powers.
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Example 3.1.8 Find f ′(x) for f(x) = x2 − 6x+ 5.
Solution. We look at f(x) as a sum of three terms:

f(x) = x2︸︷︷︸
f1(x)

+−6x︸︷︷︸
f2(x)

+ 5︸︷︷︸
f3(x)

.

First, f1(x) = x2 is an elementary power for which we know f ′1(x) = 2x. Next,
f2(x) = −6x is a constant −6 times x, so f ′2(x) is the same constant times
1, f ′2(x) = −6 · 1 = −6. Finally, f3(x) = 5 is a constant function so that
f ′3(x) = 0. The linearity for rates of accumulation implies

f ′(x) = 2x︸︷︷︸
f ′1(x)

+ −6︸︷︷︸
f ′2(x)

+ 0︸︷︷︸
f ′3(x)

= 2x− 6.

�

3.1.3 Using the Rate of Accumulation
Now that we know how to find the rate of accumulation for simple polynomials,
we can express a polynomial as an accumulation with that rate. Although we
know the rate of accumulation, we also need to be careful that the initial value
matches the function of interest.
Example 3.1.9 Express f(x) = x3 − 6x2 − 4 as an accumulation from x = 1.
Solution. Start by finding the rate of accumulation.

f ′(x) = 3x2 − 6(2x) + 0 = 3x2 − 12x

The rate of accumulation becomes the integrand of the accumulation using
f ′(z). Because the integral will start at x = 1, the initial value will be

f(1) = 13 − 6 · 12 − 4 = −9.

We can now write f(x) as an accumulation from x = 1:

f(x) = f(1) +
∫ x

1
f ′(z) dz

= −9 +
∫ x

1
3z2 − 12z dz.

�
The sign of the rate of accumulation determines whether an accumulation

is increasing or decreasing. Furthermore, the monotonicity of the rate of accu-
mulation determines the concavity of the accumulation. If we determine the
rate of accumulation for a polynomial f(x), then we can use sign analysis on
the resulting formula f ′(x) to characterize monotonicity of f(x).

Because the rate of accumulation f ′(x) will itself be a new polynomial, we
can describe its monotonicity using the rate of accumulation for that rate of
accumulation. The rate of accumulation of the rate of accumulation is called
the second derivative and is named f ′′(x). Because the monotonicity of
the rate f ′(x) determines concavity of f , we can use sign analysis of f ′′(x) to
characterize the concavity f .

Example 3.1.10 We found that f(x) = x3 − 6x2 − 4 has corresponding rate
f ′(x) = 3x2 − 12x. Describe the monotonicity and concavity of f(x).
Solution. Sign analysis of the rate of accumulation f ′(x) will be used to
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describe the monotonicity of f(x). We factor

f ′(x) = 3x2 − 12x = 3x(x− 4).

The zeros (x-intercepts) occur at x = 0 and x = 4 and f ′(x) is continuous.
We need to test the sign of f ′(x) in the intervals (−∞, 0), (0, 4), and (4,∞).
Only the sign matters, so using the factored formula, we can count how many
factors are positive and negative.

• f ′(−1) = 3(−1)(−5) = + (2 negative factors)

• f ′(1) = 3(1)(−3) = − (1 negative factors)

• f ′(5) = 3(5)(1) = + (0 negative factors)

When doing such a problem, we just use a sign analysis number line to record
our results.

f ′(x) = 3x(x− 4)
x0

0

4

0+ − +

We interpret the signs of f ′(x) to deduce the monotonicity of f(x). The
function f ′(x) is positive on the intervals (−∞, 0) and (4,∞) and negative
on the interval (0, 4). Consequently, f(x) must be increasing on the intervals
(−∞, 0) and (4,∞) and decreasing on the interval (0, 4). Because f(x) is con-
tinuous (all polynomials are continuous), we can extend each of these intervals
to include the end-points at x = 0 and x = 4.

Concavity of f(x) depends on the monotonicity of f ′(x). Because f ′(x) =
3x2−12x is itself a polynomial, we can find its rate of accumulation f ′′(x) and
perform sign analysis to deduce that monotonicity.

f ′′(x) = 6x− 12 = 6(x− 2)

The only zero of f ′′(x) is at x = 2. We test the intervals (−∞, 2) and (2,∞)
using the signs of f ′′(x), summarized by the following number line.

f ′′(x) = 6(x− 2)
x2

0− +

Because f ′′(x) < 0 on the interval (−∞, 2), we know that f ′(x) is decreas-
ing on (−∞, 2). Consequently, f(x) is concave down on (−∞, 2). Because
f ′′(x) > 0 on the interval (2,∞), we know that f ′(x) is increasing on (2,∞).
Consequently, f(x) is concave up on (2,∞). Again, because f(x) is continuous,
intervals of concavity can be extended to include the end-point at x = 2.

Notice how the graph of y = f(x) reflects the monotonicity and concavity
that we have determined.
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−2 2 4 6

−40

−20

Figure 3.1.11 Graph of y = f(x) = x3 − 6x2 − 4, including turning points at
x = 0 and x = 4 and an inflection point at x = 2.

�

3.1.4 Summary
• The rate of accumulation f ′(x) is the integrand function of an accumu-

lation function f(x),

f(x) = f(a) +
∫ x

a

f ′(z) dz

• The rate of accumulation for a function is equivalent to what we will later
define as the derivative of the function. Thus, we often just call the rate
of accumulation f ′(x) the derivative of f(x). Showing this equivalence
will be the goal of the Fundamental Theorem of Calculus.

• Our known accumulation formulas have a complementary interpretation
as derivatives:

◦ f(x) = x has derivative f ′(x) = 1
◦ f(x) = x2 has derivative f ′(x) = 2x
◦ f(x) = x3 has derivative f ′(x) = 3x2

◦ f(x) = x4 has derivative f ′(x) = 4x3

A pattern in these derivatives suggest a conjecture (which we later prove)
that any power f(x) = xn has derivative f ′(x) = nxn−1.
In addition, any constant function f(x) = c has derivative f ′(x) = 0.

• Rates of accumulation (derivatives) satisfy the linear properties of a sum
rule and a constant multiple rule.

• For simple polynomials f(x), we compute f ′(x) as a related polynomial
in order to answer questions about monotonicity. Because f ′(x) is a poly-
nomial, it also has its own derivative f ′′(x) (called the second derivative
of f(x)). The sign of f ′′(x) determines the monotonicity of f ′(x), which
in turn determines the concavity of f(x).
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3.1.5 Exercises

For each function defined in terms of an integral, identify the rate of accumu-
lation.

1. f(x) = −5 +
∫ x

1
ze−z dz

2. Q(x) =
∫ x

0

s

s2 + 1 ds

3. A(x) = 4
∫ x

−2
t+ 3t3 dt

4. R(x) = 1 + 2
∫ x

1
sin(z) dz − 3

∫ x

1
cos(z) dz

Find the derivative of each polynomial.
5. p(x) = x2 − 5x
6. q(x) = x3 − 6x2

7. r(x) = x4 + 2x3 − 5

Write each polynomial as an accumulation function from the indicated starting
point.

8. p(x) = x2 − 5x from x = 1
9. p(x) = x2 − 5x from x = −2
10. q(x) = x3 − 6x2 from x = 2
11. q(x) = x3 − 6x2 from x = 0
12. r(x) = x4 + 2x3 − 5 from x = −1
13. r(x) = x4 + 2x3 − 5 from x = 2

Determine the monotonicity and concavity of each polynomial.
14. f(x) = 3x2 − 48x+ 5
15. g(x) = 100 + 80x− 2x2

16. h(x) = 9x2 − x3

17. w(x) = x3 − 9x2 + 15x+ 4
18. u(x) = x4 − 6x2 + 15
19. M(x) = 15 + 4x3 − x4
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3.2 Accumulation of Change
Overview. Many students learn a basic rule relating distance d, speed r and
time t: d = rt or “distance equals rate times time.” This statement is really
only true when the rate is unchanging. If the speed is constant at a rate of r1
for a time t1 and then instantly changes to a new constant speed at rate r2 for
another time t2, then the total distance d traveled over the total time is

d = r1t1 + r2t2.

This generalizes to any number of intervals of constant rate, that the total
change in position (displacement) equals the sum of the products of the rate
times the increment of time at that rate.

The definite integral is the mathematical generalization of the idea that
we just described. Given any rate of change r(x) for a quantity Q with respect
to an independent variable x, the definite integral’s purpose is to compute the
increment of change in Q when the independent variable changes from one
value, x = a, to another value, x = b. We write

Q(b)−Q(a) =
∫ b

a

r(x)dx ⇔ Q(b) = Q(a) +
∫ b

a

r(x)dx.

This section introduces the idea of the definite integral for special func-
tions for which we can compute the increment of change without knowing any
additional calculus rules. We start with simple functions, which means the
functions are constant on intervals. These functions motivate the basic prop-
erties which we then apply graphically and numerically. We will learn the rules
later.

3.2.1 Rate of Change
Suppose that we have two variables that are related by a function. In mathe-
matics, we often think of the prototypical variables x and y with some function
f : x 7→ y. But in physical situations, we are often considering changes in time
so that we use the independent variable t for time. The official definition for
rate of change is as the derivative. In the present context, we will not need
to know how to compute derivatives. We only need to consider that there is a
function that physically measures a rate of change.

For example, a speedometer measures speed which is a rate of change of
distance with respect to time. As another example, we can physically measure
the rate at which water flows through a pipe which represents a rate of change
of a reservoir (e.g., a tub or a pool) that is being filled or drained. An electrical
analog of water flow is electrical current which measures the rate of change of
electrical charge along an electrical path. In biology, the rate of change of a
population is physically measured through birth, death and migration rates.

When any of these rates are constant over an interval t ∈ [a, b], the net
change in the quantity of interest Q is equals the rate times the increment of
time. The following definition makes this clear.

Definition 3.2.1 Constant Rate of Change. Given a quantity Q that is a
function of independent variable t, say t 7→ Q(t), we say that Q has a constant
rate of change r on an interval [a, b] if for any t1, t2 satisfying a ≤ t1 < t2 ≤ b,

Q(t2)−Q(t1) = r · (t2 − t1),

which is often written ∆Q = r ·∆t. ♦
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A quantity that has a constant rate of change satisfies a linear equation
on the given interval and the rate of change corresponds to the slope of that
line. In particular, if c is any value for t in the interval, c ∈ [a, b], then the
accumulation Q(t) is a linear function of t,

Q(t) = Q(c) + r(t− c),
using the point–slope equation of a line. The value Q(c) represents the ini-
tial value while r(t − c) represents the increment of change in Q when the
independent variable goes from c to the value t.

In preparation for extending the idea of rate of change, we need to recall
the concept of piecewise functions 5.2.3. A piecewise function considers its
domain as consisting of a collection of disjoint (non-overlapping) intervals. On
each such interval, the function has a separate formula or rule of calculation.

Example 3.2.2 The function f is defined by the equation

f(x) =


x2, 0 ≤ x < 2,
6− x, 2 ≤ x ≤ 3
3, 3 < x ≤ 4

.

The domain of f is the union of disjoint intervals [0, 2), [2, 3] and (3, 4] which
corresponds to [0, 4]. The notation states that for input values x between 0 and
2, including 0, the function will square the input to give the output. Between
2 and 3, inclusively, the function will subtract the input from 6 for the output.
For input values greater than 3 but less than or equal to 4, the function has a
constant output value of 3. The graph is shown below.

0 1 2 3 4

0

1

2

3

4

�
Using piecewise functions, we can define something called a simple func-

tion. Such a function is piecewise constant, meaning that the domain is formed
as a union of disjoint intervals and the function has a constant value on each
interval. To define these intervals, we first introduce the idea of a partition
which will be used to define the end points of these subintervals.

Definition 3.2.3 Partition. A partition of size n of an interval [a, b] is an
increasing, finite sequence of numbers P = (x0, x1, . . . , xn) such that x0 = a,
xn = b and xj < xj+1. The increments of the partition correspond to the
widths of subintervals, with

∇xj = xj − xj−1
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being the width of the subinterval [xj−1, xj ] for j = 1, . . . , n. ♦

Definition 3.2.4 Simple Function. Given a partition P of size n of an
interval [a, b], a function f is a simple function on the partition P with
values (y1, . . . , yn) if

f(x) =


y1, x0 < x < x1,

y2, x1 < x < x2,
...
yn, xn−1 < x < xn.

♦
The figure below illustrates a simple function defined with a partition of

size n = 4. Open circles are used on the edges of the segments because we
did not define the value at the actual partition points, only on the intervals
between those points. That is because when a rate changes instantaneously
between two values, the rate can not be properly defined at the instant itself.

x0 x1 x2 x3 x4

−1

0

1

2

3

y1

y2

y3

y4

We can use a simple function to represent a special case of a varying rate
of change, namely a rate of change that is constant on subintervals but which
changes instantly (not physically possible in most situations) at the points of
a partition. Given a simple rate function, r(x), on a partition P of size n of
the interval [a, b] with values (r1, r2, . . . , rn), we can define an accumulation
function that is piecewise linear on the same partition having initial value
(a, f(a)):

f(x) =



f(a) + r1(x− x0), x0 ≤ x < x1,

f(a) + r1∇x1 + r2(x− x1), x1 ≤ x < x2,

f(a) +
2∑
k=1

rk∇xk + r3(x− x2), x2 ≤ x < x3,

f(a) +
3∑
k=1

rk∇xk + r4(x− x3), x3 ≤ x < x4,

...

f(a) +
n−1∑
k=1

rk∇xk + rn(x− xn−1), xn−1 ≤ x ≤ xn.
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The purpose of the summation is to represent the accumulation of change on
all previous subintervals of the partition in order to make the accumulation
function f(x) continuous on the full interval [a, b].

Definition 3.2.5 Definite Integral of Simple Function. Given a simple
rate function, r(x), on a partition P of size n of the interval [a, b] with values
(r1, r2, . . . , rn), the total accumulated change associated with this rate is the
definite integral represented by is given by∫ b

a

r(x) dx =
n∑
k=1

rk∇xk.

♦
It is common that the increments ∇xk be instead written ∆xk. However,

this is a notational abuse because ∆xk technically represents the forward dif-
ference ∆xk = xk+1 − xk with k = 0, . . . , n − 1. Ignoring this complaint, the
total accumulation of change is often written

f(b)− f(a) =
n∑
k=1

rk ∆xk.

(The complaint can formally be resolved by shifting the index values from
k = 1, . . . , n to k = 0, . . . , n− 1.)

Example 3.2.6 A storage reservoir starts with 100 gallons of water. Over
the next 20 minutes, water is added to the reservoir at a rate of 5 gal/min.
Then water is pumped out at a rate of 12 gal/min for 10 minutes. For the
next 30 minutes, water is added at a rate of 3 gal/min. Find a piecewise linear
function describing the amount of water in the reservoir as a function of time
(in minutes).
Solution. The rate function is a simple function using the partition P that
starts at x0 = 0 and has increments of ∇x1 = 20, ∇x2 = 10 and ∇x3 = 30.
That is, the partition is given by P = {0, 20, 30, 60}. The rate of change of
water is constant on the subintervals defined by this partition:

R(t) =


5, 0 < t < 20,
−12, 20 < t < 30,
3, 30 < t < 60.

The amount of water in the reservoir is also a function of time, say W (t),
and is defined as an accumulation using the rate of change R(t) found above.
Because the reservoir begins with W (0) = 100, our initial value, we can write
W (t) as a piecewise linear function that accumulates the change in water over
each of the subintervals. Consider first the total accumulation of change in
water on each of the subintervals, which is equal to the rate of change times
the increment of time for that subinterval.

W (20)−W (0) = 5(20) = 100
W (30)−W (20) = −12(10) = −120
W (60)−W (30) = 3(30) = 90

Notice that the total change in water volume over the entire interval [0, 60] is
the sum of these increment,

W (60)−W (0) = 100 +−120 + 90 = 70.
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The accumulation function W (t), which has an initial value W (0) = 100, is
therefore defined by

W (t) =


100 + 5(t− 0) = 100 + 5t, 0 ≤ t < 20,
100 + 100− 12(t− 20) = 200− 12(t− 20), 20 ≤ t < 30,
200− 120 + 3(t− 30) = 80 + 3(t− 30), 30 ≤ t ≤ 60.

The graphs of the rate function R(t) and the water level W (t) are shown
below. Notice that although the rate function is not defined at the partition
points, the water level functionW (t) is defined and continuous at those points.
It is continuous because the accumulations are designed to start on the next
interval exactly where it stops from the previous interval with no sudden jumps.
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There is an important geometric interpretation of accumulation in terms of

area on the graph. Recall that the area of a rectangle is defined as the product
of the height and the width. Mathematically, this is the same operation as
when we calculate an increment as the product of a rate and the increment of
the independent variable, except that a rate can be negative. Consequently,
we introduce the idea of signed area.

Definition 3.2.7 Signed Area (Informal). Suppose we have the graph
of a function y = f(x) that is continuous on an interval (a, b) and is either
entirely above the axis, f(x) > 0 for all x ∈ (a, b), or entirely below the axis,
f(x) < 0 for all x ∈ (a, b). Then we can define the signed area of the graph
by considering the area A (area itself is always positive) of the region between
the curve y = f(x) and the axis y = 0 and between the vertical lines x = a and
x = b. If f(x) > 0 (above the axis), then we say that we have positive area
A; if f(x) < 0 (below the axis), then we say that we have negative area −A.

If the graph y = f(x) on an interval (a, b) has a finite number of discon-
tinuities or crosses the axis so that sometimes the graph is above the axis
and sometimes below, then we can consider a partition of [a, b] using the x-
values of the discontinuities and zeros of f . Then on every subinterval from
this partition, the earlier definition applies and we have a signed area for each
subinterval. The signed area for the entire graph is the sum of the signed areas
of the subintervals, adding areas that are above the axis and subtracting areas
that are below the axis. ♦

Given any simple rate function f(x), the signed area of the graph y = f(x)
on the interval [a, b] consists of the sum of signed areas of rectangles. This
exactly matches the definite integral∫ b

a

f(x) dx =
n∑
k=1

rk∇xk.

Therefore, we adopt the definite integral as our formal definition of signed area.
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Definition 3.2.8 Signed Area and Accumulated Change (Formal).
Suppose we have a function y = f(x) that is bounded and piecewise continuous
on an interval (a, b) (a < b). The signed area of f on the interval (a, b) is defined
as the definite integral ∫ b

a

f(x) dx.

If f(x) gives the rate of change of a quantity Q with respect to the independent
variable x, then the definite integral also gives the increment of change in Q:

Q(b)−Q(a) =
∫ b

a

f(x) dx.

The function f(x) is called the integrand and the variable x is called the vari-
able of integration. The values a and b are called the limits of integration.

♦
The notation of the definite integral uses an elongated “S” called the in-

tegral symbol
∫

that should remind you of the idea of summing increments
of signed area. The limits of integration a (lower) and b (upper) represent
the starting and ending points of integration, respectively. The increments of
signed area are represented by the formula f(x) dx which represents a strip
of signed area with signed height f(x) (generalizing the constant height of
a simple rate function) and infinitesimally small width dx (generalizing the
increments of a partition ∇x).

Although we have presented these ideas as definitions, they are really impor-
tant consequences of the development of calculus. In particular, the statement
that the increment of change Q(b)−Q(a) is equal to the definite integral of the
rate of change of Q is so most important that this result is called the (((Un-
resolved xref, reference "fundamental-theorem-calculus"; check spelling or use
"provisional" attribute)))Fundamental Theorem of Calculus . One of the pri-
mary goals of learning calculus is to understand what this theorem means and
why it is really true.

3.2.2 Interpretation of Definite Integrals as Signed Areas
We will learn integration methods later. For now, we will explore examples,
including simple functions, where knowing the interpretation of a definite in-
tegral allows us to determine results using only the ideas of signed area. When
exact area calculations can not be found, then approximations of signed area
can allow us to estimate the value of the definite integral. We start by revisiting
our earlier examples using the context of definite integrals.

Example 3.2.9 Integral of Constant Rate. Consider the case of a constant
function R(t) = r, representing a constant rate of change for some quantity Q
with respect to time t. Earlier we noted that for constant rate of change, the
increment of change in Q as t changes from t = a to t = b is equal to

Q(b)−Q(a) = r(b− a).

Using the idea of a definite integral to represent the accumulated increment of
change, we can rewrite this (for constant rate) as

Q(b)−Q(a) =
∫ b

a

r dt.

If we rewrite our increment of change in Q so that it is solved for Q(b), we
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find
Q(b) = Q(a) +

∫ b

a

r dt = Q(a) + r(b− a).

This is read as saying that Q(b) equals the initial value Q(a) plus the total
increment of change in Q as t goes from a to b. Because this equation is true
for any value of b, we can replace it with a variable and obtain

Q(x) = Q(a) +
∫ x

a

r dt = Q(a) + r(x− a).

That is, we should recognize the point–slope equation of a line as a special case
of an initial value plus an increment of change. �

Knowing the area of regions of a graph can allow us to compute some
definite integrals.

Example 3.2.10 The graph of y = f(x) is shown below. Find
∫ 5

0
f(x) dx.
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Solution. If we consider vertical lines at x = 0 and x = 5 and then look at
the regions between these lines, the graph and the x-axis, we can identify the
areas that need to be calculated. Regions above the axis are shaded in blue
and represent positive signed area while regions below the axis are shaded in
red and represent negative signed area. In addition, dashed lines have been
included to represent convenient places to split the region into simple geometric
shapes.
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−1 0 1 2 3 4 5 6
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Consider the geometric regions contained in the figure. There is a rectangle
on the interval [0, 1] with a height f(x) = 4. Since the area of the rectangle is
4 and the region is above the axis, we know∫ 1

0
f(x)dx = 4.

Next, we have a triangle on the interval [1, 3] with a horizontal base given by
the increment ∆x = 3 − 1 = 2 and a vertical height of 4. This region is also
above the axis so that ∫ 3

1
f(x)dx = 1

2(2)(4) = 4.

Combining these regions, we know∫ 3

0
f(x)dx = 4 + 4 = 8.

The area of the region below the axis can be found in several ways. One
way is to identify a triangle on interval [3, 4] and a trapezoid on [4, 5]. The
triangle has horizontal width ∆x = 4 − 3 = 1 and height 2 for a total area of
1
2 (1)(2) = 1. Since the region is below the axis, we have∫ 4

3
f(x)dx = −1.

A trapezoid is a geometric shape consisting of two parallel sides and its area is
the average length of the parallel sides times the perpendicular length between
those sides. The area of the trapezoid on [4, 5] uses parallel lengths of 2 and 1
with a perpendicular distance ∆x = 5−4 = 1 for a total area of 1

2 (2+1)(1) = 3
2 .

As a negative signed area, we have∫ 5

4
f(x)dx = −3

2 .

Combining these two shapes for total signed area on [3, 5], we have∫ 5

3
f(x)dx = −1 +−3

2 = −5
2 .
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Another way to find this area would be to consider a larger triangle coming
from the interval [3, 6] and then subtract the area of the smaller triangle on
the interval [5, 6] that should not be included:∫ 5

3
f(x)dx = −

(1
2(6− 3)(2)− 1

2(6− 5)(1)
)

= −5
2 .

Finding the total signed area for the graph, we find the definite integral
desired, ∫ 5

0
f(x)dx =

∫ 3

0
f(x)dx+

∫ 5

3
f(x)dx = 8 +−5

2 = 11
2 .

�

3.2.3 Finding Definite Integrals with Technology
When we do not have easy tricks to compute a definite integral, we can get
high accuracy estimates using technology. There are free websites that can
compute integrals such as WolframAlpha or SageMath described previously.
Most graphing calculators have the ability to compute a definite integral and
therefore the ability to compute accumulated change or signed areas. In gen-
eral, you will apply the following steps on a calculator.

1. Identify the integrand function (i.e., the rate of change or the function
defining signed area) and the limits of integration.

2. Use the graphing feature of your calculator so that the function is graphed
and the interval of interest is showing. You may need to change the
window of you graph.

3. Use the menu system to find the integral. You will need to select your
function and input the end points of the interval of interest.

Example 3.2.11 We wish to compute
∫ 5

2
(2x − 8) dx. First, steps are given

for evaluating this using a TI-83/84 graphing calculator. This is followed by
a call to WolframAlpha.com and a SageMath script that compute the same
integral.
Solution.

• Find the integral using a TI-83/84 graphing calculator.

1. Identify the function. In this example, the formula f(x) = 2x − 8
represents the integrand while the interval is based on the limits of
integration [2, 5].

2. Graph the function over this interval. Each step is given as a sepa-
rate line.
Y=
Y1= 2^x-8
WINDOW
Xmin= 2
Xmax= 5
GRAPH
ZOOM: ZoomFit

3. Compute the definite integral.
CALC:

∫
f(x)dx

http://www.wolframalpha.com
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Lower Limit? 2
Upper Limit? 5

The calculator reports back
∫
f(x)dx = 16.3954611.

• Find the integral using WolframAlpha.
In the prompt box, just type “integrate 2^x-8 from 2 to 5”. An exact
and approximate answer is given∫ 5

2
(2x − 8)dx = 28

log(2) − 24 ≈ 16.3955.

Note that log on WolframAlpha refers to the natural logarithm ln.

• The SageMath script to compute the integral is just as similar. We need
a separate command to show our result as a decimal approximation.

var("x")
value = integrate (2^x-8, [x,2,5])
show(value)
show(value.n())

�
The graph for the previous example, with the signed areas shaded, is shown
below. Notice that the graph has two regions, one of which is negative (red)
and one of which is positive (blue). We can find the point where the sign
switches by solving 2x − 8 = 0 which is x = 3. In the next example, we will
find the signed area of each interval separately and relate the values to the
overall signed area.
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Example 3.2.12 Compute
∫ 3

2
(2x − 8)dx and

∫ 5

3
(2x − 8)dx.

Solution. As long as the interval of interest is graphed, we can compute the
definite integral to get the signed area. Since we already have our integrand
f(x) = 2x − 8 in our calculator, we can just go to the compute steps.

• CALC:
∫
f(x)dx

Lower Limit? 2
Upper Limit? 3

http://www.wolframalpha.com


CHAPTER 3. ACCUMULATION AND RATES OF CHANGE 194

The calculator reports back
∫
f(x)dx = −2.22922.

• CALC:
∫
f(x)dx

Lower Limit? 3
Upper Limit? 5

The calculator reports back
∫
f(x)dx = 18.624681.

We interpret these results. The first integral was∫ 3

2
(2x − 8)dx ≈ −2.22922

and means that the area of the first region from interval (2, 3) is 2.22922.
Because the graph is below the axis, the integral counts as negative area. The
second integral was ∫ 5

3
(2x − 8)dx ≈ 18.624681

which means that the second region on interval (3, 5) has area 18.624681 and
counts as positive area. The total signed area is the sum of these parts,∫ 5

2
(2x − 8)dx =

∫ 3

2
(2x − 8)dx+

∫ 5

3
(2x − 8)dx

= −2.22922 + 18.624681 = 16.395461.

Notice that there is a slight numerical discrepancy between our two methods.
This is because numerical calculation of definite integrals involves an approx-
imation. Approximations of necessity comes with some unavoidable errors.

�
We can solve some applications about change by identifying an appropriate

accumulation of a rate of change. For example, velocity is a rate of change of
position. Consequently, the change in position (displacement) can be computed
as an accumulation of change using velocity with a definite integral.

Example 3.2.13 Suppose a hovercraft starts 40 meters away from the shore. If
the velocity (meters per second) of the hovercraft is a function of time (seconds)
v(t) = t(t− 3)(t− 5) (a positive velocity is moving away from shore, increasing
the distance). What is the position of the hovercraft after 3 seconds and again
at 5 seconds?
Solution. Let x(t) measure the position of the hovercraft (meters from shore)
as a function time (seconds). By the principle of accumulation of change, the
change in position over 3 seconds is equal to the definite integral of the rate of
change,

x(3)− x(0) =
∫ 3

0
v(t)dt =

∫ 3

0
[t(t− 3)(t− 5)]dt.

Using technology, we find the accumulated change, such as asking WolframAl-
pha “integral of t(t− 3)(t− 5) from 0 to 3”,∫ 3

0
[t(t− 3)(t− 5)]dt = 63

4 = 15.75.

Since the hovercraft started 40 meters from shore and has moved a net amount
15.75 meters (away from shore), the hovercraft is at a position 55.75 meters
after 3 seconds.
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We can compute the change in position over the next two seconds using

x(5)− x(3) =
∫ 5

3
v(t)dt =

∫ 5

3
[t(t− 3)(t− 5)]dt.

Using technology, we find the accumulated change, such as asking WolframAl-
pha “integral of t(t− 3)(t− 5) from 3 to 5”,∫ 5

3
[t(t− 3)(t− 5)]dt = −16

3 ≈ −5.333.

The hovercraft has moved 5.333 meters back toward the shore during the last
two seconds. Since the craft was at 55.75 meters after 3 seconds, after 5 seconds
it is at 50.417 meters away from the shore.

Alternatively, we could do a single integral finding the total change over all
5 seconds,

x(5)− x(0) =
∫ 5

0
v(t)dt =

∫ 5

0
[t(t− 3)(t− 5)]dt.

We find ∫ 5

0
[t(t− 3)(t− 5)]dt = 125

12 ≈ 10.417,

which implies that the hovercraft has moved from x(0) = 40 meters from shore
to a new position of x(5) = 50.417 meters from shore, in agreement to our
earlier calculations. The figure below shows a graph of the velocity function
with the areas (unsigned) that were used to compute the change in position.
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3.2.4 Summary
• Pending further edits.

3.2.5 Exercises
1. Pending.
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3.3 Functions Defined by Accumulation

3.3.1 Overview
When a function f(x) is integrable on an interval I and a ∈ I is any value
in that interval, then for any other value b ∈ I, we can compute the definite
integral of f(x) from a to b. Because the value depends on the value of b, we
can think of this definite integral as a function of the upper limit b. We call
such a function the accumulation function of f(x) relative to x = a.

This section introduces how to describe accumulation functions according
to the properties of the integrand (rate) function. We learn the definitions for
increasing and decreasing functions as well as the definition of concavity. Using
the Mean Value Theorem for Integrals, we will be able to classify the behav-
ior of accumulation functions according to the behavior of its corresponding
integrand (rate) function.

3.3.2 Accumulation Functions
In our introduction, we used the variable b as the upper limit of the accu-
mulation function. Because we usually think of x as our default independent
variable, we would like to use x as the upper limit of the integral. But then
we would have the variable x playing two different roles — the upper limit
of the integral and the variable of integration. To keep a single role for the
variable, we always require that when using a variable in a limit of integration,
the integration variable must be chosen to be a dummy variable that does not
have another contextual meaning.

Definition 3.3.1 Accumulation Function. Let f(x) represent a rate of
change or rate of accumulation with independent variable x. The accumu-
lation function A(x) relative to x = a with an initial value A(a) = A0 is
defined as

A(x) = A0 +
∫ x

a

f(z) dz,

where z can be replaced with any other dummy variable (but not x). The
function is defined so long as f is integrable on the interval containing both x
and a. ♦

Once an accumulation function is defined, it can be used to evaluate par-
ticular definite integrals, even if the starting limit does not match the point
used to define the accumulation.
Theorem 3.3.2 Integration as the Difference in Accumulation. Sup-
pose f(x) is integrable on an interval that contains a, b and c. If A(x) is an
accumulation of f(x) relative to x = c,

A(x) = A0 +
∫ x

c

f(z) dz,

then ∫ b

a

f(x) dx = A(b)−A(a).

Notice that in the theorem, the definite integral used the independent vari-
able x as the variable of integration. This is acceptable because the integral
is a specific definite integral and the variable x plays no role other than the
integration variable. We could have written using another dummy variable to
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get ∫ b

a

f(z) dz = A(b)−A(a),

but the result would have been exactly the same.
The integrand function f for an accumulation A is the rate of accumulation

or rate of change. When we learn about derivatives in the next chapter, we
will learn a different conception of rate of change that is called the derivative,
written A′(x). Fortunately, the (((Unresolved xref, reference "fundamental-
theorem-calculus"; check spelling or use "provisional" attribute)))Fundamental
Theorem of Calculus will show that the two different conceptions agree with
one another. That is, for any accumulation function

A(x) = A0 +
∫ x

c

f(z) dz,

the derivative A′(x) and the rate of accumulation f(x) are the same. For con-
sistency of discussion later, we will call f(x) the derivative of the accumulation
function A(x).

Some accumulation functions can be expressed simply using other well
known formulas. For example, we previously discovered the following rules
which we can now identify as accumulation functions.

Theorem 3.3.3 Elementary Accumulation Functions.∫ x

0
1 dz = x (3.3.1)∫ x

0
z dz = 1

2x
2 (3.3.2)∫ x

0
z2 dz = 1

3x
3 (3.3.3)∫ x

0
z3 dz = 1

4x
4 (3.3.4)

That is, for a constant rate A′(x) = 1, the accumulated change relative to
x = 0 is A(x) = x. Similarly, for the rate A′(x) = x, the accumulated change
relative to x = 0 is A(x) = 1

2x
2.

Example 3.3.4 Suppose A(x) has a rate A′(x) = 2x2 − 3 and initial value
A(0) = 4. Express A(x) in terms of a definite integral. Then apply the
properties of integrals and the elementary accumulation functions to find an
algebraic formula for A(x).
Solution. Because we are given A(0) = 4, we will write

A(x) = A(0) +
∫ x

0
f(z) dz

where f(x) = A′(x) is the desired rate of accumulation. That is,

A(x) = 4 +
∫ x

0
2z2 − 3 dz.

To find the algebraic formula for A(x), we will rewrite the definite integral
as a linear combination of the elementary rates z2 and 1. That is, f(z) =
2z2 − 3 = 2 · z2 − 3 · 1 so that the linearity property of integrals allows us to
use the elementary accumulation functions.

A(x) = 4 + 2 ·
∫ x

0
z2 dz − 3 ·

∫ x

0
1 dz



CHAPTER 3. ACCUMULATION AND RATES OF CHANGE 198

= 4 + 2 ·
(

1
3x

3
)
− 3 · (x)

= 2
3x

3 − 3x+ 4

�

3.3.3 Monotonicity and Concavity
We first learned to describe the monotonicity of functions in Section 2.6. Recall
from Definition 2.6.1 that a function f is increasing on a set S if for every
x1, x2 ∈ S,

x1 < x2 =⇒ f(x1) < f(x2),
and decreasing if

x1 < x2 =⇒ f(x1) > f(x2).
We can rewrite these inequalities in terms of the increment of change of f :

f(x1) < f(x2) ⇔ f(x2)− f(x1) > 0,
f(x1) > f(x2) ⇔ f(x2)− f(x1) < 0.

That is, an increasing function is associated with positive increments of change
and a decreasing function is associated with negative increments of change.

When a function f(x) is described as an accumulation, it can be written as
the integral of its rate of accumulation or derivative f ′(x). Thus,

f(x2)− f(x1) =
∫ x2

x1

f ′(x) dx.

Knowing the sign of the rate of accumulation can then be used to determine
intervals of monotonicity.

Theorem 3.3.5 Monotonicity Test for Accumulation Functions. Sup-
pose that f(x) is an accumulation function with corresponding rate function
f(′x), and suppose that f ′(x) is continuous on (a, b) with limits at the end-
points.

• If f ′(x) = 0 for all x ∈ (a, b), then f(x) is constant on [a, b].

• If f ′(x) > 0 for all x ∈ (a, b), then f(x) is increasing on [a, b].

• If f ′(x) < 0 for all x ∈ (a, b), then f(x) is decreasing on [a, b].
Proof. Let x1, x2 ∈ [a, b] satisfy x1 < x2. Because f is an accumulation of f ′,
we know that

f(x2)− f(x1) =
∫ x2

x1

f ′(x) dx.

We now treat each case individually.
If f ′(x) = 0 for all x ∈ (a, b), then

f(x2)− f(x1) =
∫ x2

x1

0 dx = 0

and f(x2) = f(x1). Because x1 and x2 were arbitrary, f(x) must have the
same value for any x ∈ [a, b].

If f ′(x) > 0 for all x ∈ (a, b), then (((Unresolved xref, reference "thm-
integral-inequality"; check spelling or use "provisional" attribute))) allows us
to form a bound ∫ x2

x1

f ′(x) dx >
∫ x2

x1

0 dx = 0.
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This guarantees that f(x2)− f(x1) > 0 so that f is increasing on [a, b].
If f ′(x) < 0 for all x ∈ (a, b), then again (((Unresolved xref, reference "thm-

integral-inequality"; check spelling or use "provisional" attribute))) allows us
to form a bound ∫ x2

x1

f ′(x) dx <
∫ x2

x1

0 dx = 0,

so that f(x2)− f(x1) > 0. Thus, f is decreasing on [a, b]. �

Example 3.3.6 Suppose f(x) =
∫ x

1
t2 − 5t+ 6 dt. Describe the monotonicity

of f .
Solution. The rate of accumulation for f is given by f ′(x) = x2 − 5x +
6. (Recall the integral uses a dummy variable; we change it back to x for
analysis.) Because f ′ is continuous everywhere, the domain for f is (−∞,∞).
The starting location x = 1 simply gives the initial value with f(1) = 0.

We find the signs of f ′ by first solving f ′(x) = 0 and then testing the
resulting intervals.

x2 − 5x+ 6 = 0
(x− 2)(x− 3) = 0

x− 2 = 0 or x− 3 = 0
x = 2 or x = 3

The intervals to test are (−∞, 2), (2, 3), and (3,∞). We can test actual values
or consider the signs of the factors on each interval. The results are summarized
on the number-line summary.

f ′(x) = (x− 2)(x− 3)
x2

0

3

0+ − +

We can now interpret the sign analysis of f ′(x).

• f ′(x) > 0 on (−∞, 2) implies that f(x) is increasing on (−∞, 2].

• f ′(x) < 0 on (2, 3) implies that f(x) is decreasing on [2, 3].

• f ′(x) > 0 on (3,∞) implies that f(x) is increasing on [3,∞).

A graph of y = f(x) is shown below consistent with this analysis and the initial
value f(1) = 0.

−2 −1 1 2 3 4 5

−2

−1

1

2

x = 2

x = 3
x

y
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�

Example 3.3.7 Suppose g(x) =
∫ x

1

t− 4
t+ 2 dt. Describe the monotonicity of g.

Solution. The rate of accumulation for g is given by g′(x) = x− 4
x+ 2 . The

function g′ has a discontinuity at x = −2 which corresponds to a vertical
asymptote. The domain of the accumulation function is the interval containing
x = 1 up to this discontinuity, which is the interval (−2,∞).

To determine monotonicity, we need to find the sign of g′(x). Intervals
are determined by the roots and discontinuities. The root is the solution to
g′(x) = x− 4

x+ 2 = 0 which occurs when x− 4 = 0 or x = 4. Using this root and
the discontinuity at x = −2, the intervals to test are (−2, 4) and (4,∞).

g′(0) = 0− 4
0 + 2 = −2

g′(6) = 6− 4
6 + 2 = 1

4

This could be summarized on a number-line as shown below.

f ′(x) = x− 4
x+ 2

x−2

VA

4

0− +

We can now interpret the sign analysis of g′(x).

• g′(x) < 0 on (−2, 4) implies g(x) is decreasing on (−2, 4]. (We can not
include x = −2 because of the vertical asymptote.)

• g′(x) > 0 on (4,∞) implies g(x) is increasing on [4,∞).

A graph of g(x) is shown below that is consistent with this analysis.

−4 −2 2 4 6 8 10 12
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Concavity was introduced as a way to describe how a function bends. How-

ever, our original definition of concavity 2.6.13 also involved inequalities, stat-
ing that the rate of change itself was increasing or decreasing. For an accumu-
lation function, the rate of accumulation will control concavity. The following
theorem suggests that we try to think of the rate of accumulation as being, on
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its own, another accumulation of another function which we call the second
derivative of the accumulation.
Theorem 3.3.8 Concavity Test for Accumulation Functions. Suppose
that f(x) is an accumulation function with corresponding rate function f(′x)
and that f ′(x) is itself an accumulation function with its rate function f ′′(x).
Suppose that f ′′(x) is continuous on (a, b) with limits at the endpoints.

• If f ′′(x) = 0 for all x ∈ (a, b), then f(x) is linear on [a, b].

• If f ′′(x) > 0 for all x ∈ (a, b), then f(x) is concave up on [a, b].

• If f ′′(x) < 0 for all x ∈ (a, b), then f(x) is concave down on [a, b].
Proof. We will prove that f ′(x) is constant, increasing, or decreasing, in each
of the respective cases. In fact, this is often adopted as the de facto definition
for concavity. Because f ′ is an accumulation with rate f ′′, we only need to
apply Theorem 3.3.5. The relationship between the monotonicity of f ′ and
the changes of the average rates of change given in the original definition of
concavity requires the Mean Value Theorem. �

At this point, we have not learned how to find the rate so that a function can
be written as an accumulation. This requires computing derivatives. However,
we can use technology to help us out.

Example 3.3.9 Use technology to find derivatives in order to describe the
monotonicity and concavity of f(x) = x3 − 4x.
Solution. We start by writing f(x) as an accumulation. The rate of accu-
mulation f ′(x) is a derivative, which we find using technology.

f(x) = x^3-4*x
Df(x) = derivative(f(x),x)
show(Df(x))

3*x^2-4

Knowing the rate f ′(x) = 3x2−4 and an initial value, say f(0) = 03−4(0) =
0, we can write

f(x) = 0 +
∫ x

0
3z2 − 4 dz =

∫ x

0
3z2 − 4 dz.

Monotonicity is determined by the signs of f ′(x) = 3x2 − 4.

3x2 − 4 = 0
3x2 = 4

x2 = 4
3

x = ±
√

4
3

x = ± 2√
3

We can test the sign of f ′(x) in each resulting interval and summarize the
results on a number line.

f ′(x) = 3x2 − 4
x− 2√

3

0

+ 2√
3

0+ − +
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Interpreting the sign analysis tells us that f(x) = x3 − 4x is increasing on
the interval (−∞,− 2√

3 ], decreasing on the interval [− 2√
3 ,

2√
3 ], and increasing

on the interval [ 2√
3 ,∞).

To analyze concavity, we need to write f ′(x) = 3x2− 4 as an accumulation
function. Technology helps us find the derivative, which requires one additional
line.

f(x) = x^3-4*x
Df(x) = derivative(f(x),x)
D2f(x) = derivative(Df(x),x)
show(D2f(x))

6*x

Now that we know f ′′(x) = 6x, and we have an initial value f ′(0) = 3(0)2−
4 = −4, we can write

f ′(x) = −4 +
∫ x

0
6z dz.

The signs of f ′′(x) = 6x change at x = 0, summarized by the sign analysis
below.

f ′′(x) = 6x
x0

0− +

Interpreting the sign analysis of the second derivative, we describe the con-
cavity. The function f(x) is concave down on (−∞, 0] and concave up on
[0,∞).

A graph illustrating these features is shown below. The curve is colored
differently, depending on concavity. To the left of x = 0 (blue), the curve is
concave down. To the right of x = 0 (orange), the curve is concave up. The
local extremes at x = ± 2√

3 are also labeled.
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3

x

�
A point where the concavity of a function changes from concave up to

concave down or vice versa is called a point of inflection, or more simply an
inflection point. We require that an inflection point only occurs at points
where the function is continuous.
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Definition 3.3.10 Suppose that f(x) is a function that is continuous at x = c
and that there are intervals so that f is concave up on (a, c) and concave down
on (c, b), or the reverse, concave down on (a, c) and concave up on (c, b). We
say that f has a point of inflection at x = c. ♦

An inflection point occurs at the points where f ′′(x) changes sign. On a
graph, this is where the curve transitions between bending upward and bending
downward. Inflection points are significant because they represent points where
the rate of change f ′(x) reaches its extreme values.

When we can view a graph of the rate of accumulation (the derivative), we
can interpret the features of that rate to describe the behavior of the accumu-
lation function itself.
Example 3.3.11 The graph of the accumulation rate f ′(x) for a function
f(x) is shown in the figure below. Describe the monotonicity and concavity
and sketch a graph of the accumulation function y = f(x) with initial value
f(0) = 3.

−2 0 2 4 6

−2

0

2

4

x

f
′ (x

)

Solution. The graph of f ′(x) can be used to determine the signs of f ′(x)
that are used to find the monotonicity of f(x) while the monotonicity of f ′(x)
can be used to find the concavity of f(x). Computing the signed area of the
graph can be used to determine the actual increments of change.

The signs of f ′(x) based on the graph are summarized on the following
number-line summary.

f ′(x)
x−2

0

3

0

5

0− + − +

We interpret this to make the following conclusions about monotonicity:
f(x) is

• increasing on intervals [−2, 3] and [5, 6],

• decreasing on intervals [−3,−2] and [3, 5].

From the graph, we can not determine what happens beyond the visible win-
dow.

In addition, the graph allows us to identify the monotonicity of f ′. We see
that f ′(x) is

• increasing on intervals [−3, 0] and [4, 6],

• constant on the interval [0, 1],

• decreasing on the interval [1, 4].
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We interpret this to give us concavity: f(x) is

• concave up on intervals [−3, 0] and [4, 6],

• linear on the interval [0, 1] with slope f ′(x) = 4,

• concave down on the interval [1, 4].

The definite integral of f ′(x) over an interval, which computes the signed
area, determines the increment of change in f(x). The graph of f ′(x) is made of
straight line segments, so we can compute the integrals using simple geometric
formulas for the areas of triangles, rectangles, and trapezoids.

f(−2)− f(−3) =
∫ −2

−3
f ′(x) dx

= − 1
2 (1)(2) = −1

f(0)− f(−2) =
∫ 0

−2
f ′(x) dx

= + 1
2 (2)(4) = 4

f(1)− f(0) =
∫ 1

0
f ′(x) dx

= +(1)(4) = 4

f(3)− f(1) =
∫ 3

1
f ′(x) dx

= + 1
2 (2)(4) = 4

f(4)− f(3) =
∫ 4

3
f ′(x) dx

= − 1
2 (1)(2) = −1

f(5)− f(4) =
∫ 5

4
f ′(x) dx

= − 1
2 (1)(2) = −1

f(6)− f(5) =
∫ 6

5
f ′(x) dx

= + 1
2 (1)(2) = 1

The initial value f(0) = 3 gives us a starting point for the graph. We
can use the increments computed from the definite integrals to find the values
of f(x) at several specific points. For example, because f(1) − f(0) = 4, we
know that f(1) = 7. If we start by plotting these points, we can sketch the
graph of y = f(x) by including shapes consistent with the monotonicity and
concavity of f . Where the monotonicity changes, the graph of f(x) reaches
an extreme value. Where the concavity changes, the graph of f(x) has an
inflection point. To emphasize concavity, different concavity regions are colored
differently—orange for concave up, blue for concave down, and black for linear.
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−2 0 2 4 6

0

5

10

x

f
(x

)

�
As we conclude this section, make note of the relationship between our un-

derstanding the behavior of sequences in terms of increments and accumulation
sequences with the behavior of accumulation functions in terms of the deriva-
tive or rate of accumulation. Where the behavior of a sequence is described
in terms of a range of index values, the behavior of a function is described in
terms of an interval.

3.3.4 Summary
• An accumulation function A(x) is a function defined using a definite

integral in order to have a given rate of accumulation f(x) and initial
value A(x0) = A0,

A(x) = A0 +
∫ x

x0

f(z) dz.

The integration variable z is a dummy variable and must be different
from the independent variable.

• The accumulation rate f(x) will later be shown (Fundamental Theorem
of Calculus) to be the derivative of the accumulation function A(x) so
that we will write A′(x) = f(x).

• Knowing an accumulation function can be used to compute definite in-
tegrals of the accumulation rate,∫ b

a

f(x) dx = A(b)−A(a).

See Theorem 3.3.2.

• A function f(x) that can be written as an accumulation with rate (deriva-
tive) f ′(x) has a monotonicity determined by the sign of f ′(x) on inter-
vals.

◦ f ′(x) > 0 on (a, b) implies f(x) is increasing on [a, b]
◦ f ′(x) = 0 on (a, b) implies f(x) is constant on [a, b]
◦ f ′(x) < 0 on (a, b) implies f(x) is decreasing on [a, b]
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• A function f(x) that can be written as an accumulation with rate (deriva-
tive) f ′(x) which itself can also be written as an accumulation f ′′(x)
(second derivative of f) has concavity determined by the sign of f ′′(x)
on intervals.

◦ f ′′(x) > 0 on (a, b) implies f ′(x) is increasing on [a, b] and f(x) is
concave up on [a, b]

◦ f ′′(x) = 0 on (a, b) implies f ′(x) is constant on [a, b] and f(x) is
linear on [a, b]

◦ f ′′(x) < 0 on (a, b) implies f ′(x) is decreasing on [a, b] and f(x) is
concave down on [a, b]

• A point where f(x) changes concavity is called a point of inflection
or inflection point. An inflection point represents where the rate of
accumulation reaches an extreme value.

3.3.5 Exercises

Express each accumulation function with its given rate of accumulation and
initial value as a formula involving a definite integral. Then, using the prop-
erties of definite integrals and the elementary accumulation functions, find the
algebraic formula.

1. Find f(x) with f ′(x) = 2x+ 5 and f(0) = 2.
2. Find g(x) with g′(x) = x2 − 4x and g(0) = −5.
3. Find A(x) with A′(x) = x and A(2) = 0.
4. Find P (t) with P ′(t) = 2t+ 5 and P (2) = 5.
5. Find Q(t) with Q′(t) = t2 + 5t and Q(1) = 2.

For each accumulation function, describe the monotonicity.

6. f(x) =
∫ x

2
4z − 7 dz

7. g(t) =
∫ t

1
5− 2x dx

8. A(x) = 2 +
∫ x

−3
9− u2 du

9. Q(x) = −3 +
∫ x

0

2z
z2 − 4 dz

10. R(t) =
∫ x

−1

2z
3z − 1 dz

Use technology to find derivatives in order to describe the monotonicity and
concavity of each function. Compare your results to a graph of y = f(x).

11. f(x) = x2 − 12x+ 32
12. f(x) = x3 − 12x+ 4
13. f(x) = x3 + 6x2 − 15x
14. f(x) = e2x − 4x
15. f(x) = 5xe−3x
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16. f(x) = ln(x)
x

Each figure represents the graph of the derivative or rate of accumulation.
Describe the monotonicity and concavity of the corresponding accumulation
function and sketch a graph consistent with the given initial value.

17.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Given: graph of y = f ′(x) and f(0) = 4.

−4 −2 2 4

−4

−2

2

4

18. Given: graph of y = f ′(x) and f(2) = −1.

−4 −2 2 4

−4

−2

2

4

19. Given: graph of y = f ′(x) and f(1) = 3.
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4.1 Introduction to Sequences
Overview. Sequences are often introduced to us as examples for finding basic
numerical patterns. We are shown the start to a list of numbers and asked if
we can identify the next few numbers in the list or are asked to identify the
rule being used to generate the sequence.

1, 5, 9, 13, . . .
2, 6, 18, 54, . . .

Do you see the patterns?
You probably recognized that in the first sequence, the next number would

be 17 because the pattern involved adding 4 to the previous number. In the
second sequence, you probably saw that we were multiplying by the value 3,
so that the next number would have been 162. Not all sequences follow pat-
terns. However, we use examples such as these to motivate the mathematical
definition of a sequence.

We study sequences because they illustrate a number of ideas we will use
in calculus. We eventually want to describe functions as dynamic models.
Dynamic models for sequences are easier to illustrate than for general functions.

This section introduces the basic terminology for sequences. It explains how
a sequence is a special type of function, where the domain is a set of integers.
We will learn about explicit formulas for a sequence and recursive formulas for a
sequence, using arithmetic and geometric sequences as our original motivation.

Later in this chapter, we will explore the dynamic ideas that will motivate
calculus. Sequences that converge to a single value will be used to introduce the
concept of limits. Recursive formulas for sequences will be used to introduce the
ideas of accumulation which ultimately motivates the concept of integration.
The dynamic behavior of a sequence will be analyzed in terms of its increment
sequence which will motivate the calculus concept of the derivative.

4.1.1 Basic Terminology and Notation
A sequence is an ordered collection of numbers. The idea of being ordered is
that we can say what the first number is, what the second number is, and so
forth. To emphasize that the number have assigned positions, a sequence can
be written as an ordered list using parentheses. The entire sequence can be
assigned a symbol, just like a variable, so that a sequence assigned a symbol x
and given by the values 1, 5, 9, 13, etc., would be written

x = (1, 5, 9, 13, . . .).

Because the sequence has a specific order, we use an index as a way of
counting through the sequence. For a given sequence, the term with index 1 is
the first number of the sequence, the term with index 2 is the second number,
the term with index 3 is the third number, and so forth. We use subscripts on
a sequence to refer to an indexed value. So x1 is the first value of sequence x
and x5 refers to the value of the sequence x with index 5.

Example 4.1.1 For the sequence x = (1, 5, 9, 13, . . .) and assuming the pattern
continues, find each of the following values: x1, x3, and x5.
Solution. The ordering of the list of values in the sequence can be made
explicit with a table.
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ordinal position index sequence value
first 1 1
second 2 5
third 3 9
fourth 4 13
fifth 5 17

Of course, you probably thought through the ordering in your head rather
than make a table. From this ordering, we know that x1 = 1, x3 = 9, and
x5 = 17. �

The table in the solution for the previous example illustrates an explicit
association between the index and the sequence value. We could reorganize
this table to create a mapping between values.

n 1 2 3 4 5 6
↓
xn 1 5 9 13 17 21

The mapping can be illustrated using two number lines, one for the index and
the other for the sequence values, with arrows drawn from the index to the
corresponding sequence value. We write n 7→ xn to indicate that we have a
mapping that goes from a value of n to a value xn.

n
-3 -2 -1 0 1 2 3 4 5 6 7

xn
1 5 9 13 17 21 25

Figure 4.1.2 Illustration of the example sequence as a map n 7→ xn.
Another name for a mapping is a function. Sequences are functions whose

domains correspond to an interval of the integers. The domain for a sequence
is the set of possible values for the index. An interval of integers corresponds to
a subset of integers with no gaps. The interval could be finite, as in {4, . . . , 10},
or it could be infinite, as in {4, . . . ,∞}. The usual domain for sequences is
the set of natural numbers D = N = {1, 2, 3, . . . ,∞}. We often also want to
include an initial value corresponding to an index value n = 0, in which case
our domain is the extended natural numbers D = N0 = {0, 1, 2, 3, . . .}.

Definition 4.1.3 Sequence. A sequence x is a function with a domain D
that is an interval of integers and values that are real numbers. We can write
this in symbols using mapping notation,

x : n ∈ D 7→ xn ∈ R.

♦
The mapping notation used in the definition of a sequence is a symbolic

representation of the statement that a sequence is a function or a map. In
particular, it says there is a map ( 7→) named x that takes a value n from the
set D (n ∈ D) and returns a value xn from the set of real numbers R (xn ∈ R).

Defining a sequence as a function allows us more flexibility in what we
include as sequences. The new definition allows us to have our first index
value start at a value other than 1. It also allows us to use other variables
for our index. The variable used for an index is most often a letter from the
middle of the alphabet.
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Example 4.1.4 Interpret the statement u : k ∈ {0, . . . , 10} 7→ uk ∈ R.
Solution. The map u defines a sequence with index values k going from k = 0
to k = 10. Because we do not have more information, we do not yet know the
values of this sequence. �

Although mapping notation is useful to remind us that a sequence is a map
or function, it can be a little cumbersome to use all the time. Mathematicians
developed a more concise representation that reminds us of an ordered list. If
we consider an interval of integers {ni, . . . , nf} (ni is the initial value in the
interval and nf is the final value in the interval), then the mapping notation

x : n ∈ {ni, . . . , nf} 7→ xn ∈ R

is equivalent to the more compact sequence notation

x = (xn)nf
n=ni .

Example 4.1.5 Rewrite u : k ∈ {0, . . . , 10} 7→ uk ∈ R using sequence notation.
Solution. We would write u = (uk)10

k=0. �

Sequence notation can be coupled with an ordered list of values to define a
sequence that follows a pattern with an index that starts at a value other than
1.
Example 4.1.6 Interpret

w = (wj)∞j=4 = (1, 2, 4, 8, 16, . . .),

assuming the sequence follows a simple pattern.
Solution. This sequence notation tells us that w is a sequence, the index
variable is j, and the interval of integers used for the index starts at j = 4 and
continues through all integers greater than 4. The first few terms in a table
showing the mapping are given below.

j 4 5 6 7 8 9
↓
wj 1 2 4 8 16 32

For this sequence, w1, w2, and w3 are not defined because the values 1, 2, and
3 are not in the domain interval. �

Example 4.1.7 Interpret the sequence

u = (uk)∞k=−1 = (8, 5, 2,−1,−4, . . .),

assuming the sequence follows a simple pattern.
Solution. We have defined a sequence u with an index variable k. The first
index value is k = −1. The sequence has the following values:

u−1 = 8,
u0 = 5,
u1 = 2,
u2 = −1,
u3 = −4,
u4 = −7.

�
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4.1.2 Graphs of Sequences
We can create a graph anytime we can find a relation between two variables.
For a sequence x, there is a natural choice for the two variables—the index n
and the value xn. The natural graph for a sequence x consists of the points
(n, xn). Because the index comes from a domain that is an interval of integers,
the graph will be a collection of isolated points. This is why a sequence is
called a discrete model.
Example 4.1.8 The graph of the sequence x = (1, 5, 9, 13, . . .) consists of
the points (n, xn). The first few points of the graph—(1, 1), (2, 5), (3, 9), and
(4, 13)—are shown in the figure below. The sequence continues with addition
points for n > 4, but there are no points with n < 1.
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n
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�

Example 4.1.9 Create the graph for u = (uk)∞k=−1 = (8, 5, 2,−1,−4, . . .).
Solution. The points in the graph use an index starting at k = −1. They
include (−1, 8), (0, 5), (1, 2), (2,−1), and (3,−4). The sequence continues to
the right of these points.
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4.1.3 Explicit Sequence Representations
We sometimes have an explicit representation for a sequence, where the
value of the sequence is a dependent variable in terms of the index as the
independent variable. The expression defining the dependent variable could be
used with each of the different notations.
Example 4.1.10 Each of the following notations define the same sequence.

x : n ∈ {1, . . . ,∞} 7→ xn = n

n+ 1

x =
(
xn = n

n+ 1

)∞
n=1
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x =
(

n

n+ 1

)∞
n=1

We could simplify even further and write

xn = n

n+ 1 , n = 1, . . . ,∞,

as the subscript notation xn itself implies we have a sequence.
Writing the sequence value as a dependent variable provides a compact way

of representing the entire sequence. To find a particular value of the sequence,
we substitute the value for the independent variable into the expression.

x1 = x(1) = 1
1 + 1 = 1

2 ,

x2 = x(2) = 2
2 + 1 = 2

3 ,

x10 = x(10) = 10
10 + 1 = 10

11 .

�
In addition to substitution using actual integer values, we can also use

substitution of expressions that have integer values. This includes using other
variables that have integer values. To do this, we substitute the expression that
appears in the subscript for every occurrence of the index in the expression.

Example 4.1.11 For the sequence defined by

xn = n

n+ 1 , n = 1, . . . ,∞,

find the expressions defined by xk, xn+1, x2n, and xn2 .
Solution. With this interpretation, we can even do composition to find the
sequence value at an index defined by a formula. Substituting the variable k
for the index n in the dependent variable’s expression, we find

xk = k

k + 1 .

In a similar way, we substitute the expressions n+1, 2n, and n2 in the formula
where n originally appeared to obtain

xn+1 = (n+ 1)
(n+ 1) + 1 = n+ 1

n+ 2 ,

x2n = x(2n) = 2n
2n+ 1 ,

xn2 = x(n2) = n2

n2 + 1 .

�
Some sequences have patterns where we can easily find an explicit formula

by recognizing how the numbers defining the sequence values relate to the
index.
Example 4.1.12 Find an explicit formula for the sequence

x = (1
4 ,

1
9 ,

1
16 ,

1
25 , . . .),

and then find x12 and x2n.
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Solution. To find the explicit formula, we look for a pattern in the sequence
and then try to find a relationship between the index and the pattern. Because
the sequence domain was not specified, it is understood to be the natural
numbers N = (1, . . . ,∞). In this case, every sequence value is the reciprocal
of a perfect square. If we look at this pattern with a table showing the index
and the pattern, we find a relationship.

n 1 2 3 4
xn

1
4 = 1

22
1
9 = 1

32
1
16 = 1

42
1
25 = 1

52

The pattern is that the number that is squared is always 1 greater than the
index. So the explicit formula for this sequence is given by

xn = 1
(n+ 1)2 , n ∈ {1, 2, 3, 4, . . .}.

Using this explicit formula, we can find the desired values.

x12 = x(12) = 1
(12 + 1)2 = 1

169

x2n = x(2n) = 1
(2n+ 1)2

�
Knowing the explicit formula for a sequence, we can compute the values of

the sequence to use in a graph.

Example 4.1.13 Graph the sequence xn = n

n+ 1 , defined for n = 1, 2, 3, . . ..

Solution. This is the sequence discussed above. The plot will include the
points

{(n, xn) : xn = n

n+ 1 , n = 1, 2, 3, . . .} = {(1, 1
2), (2, 2

3), (3, 3
4), (4, 4

5), . . .}.
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4.1.4 Summary
• Sequences are functions with domains that are intervals of integers. The

independent variable (input) is called the index, and the dependent vari-
able (output) is called the value. The value of a sequence x at index n
is represented using subscripts for the index xn.

• An explicit representation of a sequence x is when the function or
map n 7→ xn can be written with xn as a dependent variable in terms of
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the index n.

• Sequence evaluation with an explicit formula involves substitution of the
index variable by whatever expression appears in the subscript position.

• The standard graph of a sequence x uses the points (n, xn) where n is
chosen from the domain set of the sequence.

4.1.5 Exercises

In the following group of exercises, a sequence is defined. Identify the variable
representing the sequence, the variable representing the index, and the domain
or interval of integers the values of the index come from.

1. u : i ∈ {−3,−2, . . . , 5} 7→ ui ∈ R
2. v : n ∈ {5, . . . ,∞} 7→ vn ∈ R
3. z = (zk)∞k=2

4. M = (Mt)10
t=−∞

In the following group of exercises, a sequence with a pattern is given. Identify
the values of the requested terms from the sequence. Create a graph that
includes the first ten values from the sequence.

5. x = (xn)∞n=1 = (2, 4, 6, 8, . . .)
Find x3, x5, and x7.

6. y = (yk)∞k=0 = (12, 9, 6, 3, . . .)
Find y1, y4, and y6.

7. w = (wi)∞i=−2 = (24, 12, 6, 3, . . .)
Find w0, w2, and w4.

8. P = (Pt)∞t=0 = (100, 110, 125, 145, 170, . . .)
Find P1, P4, and P6.

Find an explicit formula for each of the following sequences by identifying
patterns relating the index and the expressions shown for the values.

9. x = (xn)∞n=0 = (1, 4, 9, 16, 25, . . .)
10. y = (yn)∞n=1 = ( 1

4 ,
2
9 ,

3
16 ,

4
25 , . . .)

11. z = (zn)∞n=0 = (0, 1
2 ,

2
3 ,

3
4 ,

4
5 , . . .)

In each of the following exercises, a sequence is defined explicitly. Evaluate the
requested expressions.

12. xn = −3n+ 20, n = 0, 1, 2, 3, . . .
Find x0, x1, and x2.
Evaluate xk+2 and xk + 2.

13. yk = 2k−2

3k , k = 0, 1, 2, 3, . . .
Find y0, y1, and y2.
Evaluate yn+1, yk+1, and

yk+1
yk

.
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4.2 Increments of Sequences

4.2.1 Overview
In the introductory section of this chapter, we learned that the increments of
a sequence, calculated using the backward difference, can be used to analyze
the monotonicity and concavity of a sequence. Those examples all focused on
sequences with given values.

In this section, we continue our study of increments by looking at sequences
defined explicitly and recursively. For a sequence defined with an explicit for-
mula, we will compute the increments using that formula and index substitu-
tion. For a sequence defined with a projection function, we will compute the
increments as a function of the previous sequence value. Once a formula or
function for the increments has been computed, we will solve inequalities to
characterize the monotonicity and concavity of the sequence.

4.2.2 Increments of Explicit Sequences
When we know the explicit formula for a sequence xn, we can find a cor-
responding formula for the increment of that sequence ∇xn. Recall that an
explicit formula gives us a function mapping the value of the index to the value
of the sequence,

n 7→ xn.
We can think of n and xn as state variables. We can also think of xn−1 as
a state variable, one that represents the previous value of the sequence. The
expanded state of the system becomes (n, xn, xn−1). We want to include yet
another state variable, the increment, ∇xn, which is defined by the backward
difference

∇xn = xn − xn−1.
We can find explicit formulas for these additional variables by making a

substitution on the index. Suppose the map n 7→ xn were a function, S : n 7→
xn. The symbol S(n) would represent the explicit formula for xn. Then S(n−1)
would represent the formula for xn−1, calculated by substituting the expression
n− 1 everywhere the original variable n appeared in the formula. The process
of substituting an expression in the place of the independent variable of a
function is called composition.
Example 4.2.1 Consider the sequence defined explicitly,

x = (3n+ 5)∞n=0.

Find explicit formulas for xn−1 and ∇xn.
Solution. The explicit formula for the sequence, xn = 3n + 5, defines a
function,

S(n) = 3n+ 5.
The independent variable in the function is a placeholder for the input expres-
sion,

S(�) = 3�+ 5.
We can find the formula for the previous term using a substitution � = n− 1,

xn−1 = S(n− 1) = 3(n− 1) + 5.

Simplifying the expression to a sum, this gives

xn−1 = 3n+ 2.



CHAPTER 4. SEQUENCES AND ACCUMULATION 218

Formally, because x has its first index n = 0, there is no value x−1. The
formula for xn−1 is only valid for n = 1, 2, . . ..

The increment ∇xn is defined by the backward difference ∇xn = xn−xn−1.
To calculate the backward difference, we substitute the explicit formulas in
place of the state variables xn and xn−1 and simplify:

∇xn = xn − xn−1

=
(
3n+ 5

)
−
(
3n+ 2

)
= 3n+ 5− 3n− 2
= 3.

Again, this only applies for n = 1, 2, . . .. Because the increments were constant,
we realize that x was an arithmetic sequence with β = 3.

To illustrate the connection between the formulas with which we are now
working and the actual values of the sequence, consider the actual values of
the sequence,

x = (5, 8, 11, 14, 17, . . .).

Now, consider the table created using the explicit formulas above.

n xn xn−1

0 3(0) + 5 = 5 undefined
1 3(1) + 5 = 8 3(1) + 2 = 5
2 3(2) + 5 = 11 3(2) + 2 = 8
3 3(3) + 5 = 14 3(3) + 2 = 11

You should notice how the formula for xn−1 uses the current value of n to
find the value of the previous value of the sequence. �

Example 4.2.2 Consider the sequence defined explicitly,

u = (n2 + 2n)∞n=0.

Find explicit formulas for un−1 and ∇un.
Solution. The explicit formula for the sequence, un = n2 + 2n, defines a
function,

S(n) = n2 + 2n.

The independent variable in the function is a placeholder for the input expres-
sion,

S(�) = �2 + 2�.

We can find the formula for the previous term using a substitution � = n− 1,

un−1 = S(n− 1) = (n− 1)2 + 2(n− 1).

Expanding the square and then simplifying the expression to a sum, this gives

un−1 = (n− 1)(n− 1) + 2(n− 1)
= n2 − 2n+ 1 + 2n− 2
= n2 − 1

The increment ∇un is defined by the backward difference ∇un = un−un−1.
To calculate the backward difference, we substitute the explicit formulas in
place of the state variables un and un−1 and simplify:

∇un = un − un−1
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=
(
n2 + 2n

)
−
(
n2 − 1

)
= n2 + 2n− n2 + 1
= 2n+ 1.

We can illustrate that the formulas using a table. Notice that the formula
un−1 calculate the previous value using the current index, and the formula for
∇un calculates the increment of the sequence using the index.

n un un−1 ∇un
0 (0)2 + 2(0) = 0 undefined undefined
1 (1)2 + 2(1) = 3 (1)2 − 1 = 0 2(1) + 1 = 3
2 (2)2 + 2(2) = 8 (2)2 − 1 = 3 2(2) + 1 = 5
3 (3)2 + 2(3) = 15 (3)2 − 1 = 8 2(3) + 1 = 7

�

4.2.3 Increments of Recursive Sequences
When a sequence is defined recursively, we know that there is a projection
function f : xn−1 7→ xn. That is, the sequence value xn can be found using
the previous value xn−1 through the projection function,

xn = f(xn−1).

Instead of depending on the index, the increment is computed in terms of the
previous value,

∇xn = xn − xn−1 = f(xn−1)− xn−1.
This suggests that we have another function, g : xn−1 7→ ∇xn, defined by

g(x) = f(x)− x,

which projects the increment instead of the new sequence value. We might call
this function the increment projection function.
Example 4.2.3 A sequence is defined recursively by the recurrence relation

xn = 1.25xn−1 − 10.

Find the formula for the increment in terms of xn−1.
Solution. The recurrence relation is already in the form of a recursive equa-
tion with projection function f(x) = 1.25x − 10. The increment ∇xn =
xn − xn−1 is computed by subtracting the xn−1 from the formula for xn:

∇xn = xn − xn−1 =
(
1.25xn−1 − 10

)
− xn−1.

Simplifying this formula gives

∇xn = 0.25xn−1 − 10,

corresponding to an increment projection function g(x) = f(x)−x = 0.25x−10.
We can illustrate the role of these formulas by creating a table of a sequence.

Suppose the initial value is x0 = 20. We can compute both xn and ∇xn in
terms of the previously computed value xn−1.

n xn ∇xn
0 20 undefined
1 1.25(20)− 10 = 15 0.25(20)− 10 = −5
2 1.25(15)− 10 = 8.75 0.25(15)− 10 = −6.25
3 1.25(8.75)− 10 = 0.9375 0.25(8.75)− 10 = −7.8125
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Suppose we had only used the recursive formula to find the sequence. We
would have found

x = (xn)∞n=0 = (20, 15, 8.75, 0.9375 . . .).

Then if we found the increments directly, we would have subtracted consecutive
terms and found

∇x = (∇xn)∞n=1 = (−5,−6.25,−7.8125, . . .),

in agreement with the calculations using the increment projection formula. �
Example 4.2.4 A sequence is defined recursively by a projection function

f(x) = 1.25x− 0.05x2.

Find the formula for the increment as a function of the previous sequence value.
Solution. Knowing the sequence’s projection function, the increment projec-
tion function is given by

g(x) = f(x)− x
= 1.25x− 0.05x2 − x
= 0.25x− 0.05x2.

This means that the increment is computed as g : xn−1 7→ ∇xn, or

∇xn = 0.25xn−1 − 0.05x2
n−1.

�

4.2.4 Analysis of Monotonicity and Concavity
When we have formulas to compute the increments, we can solve inequalities
to determine under what conditions the increments are positive or negative.
We can use the solutions of these inequalities to analyze where a sequence is
increasing or decreasing. If we also compute the second backward difference, or
the increments of the increments, then solving an additional inequality allows
us to analyze the concavity of the sequence.

There are many ways to solve an inequality. One approach is to isolate the
independent variable use balanced operations. Inequalities have a complication
in that balanced multiplication (or division) by a negative number reverses the
inequality. Another approach that works for continuous functions is to solve an
equation in order to create intervals to test. Using the principle of continuity of
formulas, which we will justify later in this text, we can check one point in as a
representative for each interval. Because the first approach only works in some
cases, we will emphasize practicing using the second approach which works
more generally. We will learn later in the text how to deal with inequalities
involving discontinuous functions.

Example 4.2.5 Determine the intervals of monotonicity and concavity for the
sequence

x = (40n− n2)∞n=0.

Identify any local extremes.
Solution. The explicit formula xn = 40n−n2 allows us to compute formulas
for the previous term and the increment. Notice the use of parentheses to em-
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phasize the role of grouped terms, especially when there will be a subtraction.

xn−1 = 40(n− 1)− (n− 1)2

= 40(n− 1)− (n− 1)(n− 1)
=
(
40n− 40

)
−
(
n2 − 2n+ 1

)
= 40n− 40− n2 + 2n− 1
= 42n− n2 − 41

∇xn = xn − xn−1

=
(
40n− n2)− (42n− n2 − 41

)
= 40n− n2 − 42n+ n2 + 41
= −2n+ 41

We can verify that our work looks correct by starting a table and checking
whether the explicit formulas match what the terms should be.

n xn xn−1 ∇xn
0 40(0)− 02 = 0 undefined undefined
1 40(1)− 12 = 39 42(1)− 12 − 41 = 0 −2(1) + 41 = 39
2 40(2)− 22 = 76 42(2)− 22 − 41 = 39 −2(2) + 41 = 37

Checking thes few values in the table gives us confidence that we did the
algebra correctly. The formula for the previous sequence value is matching
what we expect, as is the formula for the increment.

Now that we have a formula for the increments, we want to find the intervals
where the increments are positive or negative. This corresponds to solving
inequalities ∇xn > 0 and ∇xn < 0. The increment is defined for index values
n = 1, 2, . . ..

The approach of solving an inequality by isolating the independent variable
would go as follows. Start with the inequality in terms of the independent
variable n, because we have an explicit definition for the sequence. To solve
∇xn > 0, we use balanced operations to create equivalent inequalities.

∇xn > 0
−2n+ 41 > 0
−2n > −41
−2n
−2 <

−41
−2

n < 20 1
2

When we divided both sides by −2 (multiplied by − 1
2 ), the equivalent relation

showed a reversed inequality. The other inequality ∇xn < 0 follows the same
steps, resulting in the equivalent inequality

∇xn < 0 ⇔ n > 20 1
2 .

The alternate approach involves solving the equation ∇xn = −2n+ 41 = 0.
Solving the equation involves the same steps to give an equivalent equation

∇xn = 0 ⇔ n = 201
2 .

We now consider the intervals of values for n on either side of this value.
The intervals are {1, . . . , 20} and {21, . . . ,∞}. The principle for solving the
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inequality is to choose one value from each interval and use it to find the sign
of ∇xn. For example, we can use n = 10 and n = 25.

∇x10 = −2(10) + 41 = 21
∇x25 = −2(25) + 41 = −9

Both methods of solving the inequalities give the same intervals, which
allow us to analyze the monotonicity of the sequence as shown in the table
below.

Sign of ∇xn Monotonicity of xn
Positive on {1, . . . , 20} Increasing on {0, . . . , 20}
Negative on {21, . . . ,∞} Decreasing on {20, . . . ,∞}

Because x is increasing on {0, . . . , 20} and then decreasing on {20, . . . ,∞},
x must have a maximum value at n = 20. The value of the sequence at that
index is

x20 = 40(20)− 202 = 800− 400 = 400.

To find concavity, we need to compute the second backward difference. This
is computed like other backward differences.

∇2xn = ∇xn −∇xn−1

=
(
− 2n+ 41

)
−
(
− 2(n− 1) + 41

)
=
(
− 2n+ 41

)
−
(
− 2n+ 43

)
= −2n+ 41 + 2n− 43
= −2

The second backward difference is always negative, for n = 2, 3, . . .. Conse-
quently, x is concave down on {0, . . . ,∞}. �

One of the things you might notice is that completing analysis of a se-
quence is an involved process. You might be used to thinking that mathematics
questions should have answers that take a limited amount of work. Complex
questions might therefore seem overwhelming. Have confidence in your ability
and develop a pattern of perseverance. Develop a pattern of big picture steps,
breaking the overall problem into a series of manageable tasks.

Example 4.2.6 Determine the intervals of monotonicity and concavity for the
sequence

z = (n3 − 70n2 + 1000n)∞n=−∞.

Identify any local extremes.
Solution. We review the big picture steps.

1. Compute the backward difference ∇zn.

2. Solve the equation ∇zn = 0 to create test intervals.

3. Test the sign of ∇zn in the intervals.

4. Interpret the monotonicity and extreme values of the sequence based on
the sign analysis.

5. Compute the second backward difference ∇2zn.

6. Solve the equation ∇2zn = 0 to create test intervals.

7. Test the sign of ∇2zn in the intervals.
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8. Interpret the concavity of the sequence based on the sign analysis.

The explicit formula zn = n3−70n2+1000n is used to compute the formulas
for the previous term and the increment.

zn−1 = (n− 1)3 − 70(n− 1)2 + 1000(n− 1)
= (n− 1)(n− 1)(n− 1)− 70(n− 1)(n− 1) + 1000(n− 1)
= (n− 1)(n2 − 2n+ 1)− 70(n2 − 2n+ 1) + 1000n− 1000
= n3 − 3n2 + 3n− 1− 70n2 + 140n− 70 + 1000n− 1000
= n3 − 73n2 + 1143n− 1071

∇zn = zn − zn−1

=
(
n3 − 70n2 + 1000n

)
−
(
n3 − 73n2 + 1143n− 1071

)
= n3 − 70n2 + 1000n− n3 + 73n2 − 1143n+ 1071
= 3n2 − 143n+ 1071

Solving the equation ∇zn = 0 to identify our test intervals requires solving
the quadratic equation

∇zn = 3n2 − 143n+ 1071 = 0.

We use the quadratic formula:

n =
−(−143)±

√
(−143)2 − 4(3)(1071)

2(3)

= 143±
√

7597
6 .

To find the intervals, we need decimal approximations.

n1 = 143−
√

7597
6 ≈ 9.3065

n2 = 143 +
√

7597
6 ≈ 38.3601

The sequence is defined for an index interval {−∞, . . . ,∞}. These two break-
points separate the interval into three test intervals:

{−∞, 9}, {10, . . . , 38}, {39, . . . ,∞}.

We perform sign analysis by choosing a test value for the index n from each
interval and identifying the sign of ∇zn.

n = 0 : ∇z0 = 3(0)2 − 143(0) + 1071 = 1071
n = 10 : ∇z10 = 3(10)2 − 143(10) + 1071 = −59
n = 40 : ∇z40 = 3(40)2 − 143(40) + 1071 = 151

We can interpret these results:

1. Because ∇zn > 0 for all n in {−∞, . . . , 9}, we know zn is increasing on
the interval {−∞, . . . , 9}.
Because ∇zn < 0 for all n in {10, . . . , 38}, we know zn is decreasing on
the interval {9, . . . , 38}.
Because ∇zn > 0 for all n in {39, . . . ,∞}, we know zn is increasing on
the interval {38, . . . ,∞}.
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The turning points correspond to local extreme values. The value z9 is greater
than values to its left and right and is a local maximum. The value z38 is
less than values to its left and right and is a local minimum. Because z is
decreasing on {−∞, . . . , 9} and increasing on {38, . . . ,∞}, we do not yet know
if the sequence surpasses these values to determine global extreme values.

To analyze concavity, we repeat the process for the second backward differ-
ence.

∇zn−1 = 3(n− 1)2 − 143(n− 1) + 1071
= 3(n2 − 2n+ 1)− 143(n− 1) + 1071
= 3n2 − 6n+ 3− 143n+ 143 + 1071
= 3n2 − 149n+ 1217

∇2zn = ∇zn −∇zn−1

=
(
3n2 − 143n+ 1071

)
−
(
3n2 − 149n+ 1217

)
= 3n2 − 143n+ 1071− 3n2 + 149n− 1217
= 6n− 146

Solving the equation ∇2zn = 0 gives

6n− 146 = 0
6n = 146

n = 146
6 = 73

3
n = 24 1

3

The intervals to test are separated by this value, {−∞, . . . , 24} and {25, . . . ,∞}.
Test one point in each interval:

∇2z0 = 6(0)− 146 = −146,
∇2z25 = 6(25)− 146 = 4.

Now we can interpret our results.

• Because ∇2zn < 0 for all n in {−∞, . . . , 24}, we know zn is concave down
on the interval {−∞, . . . , 24}.
Because ∇2zn > 0 for all n in {25, . . . ,∞}, we know zn is concave up on
the interval {23, . . . ,∞}.

�

4.2.5 Behavior of Recursive Sequences
When a sequence is defined recursively through a projection function, we found
that we could create an increment projection function g(x) = f(x) − x. Be-
cause this does not directly give us any information about the index, we can
not describe the interval of integers on which the sequence is increasing or de-
creasing. Instead we can describe which sequence values will lead to an increase
or decrease in the next step.

Theorem 4.2.7 Suppose a sequence u is defined recursively with f : un−1 7→
un.
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• If f(x) > x, or equivalently f(x)−x > 0, then un = x implies u increases
on {n, n+ 1}.

• If f(x) < x, or equivalently f(x)−x < 0, then un = x implies u decreases
on {n, n+ 1}.

• If f(x) = x, or equivalently f(x) − x = 0, then un = x implies u is
constant. In this case, we call x a fixed point of f and an equilibrium
for u.

Concavity requires comparing two increments, so we would need two projec-
tions into the future. Given un, we know un+1 = f(un) and un+2 = f(un+1).
Using composition of the function with itself, we discover

un+2 = f
(
f(un)

)
.

We can now compute the increments:

∇n+1 = un+1 − un
= f(un)− un

∇n+2 = un+2 − un+1

= f
(
f(un)

)
− f(un)

If un = x, then the second backward difference is computed as

∇2un+2 = ∇un+2 −∇un+1

=
(
f
(
f(x)

)
− f(x)

)
−
(
f(x)− x

)
= f

(
f(x)

)
− 2f(x) + x.

Sign analysis on this formula allows us to answer questions about concavity
involving consecutive increments.

Theorem 4.2.8 Suppose a sequence u is defined recursively with f : un 7→
un+1. Define the second-order increment projection function h(x) = f

(
f(x)

)
−

2f(x) + x.
• If h(x) > 0, then un = x implies u is concave up on {n, n+ 1, n+ 2}.

• If h(x) < 0, then un = x implies u is concave down on {n, n+ 1, n+ 2}.

• If h(x) = 0, then un = x implies u is linear (constant increments) on
{n, n+ 1, n+ 2}.

Example 4.2.9 For a recursive sequence u defined by projection function
f(x) = 1.25x−10, describe the conditions for which the sequence is increasing,
decreasing, concave up, or concave down.
Solution. The increment projection is defined by g(x) = f(x)− x = 0.25x−
10. We analyze the inequalities g(x) > 0 and g(x) < 0 by solving the equation
g(x) = 0 and then doing sign analysis on resulting test intervals.

0.25x− 10 = 0
0.25x = 10
x = 40

We now know that x = 40 is an equilibrium for the sequence. Our test intervals
are x < 40 and x > 40.

g(30) = 0.25(30)− 10 = −2.5
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g(50) = 0.25(50)− 10 = 2.5

Consequently, the sequence will decrease for an initial value un < 40 and
increase for an initial value un > 40.

Analysis of concavity is more involved, requiring the calculation of the
composition f

(
f(x)

)
. We emphasize the importance of thinking of this as sub-

stitution, with f(�) = 1.25�− 10. For an initial value un = x, the projection
of the sequence value un+1 is given by

un+1 = f(x) = 1.25x− 10

Projecting a second step into the future for un+2 is given by

un+2 = f
(
f(x)

)
= f(1.25x− 10)

= 1.25(1.25x− 10)− 10 = 1.5625x− 12.5− 10
= 1.5625x− 22.5

This gives the increment ∇un+2 = un+2 − un+1 as

∇un+2 =
(
1.5625x− 22.5

)
−
(
1.25x− 10

)
= 0.3125x− 12.5.

The second backward difference is therefore

∇2un+2 = ∇un+2 −∇un+1

=
(
0.3125x− 12.5

)
−
(
0.25x− 10

)
= 0.0625x− 2.5.

Solving the equation ∇2un+2 = 0 (Try it!) gives x = 40, giving us the same
test intervals as our sign analysis for monotonicity.

x = 0 (x < 40) : ∇2un+2 = 0.0625(0)− 2.5 = −2.5
x = 50 (x > 40) : ∇2un+2 = 0.0625(50)− 2.5 = 0.625

Consequently, the sequence will be concave down for an initial value un < 40
and concave up for an initial value un > 40.

To visualize these results, consider the sequence with three different initial
values.

u0 = 30 : u = (30, 27.5, 24.375, 20.46875, . . .)
u0 = 40 : u = (40, 40, 40, 40, . . .)
u0 = 50 : u = (50, 52.5, 55.625, 59.53125, . . .)

Graphs of these sequence are shown below. The first sequence is decreasing
and concave down. The second sequence is constant (an equilibrium value).
The third sequence is increasing and concave up.
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Figure 4.2.10 The sequence u defined by un+1 = 1.25un − 10 and selected
initial values.

�
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4.2.6 Summary
• Explicit formulas for the values of a sequence x, n 7→ xn, allow us to com-

pute an explicit formula for the increments n 7→ ∇xn using the backward
difference

∇xn = xn − xn−1

using substitution, or composition, with the expression n−1 in place of the
index variable n. An explicit formula for the second backward difference
n 7→ ∇2xn can be computed using substitution and the formula of the
increments,

∇2xn = ∇xn −∇xn−1.

• Using an explicit formula n 7→ ∇xn, we can use inequalities to perform
sign analysis of the increments ∇xn. Sign analysis provides intervals for
the index n where ∇xn > 0, ∇xn = 0, and ∇xn < 0. We use these
intervals to determine intervals for the index n where xn is increasing,
constant, or decreasing, respectively.

• Using an explicit formula n 7→ ∇2xn, we can use inequalities to perform
sign analysis of the increments ∇2xn. Sign analysis provides intervals for
the index n where ∇2xn > 0, ∇2xn = 0, and ∇2xn < 0. We use these
intervals to determine intervals for the index n where xn is concave up,
linear, or concave down, respectively.

• A general strategy for solving inequalities with continuous functions is to
solve the corresponding equation. Solutions to the equation create the
end-points of test intervals. We then choose one test point from each
interval to determine the inequality and every other value in the interval
will satisfy the same relation as the test point.
In simple cases, an inequality can be solved more quickly by isolating
the variable using balanced operations. Multiplication or division by a
negative value reverses any inequalities. Multiplication by an expression
is problematic if that expression might be negative—the inequality then
reverses only for some values of the variable. In such cases, the general
strategy is preferred.

• Using a recursive formula defined by a projection function f : xn 7→ xn+1,
we can create an increment projection function g : xn 7→ ∇xn+1, defined
by

g(x) = f(x)− x.
Sign analysis on g(x) determines intervals for initial values at which
a sequence would increase or decrease to the next value. Any values
where g(x) = 0 are called fixed points of the projection function f and
correspond to equilibrium values of the recursive sequence.
It is also possible to create a second-order increment projection function
h : xn 7→ ∇2xn+2 defined by

h(x) = f
(
f(x)

)
− 2f(x) + x.

Sign analysis of h(x) determines initial values where the first two incre-
ments are increasing, constant, or decreasing.

4.2.7 Exercises

Practice using composition (i.e., substitution) to find explicit formulas. Sim-
plify to a form that is a sum of terms.
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1. If an = 3n− 5, find an−1 and an+1.
2. If bk = k2 − 20k, find bk−1 and bk+1.
3. If cn = 2n2 − 15n+ 3, find cn−1 and cn+1.

For the each sequence, compute the explicit formula for the backward differ-
ence, perform sign analysis, and interpret the monotonicity of the sequence.
Identify any local extreme values.

4. x = (25− 4k)∞k=0

5. z = (j2 − 40j + 10)∞k=0

6. u = (40n− 3n2)∞n=−5

7. w = (k3 − 500k)∞k=−∞

For the each sequence, compute the explicit formula for the second backward
difference, perform sign analysis, and interpret the concavity of the sequence.
(These are the same sequences as in the previous exercise group.)

8. x = (25− 4k)∞k=0

9. z = (j2 − 40j + 10)∞k=0

10. u = (40n− 3n2)∞n=−5

11. w = (k3 − 500k)∞k=−∞

For each recursively defined sequence, identify initial values that will result in
an increase or a decrease or are equilibrium values.

12. un+1 = 50− 3un
13. vk+1 = 1.1vk − 30
14. wn+1 = 1.2wn − 0.04w2

n

15. zn+1 = 4zne−0.2zn

16. Pn+1 = 50Pn

Pn+20 , restricted to P ≥ 0.

Applications.
17. You are about to receive some money (inheritance, lottery, etc.) and

plan to invest it in an account that earns 5% annually, compounded
quarterly. Your plan is to withdraw $9000 each quarter ($3000 per
month). You want to analyze what will happen to your investment.

• Create a recursive definition for a sequence that represents the
quarterly balance of your investment.

• Analyze the monotonicity and concavity of your sequence.

◦ What size of an investment would result in an equilibrium?
◦ What will happen to the investment if you receive less than
the equilibrium amount?
◦ What will happen to the investment if you receive more
than the equilibrium amount?

18. A population of at risk birds has a constant per capita yearly death
rate of 1 death per four individuals, d = 0.25. The per capita yearly
birth rate is observed to be a decreasing function of the population
size P , modeled by a linear function b = 0.5− 0.0002P .
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• Create a recursive definition for a sequence that represents the
annual population size.

• Analyze the monotonicity of your sequence.

◦ What is the equilibrium population size?
◦ What will happen to the population if it begins below equi-
librium?
◦ What will happen to the population if it begins above equi-
librium?

• Create a cobweb diagram for the sequence. How does the cobweb
diagram relate to your analysis of monotonicity? How does the
cobweb diagram relate to concavity

Suppose that the tail feathers of these birds are valuable so that
poachers come and kill an additional 100 birds per year.

• Create a recursive definition for a new sequence that models the
natural births and deaths as well as the illegal harvesting by
poachers.

• Analyze the monotonicity of the modified sequence. What does
the model predict for the consequence of poaching?
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4.3 Accumulation Sequences
Overview. One of the most important mathematical ideas in calculus is that
of an accumulation of change for physical quantities. As we have been learning
about sequences, we have talked about how we can define sequences using
explicit formulas and using recursive definitions. More recently, we have looked
at how the increments of a sequence can help us understand the behavior of
a sequence. For some sequences, we learned that patterns in the increments
could be used to find additional terms in a sequence.

We are now ready to think about this more generally. Given any sequence
of values, we wish to find that sequence for which the given sequence matches
the increments. We call the sequence that we are finding the accumulation
sequence of the given sequence.

In this section, we formally define and discuss the theory of accumulation
sequences. Summation notation is introduced. We establish conditions that
guarantee two sequences are equivalent. Then we illustrate applying these con-
ditions to demonstrate that the explicit and recursive definitions for arithmetic
and geometric sequences are equivalent.

4.3.1 Accumulation of Change
There are many examples of quantities where we track changes to the quantity
rather than repeated measure the quantity itself. Consider a bank balance. We
do not count our money every month. Instead, we add up all of our deposits
and withdrawals and use them to adjust our record for the balance. Similarly,
consider a population under study. It could be very costly to count all of
the individuals every month. If instead we could track how many births and
deaths occurred during the month, we could calculate a new population count
by adding births and subtracting deaths.

Example 4.3.1 At the start of the year, you had $1500 in an account. Suppose
that the sequence

W = (Wm)12
m=1 = (240, 300, 270, 450, 250, 310, 360, 270, 320, 300, 350, 480)

represents the total of monthly withdrawals from the account, and the sequence

D = (Dm)12
m=1 = (280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280)

represents the total of monthly deposits into the account. Find the sequence
of monthly balances in the account.
Solution. Let B represent the monthly balance. Before any months pass, we
have a balance of 1500 dollars. This gives an initial value B0 = 1500. We wish
to define the sequence B = (Bm)12

m=0.
After one month, our account has had $240 withdrawn and $280 deposited.

The balance after the end of the month is thus given by

B1 = B0 −W1 +D1 = 1500− 240 + 280 = 1540.

Once we have the balance after one month, we can repeat this process for the
other eleven months.



CHAPTER 4. SEQUENCES AND ACCUMULATION 231

m (month) Bm (balance in dollars)
0 1500
1 1500− 240 + 280 = 1540
2 1540− 300 + 280 = 1520
3 1520− 270 + 280 = 1530
4 1530− 450 + 280 = 1360
5 1360− 250 + 280 = 1390
6 1390− 310 + 280 = 1360
7 1360− 360 + 280 = 1280
8 1280− 270 + 280 = 1290
9 1290− 320 + 280 = 1250
10 1250− 300 + 280 = 1230
11 1250− 350 + 280 = 1160
12 1160− 480 + 280 = 960

�
When we create a sequence of values based on knowing the increments, we

are creating what we call an accumulation sequence.

Definition 4.3.2 Given a sequence x = (xk)nk=m, we say u is an accumula-
tion sequence of x if u = (uk)nk=m−1 with ∇uk = xk. ♦

4.3.2 Equivalent Sequences
A given sequence of increments has infinitely many different accumulation se-
quences which differ in their initial value. However, for a given initial value and
sequence of increments, the resulting accumulation sequence is unique. That
is, any two sequences that have the same initial value and increments sequences
that are equal for all values, then the sequences themselves are equal for all
values.
Theorem 4.3.3 Uniqueness Conditions for Accumulation Sequences.
Given two sequences u and w. If um = wm and ∇uk = ∇wk for all k > m,
then uk = wk for all k ≥ m.
Proof. In mathematics, to prove that every statement from a sequence of
statements is true, we often use an approach called the Principle of Math-
ematical Induction. This requires demonstrating that the first statement in
the sequence is true, and then showing that anytime one of the statements is
true, the subsequent statement must also be true.

This theorem is perfectly suited to apply mathematical induction. The
sequence of statements we wish to prove is

uk = wk, k = m,m+ 1, . . . .

The first statement in the sequence, um = wm is true by assumption—one con-
dition is that the sequences u and w have the same initial values. The inductive
step is to go from an arbitrary statement in the sequence of statements to the
next. So suppose uk = wk for some index k in {m,m+ 1, . . .}. We know that
∇uk+1 = ∇wk+1 by the assumption that the sequences have equal increments.
We now use substitution twice:

uk+1 = uk +∇uk+1

= wk +∇wk+1

= wk+1.

This shows that uk+1 = wk+1 whenever uk = wk. By mathematical induction,
the entire sequence of statements must be true. �
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Example 4.3.4 Consider the explicitly defined sequence x = (3k+ 4)∞k=1 and
the sequence y = (yn)∞n=1 defined recursively with an initial value y1 = 7 and
iteration yn = yn−1 + 3 for n = 2, 3, . . .. Show that x and y represent the same
sequence.
Solution. To apply Theorem 4.3.3, we need to show that the sequences have
the same initial value and the same increments. We just show the two initial
values and verify they are the same.

x1 = 3(1) + 4 = 7
y1 = 7

We next compare the increments. Using the explicit formula for x, we find

∇xk = xk − xk−1

=
(
3k + 4

)
−
(
3(k − 1) + 4

)
= 3k + 4− (3k − 3 + 4)
= 3.

Using the recursive formula for y, we find

∇yk = yk − yk−1 = 3.

The sequences x and y have the same initial value and the same increments.
Therefore, they have all the same values: xk = yk for all k = 1, 2, . . .. �

Theorem Theorem 4.3.3 can be generalized from having two sequences with
equal increments to two sequences sharing any recurrence relation involving the
previous term. For example, a geometric sequence has a recurrence relation
xn = ρxn−1, so that the increment using the relation itself depends on the
previous term, ∇xn = (ρ− 1)xn−1.

Theorem 4.3.5 Suppose u and w are two sequences with common initial val-
ues, um = wm. If there is a sequence of projection functions fk so that u and
w satisfy the same relations,

uk = fk(uk−1)

and
wk = fk(wk−1),

then uk = wk for all k = m,m+ 1, . . ..
For a recursively defined sequence, the sequence of projection functions

would all be the same function.
Example 4.3.6 Consider the explicitly defined sequence x = (10 · 1

2k )∞k=1 and
the sequence y = (yn)∞n=1 defined recursively with an initial value y1 = 5 and
iteration yn = 1

2yn−1 for n = 2, 3, . . .. Show that x and y represent the same
sequence.
Solution. To apply Theorem 4.3.5, we need to show that the sequences have
the same initial value and the satisfy the same recurrence relations. The initial
values are:

x1 = 10 · 1
21 = 5,

y1 = 5.

We next compare the recurrence relations. We know that y has projection
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function f : yn−1 7→ yn = 1
2yn−1. We need to show that x satisfies the same

relation, xk = 1
2xk−1. Using the explicit formula for x, we compute both sides

of the recurrence equation and show they are equivalent.

xk = 10 · 1
2k

1
2xk−1 = 1

2 · 10 · 1
2(k−1)

= 10 · 1
2 ·

1
2(k−1)

= 10 · 1
2(k−1)+1

= 10 · 1
2k

Comparing the formulas, we see that xk = 1
2xk−1.

The sequences x and y have the same initial value and the same sequence
of recurrence relations. Therefore, they have all the same values: xk = yk for
all k = 1, 2, . . .. �

We end our discussion of showing two sequences are equivalent by establish-
ing an explicit formula for sequences defined recursively by a linear projection
function,

xn = αxn−1 + c,

with α 6= 1. When α = 1 we have an arithmetic sequence, which is a sequence
we already know. When c = 0, we have a geometric sequence. The projection
function f : xn−1 7→ xn is defined by the formula f(x) = αx + c. The fixed
point x∗ is the solution to

αx+ c = x ⇔ x∗ = c

1− α,

defined only for α 6= 1.
The linear projection function can be rewritten in terms of the fixed point

using slope α and point (x∗, x∗) as

f(x) = x∗ + α(x− x∗).

This means that the recurrence relation can be written

xn = x∗ + α(xn−1 − x∗) ⇔ xn − x∗ = α(xn−1 − x∗).

Consequently, xn − x∗ is a geometric sequence with ratio α. This allows us to
find an explicit formula for xn.

Theorem 4.3.7 Explicit Formula for Linear Recursive Sequences.
Suppose xn is defined recursively by the equation

xn = αxn−1 + c

with α 6= 1. Then xn is defined explicitly by a shifted geometric sequence

xn = x∗ + (x0 − x∗) · αn = x∗ + (x1 − x∗) · αn−1,

where x∗ = c

1− α is the equilibrium of the sequence.
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4.3.3 Summation Notation
In mathematics, the idea of adding terms from a sequence appears so frequently
that a special notation, called summation notation or sigma notation for the
Greek letter sigma Σ, was created to represent the sum.

Definition 4.3.8 Summation Notation. Given any sequence x and integers
m ≤ n, the sum of terms xk with index k satisfying m ≤ k ≤ n is written

n∑
k=m

xk = xm + xm+1 + · · ·+ xn.

The starting index m is called the lower limit of the sum while the ending
index n is called the upper limit. ♦

The sequence of terms being added is often given as an explicit function of
the index. In that case, the explicit formula is used in place of the sequence
name in the summation.
Example 4.3.9 Evaluate the following sums.

1.
7∑
k=3

[2k + 3]

2.
4∑
k=1

1
k2 + k

Solution.

1. The sum
7∑
k=3

[2k + 3] involves the increment sequence ak = 2k + 3 and is

the sum of terms with index from 3 to 7:

a3 = 2(3) + 3 = 9, a4 = 2(4) + 3 = 11, a5 = 13, a6 = 15, a7 = 17.

Consequently, we can find the sum

7∑
k=3

[2k + 3] = 9 + 11 + 13 + 15 + 17 = 65.

2. The sum
4∑
k=1

1
k2 + k

involves an increment sequence bk = 1
k2 + k

. The

index values involved go from 1 to 4 so that we find

4∑
k=1

1
k2 + k

= 1
11 + 1 + 1

22 + 2 + 1
32 + 3 + 1

42 + 4

= 1
2 + 1

6 + 1
12 + 1

20
= 30

60 + 10
60 + 5

60 + 3
60

= 48
60 = 4

5 .

�
An accumulation sequence is closely related to summation. The accumula-
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tion sequence is a new sequence formed by starting with an initial value and
then adding one increment at a time. Suppose x = (xk)∞k=1 and u is the corre-
sponding accumulation sequence with initial value u0. We can write each term
of u as the initial value plus a partial sum of the increments.

u1 = u0 + x1 = u0 +
1∑
k=1

xk

u2 = u0 + x1 + x2 = u0 +
2∑
k=1

xk

u3 = u0 + x1 + x2 + x3 = u0 +
3∑
k=1

xk

...

In general, we have

un = u0 +
n∑
k=1

xk.

Notice how the index for u appears as the upper limit of the summation and
that the index of summation is a different variable. The index of summation
can be any other unused variable, so that we might have instead written

un = u0 +
n∑
i=1

xi.

Also, notice that for consistency, we require

0∑
k=1

xk = 0,

regardless of the sequence x to indicate that no terms have been added in the
summation. In general, we have the following representation.

Theorem 4.3.10 If x = (xk)nk=m and u is the accumulation sequence with
initial value um−1, then we can write

uk = um−1 +
k∑

i=m
xi,

for i = m, . . . , n.
Example 4.3.11 Write the accumulation sequence z = (zn)∞n=0 with initial
value z0 = 4 and an increment sequence a = (3, 5, 7, 9, 11, 13, . . .) as a summa-
tion with an explicit formula for the increments.
Solution. The sequence z has initial value 4 which corresponds to index 0,

z0 = 4.

For index values n > 0, the sequence is computed with an accumulation of
values from the sequence a.

z1 = 4 +
1∑
k=1

ak = 4 + 3 = 7



CHAPTER 4. SEQUENCES AND ACCUMULATION 236

z2 = 4 +
2∑
k=1

ak = 4 + 3 + 5 = 12

z3 = 4 +
3∑
k=1

ak = 4 + 3 + 5 + 7 = 19

z4 = 4 +
4∑
k=1

ak = 4 + 3 + 5 + 7 + 9 = 28

We need an explicit formula for the sequence k 7→ ak. We recognize that
a is an arithmetic sequence with a1 = 3 and constant increment ∇ak = 2. By
Theorem 13.2.8, we know ak = a1 + 2(k − 1) = 2k + 1. Using this explicit
formula in the summation, we find

zn = 4 +
n∑
k=1

(2k + 1).

�

Example 4.3.12 Show that
n∑
k=1

(2k − 1) = n2 for n = 0, 1, . . ..

Solution. There are two distinct sequences appearing in the equation— the
sequence defined by the accumulation,

un =
n∑
k=1

(2k − 1),

and the sequence defined by an explicit formula. As un includes only a sum-
mation, we must have a zero initial value, u0 = 0.

Because we know that xk = 2k−1 is the increment sequence for u, we only
need to show that w has the same initial value and increment sequence. The
initial value of w is

w0 = 02 = 0,

in agreement with that of u0 = 0. The increment is computed using the
backward difference.

∇wn = wn − wn−1

= n2 − (n− 1)2

= n2 − (n2 − 2n+ 1)
= n2 − n2 + 2n− 1
= 2n− 1

The explicit formula for the increment of w is the same as that for u. Conse-
quently, we know that un = wn for all n = 0, 1, 2, . . .. �

4.3.4 Summary
• An accumulation sequence is a sequence generated from an initial value

and a given sequence of increments.

• If x is the sequence of increments and u is the accumulation sequence,
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then u satisfies the recurrence relation

un = un−1 + xn.

• If two sequences share the same initial value and the same increments,
then the sequences are identical (Theorem 4.3.3). More generally, if
two sequences share the same initial value and sequence of recurrence
relations involving the previous term, then the sequences are identical
(Theorem 4.3.5).

• Summation notation (sigma notation) provides a method to communicate
the sequence of increments as well as the range of index values. The
index variable is sometimes called the dummy variable because any other
variable could be used in its place.

• Every accumulation sequence u can be represented as the initial value
added to the summation of its increments xk with the index variable
appearing as the upper limit,

un = um +
n∑

k=m+1
xk.

4.3.5 Exercises

Find the first six terms of the indicated accumulation sequence for the given
increment sequence. Clearly indicate the relevant index values.

1. Find u with increments defined by x = (xk)∞k=2 = (−4,−2, 0, 2, 4, 6, . . .)
and initial value 21.

2. Find w with increments defined by y = (yi)∞i=0 = (1,−1, 1, 1,−1,−1, 1, 1, 1,−1, . . .)
and initial value 0.

In the following problems, show that explicit definition and recursive definition
define the same sequence. If not, explain why.

3. xn = 3n− 5 for n = −2,−1, 0, . . . defines the same sequence as xn =
xn−1 + 3 with x−2 = −11.

4. xn = 4 + 3(n+1)

4n for n = 0, 1, 2, . . . defines the same sequence as xn =
3
4xn−1 + 1 with x0 = 7.

5. xn = 2n+1 − 1 for n = 0, 1, 2, . . . defines the same sequence as xn =
xn−1 + 2n with x0 = 1.

6. xn = n2 − n for n = 0, 1, 2, . . . defines the same sequence as xn =
xn−1 + n with x0 = 0.

7. xn = 1
2 (3n − 1) for n = 0, 1, 2, . . . defines the same sequence as

xn+1 = xn + 3n with x0 = 0. Note: The recursive formula uses a
forward recurrence, so either compare forward differences or rewrite
the recursive equation as a backward recurrence.

Determine the intervals of monotonicity and concavity for each sequence de-
fined by the given increments.

8. ∇xn = 4n− 70 for n = 1, 2, . . . with x0 = 20.
9. ∇xn = 50− 3n for n = 1, 2, . . . with x0 = −10.
10. ∇xn = n2 − 30n for n = 1, 2, . . . with x0 = 0.
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11. ∇xn = −100 + 75n− n2 for n = 1, 2, . . . with x0 = 0.

For each of the following summations, write down the sum of individual terms.
Then compute the value of the sum. For example,

∑5
k=2 2k would be 2(2) +

2(3) + 2(4) + 2(5) = 4 + 6 + 8 + 10 = 28.

12.
15∑
k=12

3k

13.
2∑

k=−2
2k

14.
5∑
k=2

2k + 1
5k

Rewrite the following sums in summation notation. Find an appropriate for-
mula for the increment sequence and identify the correct lower and upper limits
of the sum.

15. 15 + 20 + 25 + 30 + · · ·+ 90
16. 21 + 25 + 29 + 33 + · · ·+ 61
17. 1

4 + 2
9 + 3

16 + · · ·+ 12
169

18. The sum of all four digit odd numbers.
19. The sum of all two-digit squares, 16 + 25 + 36 + 49 + 64 + 81.
20. The sum of all three-digit odd squares.

Show that the summation formulas below are valid for n = 0, 1, 2, . . . by show-
ing that two sequences are equal to one another.

21.
n∑
k=1

(2k) = n2 + n.

22.
n∑
k=1

(4k − 3) = n(2n− 1).

23.
n∑
k=1

(6k2 − 2k) = 2n2(n+ 1).
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4.4 Summation Formulas

4.4.1 Overview
In the previous section, we learned that accumulation sequences could be writ-
ten using summation notation. Consequently, summations can always be in-
terpreted in the context of a sequence. We have seen some examples where
we could show that an accumulation sequence representing a summation was
equivalent to a sequence defined explicitly. Unfortunately, that process is only
useful if we can somehow discover the explicit formula to compare. We seek
for computational methods that will allow us to find the explicit values for
summations.

This section studies the properties of summation and their application. We
will learn that any summation can be interpreted as a net change in an accumu-
lation sequence. We will also learn about algebraic properties of summation,
particularly a property known as linearity. Once we know summation formulas
for elementary building blocks, these properties will allow us to combine them
for more complicated formulas.

4.4.2 Summation of as Net Accumulated Change
In the previous section, we learned that every accumulation sequence can be
written using summation notation. The reverse is true. For every summa-
tion, we can define a corresponding accumulation sequence. Suppose we are
interested in a summation

S =
n∑

k=m
xk,

where m > 0 and n ≥ m and x = (xk) is the sequence whose terms are being
added. Let u be any accumulation sequence with increments x and initial value
u0. Then we know we can write

uk = u0 +
k∑
i=1

xi.

We want to find the relation between the summation S and the accumulation
sequence.

First, we observe that the equation defining the accumulation sequence can
be rewritten with the summation isolated:

k∑
i=1

xi = uk − u0.

The summation is equal to the difference between the initial value and the
final value of the accumulation sequence. This observation can be generalized
to other index ranges, but to explain it we first need the splitting property of
summation.
Theorem 4.4.1 Summation Splitting Property. For any summation
n∑

i=m
xi and intermediate index k with m < k < n, we can split the sum at k as

n∑
i=m

xi =
k∑

i=m
xi +

n∑
i=k+1

xi.
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Proof. The property is simply a generalization of the associative properties of
addition. The basic idea is to group terms,

n∑
i=m

xi = xm + xm+1 + · · ·+ xk + xk+1 + · · ·+ xn

=
(
xm + xm+1 + · · ·+ xk

)
+
(
xk+1 + · · ·+ xn

)
=

k∑
i=m

xi +
n∑

i=k+1
xi

�
This splitting property allows us to rewrite a summation as a change in an

associated accumulation sequence.

Theorem 4.4.2 Summation as Net Accumulated Change. Given any
sequence of terms xk and an accumulation sequence u with ∇uk = xk,

n∑
k=m

xk = un − um−1.

Proof. The accumulation sequence can be written

un = u0 +
n∑
k=1

xk.

By the Summation Splitting Property, if we split the sum at index k = m− 1,
we have

un = u0 +
m−1∑
k=1

xk +
n∑

k=m
xk.

However, once we recognize

um−1 = u0 +
m−1∑
k=1

xk,

we have

un = um−1 +
n∑

k=m
xk.

Solving for the summation gives the stated conclusion,
n∑

k=m
xk = un − um−1.

�
In this theorem, notice that which accumulation sequence is used does not

matter. The initial value is irrelevant. In addition, notice that the accumu-
lated change represented by the sum is equal to the change from one before
the lower limit to the upper limit. This extra index step corresponds to in-
crements matching backward differences. Finally, notice that the difference in
accumulations can also be written

n∑
k=m

xk =
n∑
k=1

xk −
m−1∑
k=1

xk.
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Example 4.4.3 In a previous example, we showed that the accumulation of
odd integers was the sequence of squares. Use this to compute the sum of all
odd three digit numbers.
Solution. The question is asking us to compute

101 + 103 + 105 + · · ·+ 997 + 999.

In order to apply summation properties and accumulation sequences, we need
the explicit formula for the sequence of terms as well as the lower limit and
upper limit of the sum.

The sequence of odd integers x = (1, 3, 5, . . .) has an explicit formula xk =
2k − 1, k = 1, 2, 3, . . .. It was for this sequence that we had 4.3.12

un =
n∑
k=1

2k − 1 = n2.

We want to write the sum of odd three digit numbers in terms of the sequence of
increments. Then we will be able to use the explicit formula of the accumulation
sequence to compute the sum.

To find the limits of summation, we need to find the value of the index k
such that xk = 101 (lower limit) and xk = 999 (upper limit). For the lower
limit, we have

2k − 1 = 101
2k = 102
k = 51,

and for the upper limit we have

2k − 1 = 999
2k = 1000
k = 500.

Consequently, the sum of interest is

S =
500∑
k=51

2k − 1 = 101 + 103 + 105 + · · ·+ 997 + 999.

We are finally ready to apply the Summation as Net Accumulated Change.
The summation is equal to the change in the accumulation sequence from 50
(index prior to first increment) to 500 (index of last increment),

S =
500∑
k=51

2k − 1 = u500 − u50

= 5002 − 502

= 250000− 2500
= 247500.

�
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4.4.3 Algebraic Properties of Summation
Now that we know that we can write a summation as the change of an accu-
mulation sequence, we have a tool to compute summations once we are able
to identify the accumulation. However, it can be tedious to find the accumu-
lation sequence for every problem. We benefit from properties of summation
that allow us to use elementary building blocks to compute the summation for
a variety of different problems. These properties of summation correspond to
the basic properties of addition.

Suppose we have a sequence x and a constant α. We can create a new se-
quence αx, called a constant multiple, by multiplying every term of x by the
same constant α. Using the constant multiple as an increment sequence, every
term will have a common factor of α. This leads to a property of summation
called the constant multiple rule—constant multiples factor out of summation.

Theorem 4.4.4 Constant Multiple Rule of Summation. Let x be a
sequence and α a constant. Then for any lower and upper limits,

n∑
k=m

αxk = α

n∑
k=m

xk.

The next property considers a sequence that is itself formed by adding two
sequences together. Suppose we have two sequences u and w and we form a
new sequence u+w with values that are the sum of the corresponding values,
(u + w)n = un + wn. Because addition is both commutative and associative,
any sum of a finite number of terms can be regrouped in any convenient way.
A summation of terms u + w can therefore be grouped in a way that we add
only the terms from u and then add only the terms from v and then add the
results. This leads to a property of summation called the sum rule.

Theorem 4.4.5 Sum Rule of Summation. Let u and w be any two
sequences defined for the range k = m, . . . , n. Then

n∑
k=m

[uk + wk] =
n∑

k=m
uk +

n∑
k=m

wk.

Using the rules together creates a new rule called linearity involving two
sequences x and y. The idea for this rule is that an individual term in the
increment sequence is the sum of a constant multiple of each, αx+βy. Such a
sum is called a linear combination of x and y with coefficients α and β. This
name results from the general equation of a line being of the form ax+ by = c.
Linearity applies the sum rule and the constant multiple as if in a single step.

Theorem 4.4.6 Linearity of Summation. Let x and y be any two sequences
with common domain and let α and β be any two constants. Then for any lower
and upper limits,

n∑
k=m

[αxk + βyk] = α

n∑
k=m

xk + β

n∑
k=m

yk.

Using α = 1 and β = −1, the linear combination becomes a difference,
αx+ βy = x− y. So the difference rule is a special case of linearity.

Theorem 4.4.7 Difference Rule of Summation. Let x and y be any two
sequences with common domain. Then for any lower and upper limits,

n∑
k=m

[xk − yk] =
n∑

k=m
xk −

n∑
k=m

yk.
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There are no corresponding rules for multiplication or division. This is
really no different than emphasizing the importance of multiplying all terms
using the distributive property, such as occurs with the FOIL method for mul-

tiplying binomials. For example,
3∑
k=1

[k] = 1 + 2 + 3 = 6. The product of the

sum gives one result:

3∑
k=1

[k] ·
3∑
k=1

[k] = (1 + 2 + 3) · (1 + 2 + 3) = 6 · 6 = 36.

But the sum of the products gives a different result:

3∑
k=1

[k · k] = (12 + 22 + 32) = 1 + 4 + 9 = 14.

In general,
n∑

k=m
[xk · yk] 6=

n∑
k=m

xk ·
n∑

k=m
yk.

4.4.4 Elementary Summation Formulas
There are some elementary increment sequences for which we can find an ex-
plicit formula for the accumulation sequence. We will state the results and
prove them using the uniqueness criteria for accumulation sequences 4.3.3.
The simplest accumulation sequence, and that used in each of the elementary
summation formulas, use an initial value s0 = 0. Thus, where we normally
would have sn − s0 as the accumulated change, we only have sn.

Theorem 4.4.8 Sum of Constant Sequence.
n∑
k=1

c = cn

Proof. The accumulation sequence of interest is

un =
n∑
k=1

c.

The increment sequence x is a sequence of constants, ck = c. The proposed
explicit sequence is

wn = cn.

The initial value of u is u0 = 0 which matches the initial value of the explicit
sequence w0 = c(0) = 0. To show that w = u, we need to show that w has the
same increments.

(∇w)n = wn − wn−1 = cn− c(n− 1) = cn− cn+ c = c

Since (∇w)n = c is the same increment as xk, u and w are the same sequence.
�

Theorem 4.4.9 Sum of Natural Numbers.
n∑
k=1

k = n(n+ 1)
2
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Proof. The accumulation sequence of interest is

un =
n∑
k=1

k.

The increment sequence x is defined by xk = k. The proposed explicit sequence
is

wn = n(n+ 1)
2 .

The initial values agree:

u0 = 0,

w0 = 0(1)
2 = 0.

The increment for w is given by:

(∇w)n = wn − wn−1 = n(n+ 1)
2 − (n− 1)n

2
= n

2
(
(n+ 1)− (n− 1)

)
= n

2 · 2 = n

Since (∇w)n = n = xn, u and w have the same increments and same initial
value. By Theorem 4.3.3, u and w are equivalent. �

Theorem 4.4.10 Sum of Squares.
n∑
k=1

k2 = n(n+ 1)(2n+ 1)
6

Proof. The accumulation sequence of interest is

un =
n∑
k=1

k2

so that increment sequence x is defined by xk = k2. The proposed explicit
sequence is

wn = n(n+ 1)(2n+ 1)
6 .

The initial values agree:

u0 = 0,

w0 = 0(1)(1)
6 = 0.

The increment for w is given by:

(∇w)n = wn − wn−1

= n(n+ 1)(2n+ 1)
6 −

(n− 1)n
(
2(n− 1) + 1

)
6

= n

6
(
(n+ 1)(2n+ 1)− (n− 1)(2n− 1)

)
= n

6
(
(2n2 + 3n+ 1)− (2n2 − 3n+ 1)

)
= n

6 (6n) = n2

Since (∇w)n = n2 = xn, u and w have the same increments and same initial
value. By Theorem 4.3.3, u and w are equivalent. �
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Theorem 4.4.11 Sum of Cubes.
n∑
k=1

k3 = n2(n+ 1)2

4
Proof. The accumulation sequence of interest is

un =
n∑
k=1

k3

so that increment sequence x is defined by xk = k3. The proposed explicit
sequence is

wn = n2(n+ 1)2

4 .

The initial values agree:

u0 = 0,

w0 = 0(1)(1)
6 = 0.

The increment for w is given by:

(∇w)n = wn − wn−1

= n2(n+ 1)2

4 − (n− 1)2n2

4

= n2

4
(
(n+ 1)2 − (n− 1)2)

= n2

4
(
(n2 + 2n+ 1)− (n2 − 2n+ 1)

)
= n2

4 (4n) = n3

Since (∇w)n = n3 = xn, u and w have the same increments and same initial
value. By Theorem 4.3.3, u and w are equivalent. �

Theorem 4.4.12 Sum of a Geometric Sequence.
n∑
k=0

bk = bn+1 − 1
b− 1

Proof. The accumulation sequence of interest is

un =
n∑
k=0

bk

so that increment sequence x is defined by xk = bk. The proposed explicit
sequence is

wn = bn+1 − 1
b− 1 .

Because the summation lower index is 0, the sequence u has a non-zero initial
value u0 = b0 = 1. The initial value of w is given by

w0 = b1 − 1
b− 1 = 1,
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which matches the initial value of u. The increment for w is given by:

(∇w)n = wn − wn−1 = bn+1 − 1
b− 1 − bn − 1

b− 1

= 1
b− 1

(
(bn+1 − 1)− (bn − 1)

)
= bn+1 − bn

b− 1 = bn(b− 1)
b− 1 = bn

Since (∇w)n = bn = xn, u and w have the same increments and same initial
value. By Theorem 4.3.3, u and w are equivalent. �

Our first examples consider sums involving just the elementary terms.

Example 4.4.13 Find the sum of the integers 1, 2, . . . , 100.
Solution. Start by recognizing this as the accumulation of the sequence x =
(k : k = 1, 2, 3, . . .) over a range 1 ≤ k ≤ 100. This allows us to rewrite our
problem as a summation:

100∑
k=1

k.

Theorem Theorem 4.4.9 applies directly with n = 100, so we know

100∑
k=1

k = 100(101)
2 = 5050.

�

Example 4.4.14 Find the sum of the integers 100, 101, . . . , 200.
Solution. This example uses the same basic sequence (the integers) but in-
stead of starting at k = 1, we are summing the sequence x = (k : k = 1, 2, 3, . . .)
over an index range 100 ≤ k ≤ 200,

100 + 101 + · · ·+ 200 =
200∑
k=100

k.

Using the Summation as Net Accumulated Change theorem, we can write the
summation as a difference

200∑
k=100

k =
200∑
k=1

k −
99∑
k=1

.

The two summations are accumulations from Theorem 4.4.9:
200∑
k=1

k = 200(201)
2 = 20100,

99∑
k=1

k = 99(100)
2 = 4950.

Consequently,
200∑
k=100

k = 20100− 4950 = 15150.

�
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4.4.5 Summations of Linear Combinations
The elementary summation formulas allow us to compute sums involving only
the elementary terms. Combining these formulas using the properties of sum-
mation, namely using the constant multiple rule and the sum rule, we can
compute sums of any linear combination of the elementary terms.

Example 4.4.15 Find
20∑
k=1

(500 + 60k − 2k2).

Solution. The increments in the sum consist of a constant (500), a constant
multiple of the index (60k), and a constant multiple of the square of the index
(−2k2). The linearity property of summation 4.4.6 allows us to compute the
sum using the elementary formulas. Although linearity allows the two steps to
be done at once, the following illustrates the steps (sum and constant multiple
rules) in order:

20∑
k=1

[500 + 60k − 2k2] =
20∑
k=1

[500] +
20∑
k=1

[60k] +
20∑
k=1

[−2k2]

=
20∑
k=1

[500] + 60
20∑
k=1

[k]− 2
20∑
k=1

[k2].

The brackets emphasize that the increments of a summation are given by a
particular value or formula. Each of these summations involve elementary
increment sequences for which we have explicit formulas.

20∑
k=1

[500] = 500(20) = 10000,

20∑
k=1

[k] = 20(21)
2 = 210,

20∑
k=1

[k2] = 20(21)(41)
6 = 2870.

Consequently,

20∑
k=1

[500 + 60k − 2k2] = 10000 + 60(210)− 2(2870) = 16860.

�
The same strategy still applies if the constant multiple coefficients are writ-

ten using parameters or even using variables other than the dummy index vari-
able of summation. In particular, when the upper limit of the summation is a
variable, the formula for the sequence might also involve that variable as well
as the index variable. Because this will be encountered frequently, an example
is provided below.

Example 4.4.16 Find a formula for
n∑
k=1

(
3k
n2 −

k2

n3

)
that involves only n.

Solution. The sequence of increments is xk = 3k
n2 −

k2

n3 . We recognize this as
a linear combination of the more elementary sequences k and k2 if we rewrite
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the sequence
xk = 3

n2 · k + −1
n3 · k

2.

Because the coefficients of this linear combination only involve n and not the
dummy variable of the summation k, we can rewrite the summation as a cor-
responding linear combination and then apply the elementary summation for-
mulas to find our desired formula.

n∑
k=1

(
3k
n2 −

k2

n3

)
= 3
n2

n∑
k=1

[k]− 1
n3

n∑
k=1

[k2]

= 3
n2 ·

n(n+ 1)
2 − 1

n3 ·
n(n+ 1)(2n+ 1)

6

= 3n(n+ 1)
2n2 − n(n+ 1)(2n+ 1)

6n3 .

�
There are no convenient summation rules for products or quotients, with

one exception. If the product can be rewritten as a sum using the distributive
property of multiplication, then we can sometimes use linearity after this sim-
plification in terms of elementary formulas. If the increments are not linear
combinations of elementary terms, then we have no methods for simplifying
the calculation.

Example 4.4.17 Find a formula for
n∑
k=1

(2 − 3k
n

)(1 + 2k
n

) that only involves

n.
Solution. Use the distributive property (aka FOIL) to rewrite the product
as a sum which can be identified as a linear combination of a constant term,
k, and k2:

(2− 3k
n

)(1 + 2k
n

) = 2 + 4k
n
− 3k

n
− 12k2

n2

= 2 + 1
n
· k − 12

n2 k
2.

The linearity property of summation 4.4.6 allows us to compute the sum as
the same linear combination of the elementary accumulations:

n∑
k=1

(2− 3k
n

)(1 + 2k
n

) =
n∑
k=1

2 + 1
n
· k − 12

n2 k
2

=
n∑
k=1

2 + 1
n

n∑
k=1
·k − 12

n2

n∑
k=1

k2

= 2n+ 1
n
· n(n+ 1)

2 − 12
n2
n(n+ 1)(2n+ 1)

6
To simplify the answer, we need to cancel common factors and then rewrite
the expression with a common denominator.

n∑
k=1

(2− 3k
n

)(1 + 2k
n

) = 2n+ n+ 1
2 − 2(n+ 1)(2n+ 1)

n

= (2n)(2n) + n(n+ 1)− 4(n+ 1)(2n+ 1)
2n

= 4n2 + n2 + n− 8n2 − 12n− 4
2n
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= −3n2 − 11n− 4
2n

�

4.4.6 Summary
• Summation of terms is equivalent to an accumulation of those terms as

increments.

• The Summation Splitting Property allows us to split a summation over
an index range into the sum of two summations over adjacent ranges.

• Every summation can be computed as the accumulated change of the
terms as increments. The Summation as Net Accumulated Change theo-
rem states that if we know the accumulation sequence u with increments
x, then

n∑
k=m

xk = un − um−1.

• The linearity properties of summation (the constant multiple rule and
the sum rule) allow us to break summations involving sums into simpler
summations over the same index range.

◦ Constant Multiple Rule of Summation:
n∑

k=m
αxk = α

n∑
k=m

xk

◦ Sum Rule of Summation:
n∑

k=m
[uk + wk] =

n∑
k=m

uk +
n∑

k=m
wk

◦ Linearity of Summation:
n∑

k=m
[αuk + βwk] = α

n∑
k=m

uk + β

n∑
k=m

wk

• Elementary accumulation formulas:

◦ Sum of Constant Sequence:
n∑
k=1

c = cn

◦ Sum of Natural Numbers:
n∑
k=1

k = n(n+ 1)
2

◦ Sum of Squares:
n∑
k=1

k2 = n(n+ 1)(2n+ 1)
6

◦ Sum of Cubes:
n∑
k=1

k3 = n2(n+ 1)2

4

◦ Sum of a Geometric Sequence:
n∑
k=0

bk = bn+1 − 1
b− 1

4.4.7 Exercises

The following collection of problems practice applying the properties of sum-
mation. Given the following information about the sequence x and y, compute
the desired summations.

x0 = 8
10∑
k=1

xk = 42
20∑
k=0

xk = 30
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y19 = 4 y20 = −8
18∑
k=0

yk = −4
20∑
k=11

yk = 5

1.
10∑
k=0

4xk

2.
20∑
k=0

xk + yk

3.
20∑
k=11

3xk − 2yk

Compute the following sums using the summation properties and the elemen-
tary summation formulas.

4.
20∑
k=1

3k

5.
30∑
k=1

4k − 100

6.
20∑
k=12

k2

7.
n∑
k=1

(1 + 3k)(2− 5k)

8.
6∑
k=0

3k

9. 3 + 33 + 35 + 37 + ·+ 319

Hint: Rewrite as a summation that can use the geometric sum.
10. The sum of three-digit multiples of 5
11. The sum of three-digit perfect squares

12.
n∑
k=1

(
4
n
− 5k
n2

)

13.
n∑
k=1

3k2

n3

14.
n∑
k=1

(
2 + 3k

n

)2
· 1
n



CHAPTER 4. SEQUENCES AND ACCUMULATION 251

4.5 Limits of Sequences

4.5.1 Overview
The limit of a sequence describes its end behavior. Some sequences converge
to a particular value, meaning that the values of the sequence keep getting
closer and closer to that value. Other sequences grow without bound. Still
other sequences alternate between values or behave chaotically. Limits allow
us to establish some mathematical language that characterizes some of these
behaviors.

The objectives for this section are as follows. We will focus on what it
means for a sequence to have a limit. Much of our intuition will focus on
graphs and tables. As we do this, we will learn about limits of sequences
defined recursively in terms of fixed points of the projection function. We will
then discuss limit arithmetic involving infinity and how this can be used to
find limits of some sequences defined explicitly.

4.5.2 What Is A Limit?
Consider the sequence defined recursively by xn = 0.8xn−1 +1 and initial value
x0 = 1. The next ten values (to the nearest ten-thousandth) are shown in a
table and the first twenty values are illustrated in a graph.

n xn
0 1
1 1.8
2 2.44
3 2.952
4 3.3616
5 3.68928
6 3.951424
7 4.161139
8 4.328911
9 4.463129
10 4.570503 0 5 10 15 20

1

2

3

4

5

n

x
n

The graph illustrates that the sequence x is increasing and concave down.
It appears that the values of the sequence might be leveling off at some value.
A cobweb diagram, shown below, suggests that this sequence has values that
are converging to a fixed point of the projection function f(x) = 0.8x + 1,
where f(x) = x.

−2 0 2 4 6 8

−2

0

2

4

6

8

xn−1

x
n
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The fixed point corresponds to an equilibrium of the recursively defined
sequence. We find the equilibrium value by solving the fixed point equation.

f(x) = x

0.8x+ 1 = x

1 = 0.2x
x = 5

Now, let us compare the decimal approximations to the sequence with higher
index values with the equilibrium.

n xn
20 4.953883140
25 4.984888427
30 4.995048240
35 4.998377407
40 4.999468309
45 4.999825775
50 4.999942910
55 4.999981293
60 4.999993870

Notice that the values for the sequence have decimal approximations that
are converging to the equilibrium value x = 5. The greater the index value,
the closer the sequence value is to equilibrium. Consequently, we say that our
sequence has a limit of 5 and write xn → 5 or

lim
n→∞

xn = 5.

Next consider another example—a recursive sequence x defined by a recur-
rence relation xn = 1.2xn−1 and initial value x0 = 4. The projection function
f(x) = 1.2x− 1 has the same fixed point x = 5 because

f(5) = 1.2(5)− 1 = 5.

n xn
0 4
1 3.8
2 3.56
3 3.272
4 2.9264
5 2.51168
6 2.014016
7 1.416819
8 0.700183
9 -0.1597804
10 -1.191736 0 5 10 15 20
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n

x
n

However, this time the sequence is decreasing and concave down, moving
away from the equilibrium value. Instead, the value of the sequence is becoming
more and more negative. The cobweb diagram illustrates that this will continue
forever. For a sequence like this, we say xn → −∞ or

lim
n→∞

xn = −∞.
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For the same recursive definition xn = 1.2xn−1 − 1 with an initial value
above the equilibrium, x0 = 6, the sequence is increasing and concave up,
shown below. The values become more and more positive. For a sequence like
this, we say xn →∞ or

lim
n→∞

xn =∞.

n xn
0 6
1 6.2
2 6.44
3 6.728
4 7.0736
5 7.48832
6 7.985984
7 8.583181
8 9.299817
9 10.15978
10 11.19174 0 5 10 15 20
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n
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n

We have seen that a recursive sequence sometimes converges to a fixed
point and sometimes it diverges away from a fixed point. We might wonder if
a recursive sequence can have a limit that is not a fixed point of the projection
function. The answer is no, so long as the projection function is continuous.

Theorem 4.5.1 Recursive Limits as Fixed Points. If a sequence is
defined recursively with a continuous projection function f , xn = f(xn−1), and
xn has a limit, then the limit must be a fixed point of f .
Proof. We have to wait for a definition of continuity before this can be proved.

�
Note some things that this theorem does not guarantee. First, just because

a function has a fixed point does not mean that it will be a limit. (The sequence
might not have a limit.) Second, the projection function needs to be continuous.
If a function is not continuous, then it is possible to have a limit that is not
a fixed point. Fortunately, functions defined by simple algebraic formulas will
be continuous everywhere they are defined. For any continuous projection
functions, the only limits will be fixed points. Finally, if the sequence is not
defined recursively, then we will need other methods to find the limits.

In practice, we first observe that a sequence defined recursively has a limit
(perhaps through a graph or a table). If we find all of the fixed points for the
projection function, then we can determine which of those is the appropriate
limit. The limit may depend on the initial value of the sequence, so we compare
approximate values from the table with the approximate (decimal) values of
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the fixed points.
We consider some additional examples. As you attempt the examples or

exercises, take advantage of technology to generate tables and graphs. Refer
back to Section 13.3 for guidance as needed.

Example 4.5.2 Use a table and a graph of the sequence defined explicitly as

xn = 3 + 2n

1 + 3 · 2n

to estimate the limit of xn.
Solution. The explicit definition of the sequence allows us to create a table.
Because we are looking for the decimal approximation to converge, we need to
show quite a few decimal places. Once the table is generated, we can create a
plot.

n xn
0 1.0
1 0.714285714286
2 0.538461538462
3 0.44
4 0.387755102041
5 0.360824742268
6 0.347150259067
7 0.34025974026
8 0.336801040312
9 0.335068314899
10 0.334201106411
11 0.33376729048
12 0.333550329563
13 0.333441835863
14 0.333387585702
15 0.333360459793
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The plot for the sequence shows that the sequence appears to be leveling off.
Looking at the table, we see that more and more of the digits are converging
to a 3. If this pattern is real and continues, the limiting value would be the
repeating decimal 0.3333 . . . which is the rational number 1

3 . We would say
that this sequence has a limit xn → 1

3 :

lim
n→∞

xn = 1
3 .

�

Example 4.5.3 Use a table and a graph of the sequence defined explicitly as

un = 1 + 1
2 · (−1 + 1

2n )n,

to estimate the limit of un.
Solution. We generate a table of sequence values and plot the results.
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n un
0 1.5
1 0.75
2 1.28125
3 0.6650390625
4 1.38623809814
5 0.573392406106
6 1.45491835196
7 0.526711160622
8 1.48458696224
9 0.508720709959
10 1.49513858939
11 0.502678999959
12 1.4985371216
13 0.500792876146
14 1.49957292337
15 0.500228832948
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Notice that for this sequence, the graph appears to level off to two different
values. However, this is because the sequence is actually approaching two
alternating values. This is an example of approaching a repeating pattern
rather than a value, most easily seen in the table. As we look further down
the table, the odd index values correspond to a sequence value that is getting
closer to 0.5 while the even index values correspond to a sequence value that
is getting closer to 1.5.

This sequence does not have a limit because the sequence is not approaching
a single value. We say lim

n→∞
xn does not exist. �

Example 4.5.4 Use a table and a graph of the sequence defined recursively
by

zn+1 = 2.7zn − 0.7z2
n

and an initial value z0 = 1 to estimate the limit of zn.
Solution. We can use the recursive definition and a computer to generate
approximate values and then graph the sequence.
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n zn
0 1.00000000000000
1 2.00000000000000
2 2.60000000000000
3 2.28800000000000
4 2.51313920000000
5 2.36436779299635
6 2.47062849869924
7 2.39789332147854
8 2.44938730115809
9 2.41369700737469
10 2.43882864952499
11 2.42131772649675
12 2.43361218868805
13 2.42502511000601
14 2.43104504810447
15 2.42683561174279
16 2.42978439120944
17 2.42772132482997
18 2.42916599531699
19 2.42815498439281
20 2.42886281809844
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Graphically, you should see that the plot shows the sequence values appears
to level off to a single value. However, the graph also shows that the values
are alternately above and below that limit. We look in the table to determine
the limiting value, but it is not obvious from the table what the limiting value
should be. Because the values are alternately above and then below whatever
the limit should be, we can conclude that the limit must be between the last
two values listed.

The limit is approximately 2.428 but we do not know the next decimal place
without computing more values in the sequence. With additional computation
(not shown), we find z39 = 2.42857109636261 and z40 = 2.42857166111753
so that our approximation for the limit (a value between z39 and z40) can be
estimated as close to 2.428571,

lim
n→∞

zn ≈ 2.428571.

To find a better approximation using data would require more computation.
Because the sequence is defined recursively, the limit will be a fixed point

of the projection function. If we solve the fixed point equation, we can find the
exact value of the limit.

2.7x− 0.7x2 = x

1.7x− 0.7x2 = 0
x(1.7− 0.7x) = 0

The factored equation indicates there are two fixed points: x = 0 and x = 17
7 .

The decimal approximation for x = 17
7 is 2.4285714286, which is precisely

where our sequence is converging,

lim
n→∞

zn = 17
7 .

�
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4.5.3 The Definition of a Limit
With these examples, we can introduce the mathematical definition for the
limit of a sequence. The idea of a limit xn → L is that the value of the sequence
xn approximates the value of L closer and closer as n increases. Recall that
we measure the quality of approximation using the error of approximation,
|xn − L|. The sequence successfully approximates the limit L if the error
eventually become smaller than any desired accuracy of approximation.

Definition 4.5.5 Limit of a Sequence. For a real number L, a sequence x
has a limit L if for any desired accuracy of approximation ε > 0, the error of
approximation is eventually |xn − L| < ε and we write

lim
n→∞

xn = L or xn → L.

This means that for every ε > 0, there is a threshold indexN so that |xn−L| < ε
whenever n > N . ♦

In most cases, verifying the definition directly will be too challenging. We
will usually learn to apply rules that guarantee that this definition will be
satisfied rather than directly show that the approximation rule is satisfied.
However, for sequences defined by sufficiently simple explicit formulas, we can
determine how far down the table we would need to go to reach a desired
accuracy. In these cases, we use strategies for solving inequalities to find the
interval of integers where the error of approximation is sufficiently small.

Example 4.5.6 Consider the sequence xn = n

2n+ 1 , for n = 0, 1, 2, . . .. Find

numerical evidence that lim
n→∞

xn = 1
2 . Then determine the index threshold N

so that |xn − 1
2 | < 0.001 for index values n > N .

Solution. Using the following simple Sage script, we can generate a plot and
table quickly. This script includes some modifications so that only a portion
of the table is printed. We also have modified the format code to include more
decimal values.



CHAPTER 4. SEQUENCES AND ACCUMULATION 258

# What range of index values to plot
lastIndex = 100
# Which values in the calculation to show?
# Some at the beginning
showFirst = 10
# Some at the end
showLast = 10

# Calculate the table for plotting
data = []
for n in range(lastIndex +1):

xn = n/(2*n+1)
data.append( [n,xn] )

graph = list_plot(data , frame=True , axes_labels =["n", "x_n"])
show(graph)

# Display beginning of the table
for i in range(showFirst):

# data is a list of points , so data[i] = [n,xn]
[n,xn] = data[i]
print("%d\t%,8f" % (n,xn))

# Print a break -line to show there are missing terms
print("...")
# Display end of the table
for i in range(lastIndex -showLast ,lastIndex +1):

# data is a list of points , so data[i] = [n,xn]
[n,xn] = data[i]
print("%d\t%.8f" % (n,xn))

0 0.00000000
1 0.33333333
2 0.40000000
3 0.42857143
4 0.44444444
5 0.45454545
6 0.46153846
7 0.46666667
8 0.47058824
9 0.47368421
...
90 0.49723757
91 0.49726776
92 0.49729730
93 0.49732620
94 0.49735450
95 0.49738220
96 0.49740933
97 0.49743590
98 0.49746193
99 0.49748744
100 0.49751244

It appears that the sequence is leveling out to a value near 0.5. However,
at index n = 100, the value is at approximately x100 ≈ 0.49751244 (8 decimal
places). If the limit really is xn → 0.5, then the error of approximation for
n = 100 is

|x100 − 0.5| ≈ 0.00248756.
We need to ensure that the error continues to go down. At index n = 1000 (by
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modifying the script and running again), we have x1000 ≈ 0.49975012 with an
error of approximation

|x1000 − 0.5| ≈ 0.00024988.

The explicit formula for the sequence uses the function f(n) = n

2n+ 1 for

integer values of n. We can think of the mapping n f7→ x for arbitrary values
of n and not just integers. The inverse f−1 : x 7→ n can inform us of when the
sequence passes different values. We solve for n as the dependent variable.

x = n

2n+ 1
(2n+ 1)x = n

2nx+ x = n

2nx− n = −x
(2x− 1)n = −x

n = −x
2x− 1 = x

1− 2x

This function, f−1(x) = x

1− 2x , gives the relation x 7→ n.
From our graph, we have seen that (n, xn) is increasing and concave down.

The sequence will always be below the limit. Given any desired error of ap-
proximation ε > 0, we can use our inverse function to see exactly when the
sequence rises above xn > 1

2 − ε. For example, with ε = 0.001, we want to find
when xn > 0.5− 0.001 = 0.499. We find

f−1(0.499) = 0.499
1− 2(0.499) = 249.5.

The sequence, which requires integer index values, will therefore be above
xn > 0.499 for n ≥ 250. In the definition of a limit, this corresponds to
an index threshold N = 249 for accuracy ε = 0.001.

We can verify this numerically by running the script to show a table and
graph for index values surrounding n = 250. The table and graph show that
the sequence value is below 0.499 for n ≤ 249 and above 0.499 for n ≥ 250,
agreeing with our calculation.
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n xn
235 0.49893843
236 0.49894292
237 0.49894737
238 0.49895178
239 0.49895616
240 0.49896050
241 0.49896480
242 0.49896907
243 0.49897331
244 0.49897751
245 0.49898167
246 0.49898580
247 0.49898990
248 0.49899396
249 0.49899800
250 0.49900200
251 0.49900596
252 0.49900990
253 0.49901381
254 0.49901768
255 0.49902153

235 240 245 250 2550.4988

0.4989

0.499

0.4991

n

x
n

The inverse function, f−1(x) = x

1− 2x , is undefined for x = 1
2 . For values

x > 1
2 , we will have negative values for n, f−1(x) < 0. The sequence therefore

will never reach or surpass the value x = 1
2 . But we will be able to identify

when the function rises above every value below x = 1
2 . This is how we know

that
lim
n→∞

xn = 1
2 .

�

4.5.4 Summary
• A sequence has a limit, xn → L, if the values of the sequence get closer

and closer to the value of L. The graph of the sequence (n, xn) approaches
a horizontal line x = L.

• If xn → L, then a table of values for the sequence x should have decimal
approximations that converge to the decimal approximation of L.

• Sequences defined recursively using a continuous projection function f
can only have limits that are fixed points of f . (See Theorem 4.5.1)

• The formal definition of a sequence limit xn → L, written

lim
n→∞

xn = L,

is that for any desired threshold of approximation error ε > 0, there
is an index threshold N so that |xn − L| < ε whenever n > N . (See
Definition 4.5.5)
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4.5.5 Exercises

Use a computer-generated table to approximate the limit of the following se-
quences to at least four decimal places. If the limit does not exists, state
why.

1. xn =
√
n · (
√

3n+ 1−
√

3n)

2. xn = n · (
√

3n+ 1−
√

3n)

3. xn =
(

1 + 1
3n

)n
4. xn = n2 ·

(
1

4n+ 5 −
1

4n

)
5. xn+1 = xn

5 + 2
xn

with x0 = 2.

6. xn+1 = xn
5 −

2
xn

with x0 = 2.

7. xn+1 = 5xne−xn with x0 = 0.5.

8. xn+1 = 8xne−xn/3 with x0 = 0.5.

For each of the following functions, find all fixed points. Then, using a sequence
defined recursively xn = f(xn−1) and the given initial value, test if the sequence
has a limit and give its exact value.

9. f(x) = 1.3x+ 12; x0 = 1
10. f(x) = 0.8x+ 6; x0 = 5
11. f(x) = 1.2x− 0.04x2; x0 = 3

12. f(x) = 4x
1 + x2 ; x0 = 3

For each of the following sequences, explore the definition of a limit by finding
the index threshold associated with the approximation error threshold.

13. The sequence xn = 1
2n+1 has a limit xn → 0. For ε = 0.01, find N so

that |xn − 0| < ε for n > N .
14. The sequence xn = n

2n+1 has a limit xn → 1
2 . For ε = 0.01, find N so

that |xn − 1
2 | < ε for n > N .

15. The sequence xn =
(
− 2

3
)n has a limit xn → 0. For ε = 0.01, find N

so that |xn − 0| < ε for n > N .



CHAPTER 4. SEQUENCES AND ACCUMULATION 262

4.6 Calculating Sequence Limits

4.6.1 Overview
In the previous section, we learned about limits of sequences. Unfortunately,
using a table of values to find a limit only allows us to estimate its value.
A finite table alone can never clearly show whether a perceived pattern will
continue or change after the values shown. It would be helpful to have some
rules for finding limits based on the formula rather than numerical patterns.

This section establishes the rules of limits of sequences. Many limits can
be calculated by identifying terms that are unbounded in the limit. We learn
about how infinity behaves in the context of limit arithmetic. We also learn
about indeterminate limit forms.

4.6.2 Infinite Limits
In order to compute limits of sequences, we begin with sequences that grow
without bound, which is written xn → ∞ when the sequence grows in a pos-
itive direction or xn → −∞ when the sequence grows in a negative direction.
Arithmetic sequences with increments β 6= 0 (recall Theorem 13.2.8) must ei-
ther steadily increase (positive increments β > 0) or steadily decrease (negative
increments β < 0). The special case that β = 0 is somewhat boring, as this
corresponds to a constant sequence so that the limit is just the constant value.

Theorem 4.6.1 Limit of an Arithmetic Sequence. An arithmetic se-
quence with explicit formula xn = a+c·n (for constants a and c) has unbounded
growth when c 6= 0. The corresponding limit statements are

lim
n→∞

(a+ cn) = +∞ (c > 0)

lim
n→∞

(a+ cn) = −∞ (c < 0)

lim
n→∞

(a) = a (c = 0)

Geometric sequences are a little more complicated, depending on the ratio
ρ (recall Theorem 13.2.10) and the initial value. Repeated multiplication by a
number whose magnitude is larger than 1 makes the resulting magnitude in-
crease without bound. Repeated multiplication by a number whose magnitude
is smaller than 1 makes the resulting magnitude converge to 0. If the ratio ρ is
negative, then the sign of the sequence values will alternate between positive
and negative. This is summarized by another theorem.

Theorem 4.6.2 Limit of a Geometric Sequence. A geometric sequence
with explicit formula xn = a·ρn and ratio ρ is unbounded when |ρ| > 1, meaning
that |xn| → ∞.

• If ρ ≤ −1, xn alternates sign and the limit does not exist.

• If ρ > 1, then the limit depends on the sign of a:

lim
n→∞

a · ρn = +∞, (a > 0),

lim
n→∞

a · ρn = −∞, (a < 0).

• If |ρ| < 1 (i.e., −1 < ρ < 1), then lim
n→∞

a · ρn = 0.
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Example 4.6.3 Find the appropriate limits of the following sequences.
1. lim

n→∞
3− 4n

2. lim
n→∞

100 + 0.02n

3. lim
n→∞

−3 · 1.05n

4. lim
n→∞

100 · (−0.75)n

5. lim
n→∞

5 · (−1.5)n

Solution.

1. The sequence xn = 3 − 4n is recognized as the explicit formula of an
arithmetic sequence with increment c = −4. Since this is a negative
increment, the sequence decreases without bound. So we write

lim
n→∞

3− 4n = −∞.

2. The sequence xn = 100 + 0.02n is arithmetic with increment c = 0.02.
Since the increment is positive, the sequence increases without bound
and we write

lim
n→∞

100 + 0.02n = +∞.

3. The sequence xn = −3 ·1.05n is a geometric sequence with ratio ρ = 1.05.
Because ρ > 1, the sequence grows without bound. Furthermore, because
the terms are all negative, we have a limit

lim
n→∞

−3 · 1.05n = −∞.

4. The sequence xn = 100 · (−0.75)n is a geometric sequence with ratio
ρ = −0.75. Because the ratio is negative, the signs of the terms alter-
nate between positive and negative. However, since |ρ| = 0.75 < 1, the
magnitude of the terms converges to zero so that

lim
n→∞

100 · (−0.75)n = 0.

5. The sequence xn = 5 · (−1.5)n has a negative ratio ρ = −1.5. Since |ρ| >
1, the terms have alternating signs but grow in magnitude. Consequently,
lim
n→∞

5 · (−1.5)n does not exist.

�

4.6.3 Arithmetic of Infinity
Once we know how to identify when sequences have unbounded terms, we can
use that information to find limits of related sequences. We can think of this
as the arithmetic of infinity. Infinities can add and multiply but should never
be subtracted or divided from one another. The signs of arithmetic involving
infinity behave like for numbers, such as having a negative times a positive be
negative.

The most important principle to remember is that infinities should never
cancel one another. Cases where the formula looks like infinities might cancel
are called indeterminate. This includes trying to cancel infinity by multiplying



CHAPTER 4. SEQUENCES AND ACCUMULATION 264

by zero. An indeterminate limit form means that the value of the limit can not
be determined without further analysis that resolves the apparent cancellation.

Theorem 4.6.4 Arithmetic Rules for Infinity. Suppose unbounded se-
quences are combined using arithmetic operations. Then the following arith-
metic relating to limits will be valid, where c will represent a positive number.

• Adding a number to infinity has no effect:

+∞± c = +∞
−∞± c = −∞

• Multiplying infinity by a non-zero number is still infinite, but changes
sign if multiply by a negative number:

c · ±∞ = ±∞
−c · ±∞ = ∓∞

• Adding infinities of the same sign are infinite. Don’t cancel opposite
infinities.

+∞+ +∞ = +∞
−∞+−∞ = −∞

+∞+−∞ = indeterminate

• Multiplying infinities are infinite, and negative if opposite signs.

+∞ ·+∞ = +∞
−∞ · −∞ = +∞
+∞ · −∞ = −∞

• The reciprocal of infinity is zero, but they can’t cancel.

1
±∞

= 0

0 · ±∞ = indeterminate
±∞
±∞

= indeterminate

0
0 = indeterminate

The previous theorem was stated somewhat imprecisely in order to con-
vey the idea of arithmetic of infinities without being bogged down by formal
notation relating to limits. Each statement really is about a limit.

As an example, the arithmetic on infinity +∞ + +∞ = +∞ would more
carefully be stated as follows. Suppose that there are two sequences xn and yn
such that xn → +∞ and yn → +∞. The sequence defined by un = xn + yn
has limit

lim
n→∞

xn + yn = +∞.

The shorthand notation of performing arithmetic with infinity allows this
to be simplified as writing

lim
n→∞

xn + yn = +∞+ +∞ = +∞.
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The intermediate step +∞+ +∞ is not truly arithmetic, but points out that
xn → +∞ and yn → +∞, and since those sequences were added, the final limit
is also +∞. We are substituting limits of individual terms into the formula
defining the expression. As long as the arithmetic involves no cancellation of
infinities, it will result in a correct statement.

To deal with indeterminate forms, we usually need to try to rewrite the
formula in a new way so that the cancellation is avoided. The most common
approach for rewriting is to factor out a dominant term. When there are
infinities trying to cancel, we identify which of the terms should dominate and
we factor that expression from both terms and simplify.

Example 4.6.5 Determine the following limits, if possible.

1. lim
n→∞

3 + 5
2n

2. lim
n→∞

n2 − 3n
5n− 1

3. lim
n→∞

1 + 2n

3 + 5n

Solution.

1. The sequence xn = 3 + 5
2n is the sum of terms 3 and 5

2n . The constant
sequence has a limit 3 → 3 (since it never changes). The geometric
sequence 5

2n = 5 · ( 1
2 )n has a ratio |ρ| < 1 so that 5

2n → 0. The form of
the limit (using the terms) is

lim
n→∞

3 + 5
2n = 3 + 0,

and since this does not involve any cancelation of infinities, will give the
correct limit,

lim
n→∞

3 + 5
2n = 3 + 0 = 3.

2. The sequence un = n2 − 3n
5n− 1 is a quotient of terms n2 − 3n and 5n − 1.

To find the limit, we explore the terms individually first.
Because n2 = n · n, we know n2 → +∞ · +∞ = +∞. Similarly, the
arithmetic sequence 3n → +∞. However, the difference n2 − 3n would
have a limit of the form +∞−∞, which is a cancellation of infinities.
As written, n2 − 3n is an indeterminate form.
Our strategy will be to rewrite this as a product, and the best practice
is to factor out (divide out) the greatest power of n (dominant term),

n2 − 3n = n2(n
2

n2 −
3n
n2 ) = n2(1− 3

n
).

From this, we find

3
n
→ 3

+∞ = 0 ⇒ 1− 3
n
→ 1− 0 = 1.

Since we already know n2 → +∞, we have the limit of the numerator

lim
n→∞

n2 − 3n = lim
n→∞

n2(1− 3
n

) = +∞ · 1 = +∞.
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The term in the denominator 5n − 1 is an arithmetic sequence (linear
function) with increment (slope) c = 5. We know

lim
n→∞

5n− 1 = +∞.

Unfortunately, that means our limit form as a quotient is itself an inde-
terminate form,

lim
n→∞

n2 − 3n
5n− 1 = +∞

+∞ .

We can not cancel infinities, so we must rewrite our formula.
For this example, I worked out the numerator separately to make a point
about that term itself being an indeterminate form. In practice, our
strategy will be to apply that factoring principle to the entire formula at
one step. This is illustrated below.
The problem can be solved up if we just factor out from the numerator
and denominator the dominant term (greatest power) and simplify as
needed.

lim
n→∞

n2 − 3n
5n− 1 = lim

n→∞

n2(1− 3
n )

n(5− 1
n )

= lim
n→∞

n(1− 3
n )

5− 1
n

=
+∞ · (1− 3

∞ )
5− 1

∞

= +∞ · 1
5 = +∞.

3. The sequence wn = 1 + 2n

3 + 5n , by quick inspection, involves the geometric
sequences 2n and 5n, both of which grow exponentially so that wn → +∞

+∞ .
This indeterminate form involves canceling infinities, so we must rewrite
the formula. Following the method of the previous example, we factor
out the dominant term, in this case the geometrically growing powers.

lim
n→∞

1 + 2n

3 + 5n = lim
n→∞

2n( 1
2n + 2n

2n )
5n( 3

5n + 5n

5n )

= lim
n→∞

2n( 1
2n + 1)

5n( 3
5n + 1)

This is still indeterminate form +∞
+∞ , so we rewrite 2n

5n = ( 2
5 )n, which is

a geometric sequence with ratio ρ = 2
5 satisfying |ρ| < 1.

lim
n→∞

1 + 2n

3 + 5n = lim
n→∞

2n( 1
2n + 1)

5n( 3
5n + 1)

= lim
n→∞

( 2
5 )n( 1

2n + 1)
3

5n + 1

= 0 · (0 + 1)
0 + 1 = 0

1 = 0

�
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Knowing how to find limits of sequences with explicit formulas, we can also
find limits for recursive sequences whose explicit formulas are known.

Example 4.6.6 Find the limit of a recursive sequence u defined by

un = 0.8un−1 + 20

and initial value u0 = 50.
Solution. A sequence that has a linear projection function, involving both
multiplication by a ratio and the addition of an increment, has a shifted ge-
ometric sequence as its explicit formula. The equilibrium value is found by
solving the fixed point equation.

0.8x+ 20 = x

20 = 0.2x
100 = x

Thus, the equilibrium value is u∗ = 100.
The explicit formula is a geometric sequence with ratio α = 0.8 shifted by

the equilibrium,

un = u∗ + (u0 − u∗)(0.8)n

= 100 + (50− 100)(0.8)n

= 100 +−50(0.8)n

Be careful not to violate the order of operations by adding the 100 and −50 or
multiplying the −50 and 0.8,

Using this explicit formula, we can find the limit of the sequence. The
geometric sequence has a limit 0 because the ratio has magnitude smaller than
1.

lim
n→∞

un = 100 + (−50)(0) = 100

That is, the sequence converges to the equilibrium value. �

Example 4.6.7 Find the limit of the sequence defined by the recursive equa-
tion

xn+1 = 1.05xn − 20
and initial value x0 = 300.
Solution. Find the fixed point by solving the equation x = 1.05x− 20.

x = 1.05x− 20
−0.05x = −20

x = 400

Using the fixed point x∗ = 400 and the growth factor α = 1.05, we can write
down the explicit formula,

xn = x∗ + (x0 − x∗)αn

= 400 + (300− 400)1.05n

= 400− 100 · 1.05n

The geometric term with ratio α = 1.05 grows without bound. The limit of
the sequence can be found:

lim
n→∞

xn = lim
n→∞

400− 100 · 1.05n
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= 400− 100 ·+∞
= 400−∞
= −∞.

The sequence will decrease without bound. �

4.6.4 Limit Applications to Modeling
With these tools, we can analyze sequences associated with physically mean-
ingful models. Limits tell us about the long-term behavior. As time progresses,
the sequence will progressively get closer and closer to the limit.

For example, the concentration of a drug in a patient taking repeated doses
can be modeled by a sequence. A limit of this sequence can tell us something
about what will happen to that concentration if the dosing continues for an
extended amount of time.
Example 4.6.8 Suppose a patient begins taking 500 mg of a drug every four
hours. However, the body metabolizes 60% of the drug in the body every four
hours. Find a formula for the amount of drug in the body immediately after
each dose and then determine the limiting value.
Solution. The patient’s body starts with no drug. Immediately after the
first dose, there are 500 mg. Four hours later, 60% has been removed and then
another dose is added in. If we let Dn be the sequence of drug mass in the
body as a function of the number of doses n, then this is modeled recursively
by the equation

Dn+1 = Dn − 0.6Dn + 500,

with initial value D1 = 500.
This model has a linear projection function f(x) = 0.4x + 500 and corre-

sponding fixed point

0.4x+ 500 = x ⇔ x = 500
0.6 = 2500

3 .

The explicit formula, using Theorem 4.3.7, is given by

Dn = 2500
3 + (500− 2500

3 ) · 0.4n−1 = 2500
3 − 1000

3 · 0.4n−1.

Because the slope of the projection function α = 0.4 has magnitude less than
1, the limiting value is the fixed point x∗ = 2500

3 ≈ 833.33. Thus, if the patient
continues to take the drug, the amount in the body immediately after each
dose will be approximately 833.33 mg. (Immediately before the dose, it must
have been approximately 333.33 mg.) �

In the coming chapters, we will learn about the definite integral. The
calculation of an integral is as a limit of a summation. The following example
illustrates how such calculations are performed.

Example 4.6.9 Find lim
n→∞

n∑
k=1

(
1 + 3k

n

)
· 3
n
.

Solution. There are two major steps needed for this problem: (i) find an
explicit formula for the summation that depends only on n and (ii) compute
the limit of that explicit formula.

To compute the explicit formula for the summation, we need to remember
that the variable n is a constant with respect to the summation index k. We
will rewrite the formula of the sequence in summation to be a sum so that we
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can use the linearity property.
n∑
k=1

(
1 + 3k

n

)
· 3
n

=
n∑
k=1

3
n

+ 9k
n2

= 3
n
·
n∑
k=1

1 + 9
n2 ·

n∑
k=1

k

= 3
n
· n+ 9

n2 ·
n(n+ 1)

2

= 3 + 9(n+ 1)
2n

= 3 + 9n+ 9
2n

We see that the summation is itself a sequence involving an index n. We
find the limit of that sequence. The fraction 9n+ 9

2n will be indeterminate form
∞
∞ , so we will factor out the dominant term of n from top and bottom.

lim
n→∞

n∑
k=1

(
1 + 3k

n

)
· 3
n

= lim
n→∞

3 + 9n+ 9
2n

= lim
n→∞

3 +
n(9 + 9

n )
2n

= lim
n→∞

3 + 9
2 + 9

2n
= 3 + 9

2 + 9
∞

= 3 + 9
2 + 0

= 15
2 = 71

2

�

4.6.5 Summary
• Arithmetic sequences with non-zero increments are unbounded. Geomet-

ric sequences are unbounded when the ratio has magnitude greater than
1 and converge to zero when the ratio has magnitude less than 1.

• Sequence limits obey the standard rules of arithmetic, including for infi-
nite limits, with the exception that any formula that would cancel infinity
are indeterminate. (See Theorem 4.6.4) Indeterminate means the limit
can not be determined from simple arithmetic but requires rewriting in
another form.

◦ ∞−∞: rewrite by factoring out dominant term
◦ ∞
∞

: factor out dominant term in numerator and denominator, look
to simplify

◦ 0
0 : try to factor and simplify

◦ 0 ·∞: use negative powers to rewrite as fraction, then treat as 0
0 or

∞
∞

Look for terms in the limit that vanish: 1
∞

= 0.
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4.6.6 Exercises

Use limit arithmetic to find the exact value for each limit. If the limit does
not exist, explain why.

1. lim
n→∞

3− 4n

2. lim
n→∞

−5 + n

200
3. lim

n→∞
3 · ( 2

5 )n

4. lim
n→∞

−3 · (−0.8)n

5. lim
n→∞

4− 5 · (1.05)n

6. lim
n→∞

5− (−1.5)n

7. lim
n→∞

5 + 3n
5− n2

8. lim
n→∞

5 + 3n2

5− n2

9. lim
n→∞

5 + 3n3

5− n2

10. lim
n→∞

2n − 3n

7 + 2 · 3n

11. lim
n→∞

3 · 2n − 5 · 3n

1 + 2 · 5n

Find an explicit formula for each sequence. Then determine the limit of the
sequence.

12. xt = 1.05xt−1 − 10 with x0 = 500.
13. xk+1 = 0.8xk + 12 with x1 = 5.
14. yn = −1.5yn−1 + 5 with y0 = 2.

Use the properties and elementary formulas for summation to find a formula
for the summation in order to compute the limit.

15. lim
n→∞

n∑
k=1

5k
n2

16. lim
n→∞

n∑
k=1

k2

n3

17. lim
n→∞

n∑
k=1

(
2 + 3k

n

)
· 3
n

18. lim
n→∞

n∑
k=1

(
1 + 2k

n

)2
· 2
n

Applications of sequences.
19. When a patient starts taking a drug, there is no drug in the blood.

The prescription is to take 250 mg every six hours. Then, during the
six hours between doses, the body metabolizes 20% of whatever drug
is in the body.
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Find a recursive formula using a linear projection function for the
sequence of drug levels with an index counting the total number of
doses. Clearly state the initial value. Find an explicit formula for the
sequence and determine the limit. Is there a steady state amount of
drug in the body?

20. A pond has been polluted by a stream. The pond holds 12,000 gallons
of water and the stream replaces 900 gallons per day. The stream has
been carrying the chemical pollutant at a concentration of 0.4 g

gal and
now the pond has that same pollution level. With stream cleanup,
the chemical pollutant in the stream has just been reduced to a con-
centration of 0.1 g

gal .
Find a recursive formula using a linear projection function for the

sequence of pollutant levels (total mass) in the pond with an index
counting the number of days since the cleanup occurred. Clearly state
the initial value. Find an explicit formula for the sequence and de-
termine the limit. On what day will the total amount of pollutant in
the pond be reduced to half of the pollution level prior to cleanup? Is
there a steady state amount of pollutant in the pond?
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5.1 An Overview of Calculus
The previous chapter 13 studied sequences. There are three major concepts in
calculus that we can use sequences to motivate. These are limits, derivatives,
and integrals.

In this chapter, we will focus on the idea of the definite integral as a gen-
eralization of accumulating increments of change. Thinking of sequences in
terms of their increments of change is simpler because the domain consists
only of integers which are equally spaced. More general functions are defined
with domains consisting of intervals of the real numbers. (Some functions can
be defined on even more complex sets, which gives rise to even more advanced
mathematics.) Consequently, we can not think only in terms of increments of
change but in terms of a rate of change.

5.1.1 Derivatives and Integrals
For sequences, we learned to think of complementary ideas of accumulation
sequences and increments. With a sequence x, we had a forward difference

∆xn = xn+1 − xn

and a backward difference

∇xn = xn − xn−1.

These differences measure the change in the sequence x for consecutive values
of the index, which plays the role of the independent variable.

For functions defined on intervals, there is no meaning to consecutive values
of the independent variable. Near a point of interest x = c, there are infinitely
many other values close to c. Consequently, when measuring the change of a
function ∆f , we must also specify the change in the independent variable ∆x.
Consider two values for the independent variable, say x = a and x = b, and we
define ∆x = b− a and ∆f = f(b)− f(a).

Different increments ∆x will usually result in different function increments
∆f . However, for many functions, the ratio ∆f/∆x, called the average rate
of change, has a limit as ∆x → 0. This limiting rate of change is called the
instantaneous rate of change and in calculus is named the derivative.
Definition 5.1.1 Instantaneous Rate of Change. Given a function f

that relates variables x f7→ y, the instantaneous rate of change of y with
respect to x is the derivative dy

dx
defined by

dy

dx
= lim

∆x→0

∆f
∆x = lim

∆x→0

f(x+ ∆x)− f(x)
∆x ,

if the limit exists. Consequently, for sufficiently small increments ∆x, we have

∆f ≈ dy

dx
·∆x.

♦
The following example illustrates the role of the instantaneous rate of

change to relate the increments of the independent variable with the incre-
ments of the dependent variable.
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Example 5.1.2 A ball dropped from a tower has a height h (measured in feet)
modeled as a function of time t (measured in seconds) given by

t
f7→ h = 40− 16t2.

At t = 1, the instantaneous rate of change is dh
dt

= −32.
This rate of change is illustrated in the dynamic figure below. Thinking

of t0 = 1 as one value of the independent variable, you can adjust the second
value t1 to establish the increment ∆t = t1 − t0. The function automatically
computes f(1) and f(t1) and shows ∆h = f(t1)− f(1). The ratio ∆h/∆t will
be close to −32 ft

s for small values of ∆t.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 5.1.3
We can recover this instantaneous rate of change using limits, as shown in

the solution below.
Solution. We know that ∆t = t1 − 1 and ∆h = f(t1) − f(1). Using the
formula, this gives

∆h = (40− 16t21)− (40− 16(1)2) = −16(t21 − 1).

The average rate of change is defined by the quotient

∆h
∆t = −16(t21 − 1

t1 − 1 ,

which has a value for all t1 6= 1.
The instantaneous rate of change is the limit of the average rate of change

as ∆t→ 0, which in this case requires t1 → 1. Even though the quotient is not
defined at t1 = 1, we can simplify the formula used on the sides to a formula
that is defined.

dh

dt
= lim

∆t→0

∆h
∆t = lim

t1→1

−16(t21 − 1)
t1 − 1

= lim
t1→1

−16(t1 + 1)(t1 − 1)
t1 − 1

= lim
t1→1

−16(t1 + 1)

= −16(1 + 1) = −32

The key step in this limit calculation was changing the limit expression from
one in which the formula is not continuous to a new formula. When the formula
is continuous, we can just evaluate it at the point of interest. The variable t1
used in the limit could have been chosen to be any convenient name. �

At this point, our emphasis is understanding that the rate of change or
derivative measures the limiting ratio for increments of change in the value of
the function to corresponding increments of change in the independent variable.
Not every function has a derivative. We will study the calculation of the
derivative in more depth in later chapters.

Computing a derivative for a given function is analogous to computing
the increments of a sequence. The complementary calculation for sequences
is to compute the accumulation sequence for given increments. That is, if
x = (xn)∞n=1 is a sequence of increments, then the accumulation sequence u
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with increments ∇un = un − un−1 = xn and initial value u0 was written

un = u0 +
n∑
k=1

xk.

The calculus analogue is to be given a function that represents a rate of
change and use it to find a new function, the accumulation function, that
has that rate of change as its derivative. Suppose f(x) is the rate of change or
derivative of a quantity Q with respect to x,

dQ

dx
= f(x).

We are then interested in finding Q as a function of x if we know an initial
value Q(x0) = Q0. The analogue of summation of increments is the definite
integral, and we will write

Q = Q0 +
∫ x

x0

f(z) dz.

The rest of this chapter is focused on bringing meaning to the idea of
the definite integral. We study definite integrals before derivatives because
we have just studied summation and sequences. The calculations involved in
developing the ideas of definite integrals apply these concepts. Ultimately,
the Fundamental Theorem of Calculus will provide a connection between the
definite integral and the derivative, showing that our two ideas of rate of change
represent the same thing.

5.1.2 A Technological Aside
Computational tools play an important role in the real-world application of
mathematics. It is increasingly common to have a tool perform actual compu-
tations with the user responsible to formulate the appropriate problem.

For example, you may have heard of the website WolframAlpha. This site
acts like a search engine for mathematical content, and you can enter queries
like “factor x^2+3x”. The ability extends to calculus tools as well. We might
have asked for our earlier example “derivative of 40-16t^2 at t=1”.

Disadvantages of a site like WolframAlpha is that you are limited to a single
query at a time and it can sometimes be hard to state precisely what you
want. More powerful tools are available, including advanced programmable
calculators and commercial software tools like Wolfram’s Mathematica and
MapleSoft’s Maple programs.

A free, but similarly powerful tool is SageMath. A calculation in SageMath
uses a script based on the Python programming language. Comments in the
scripts follow the # symbol and are ignored by the computer but are useful to
understand what is happening.

Example 5.1.4 To factor the formula x2 + 3x, we would use the following
script.

# Tell Sage that x is a variable
var("x")
# Ask Sage to factor. Include the multiplication *
factor(x^2+3*x)

(x+3)*x

�

http://www.wolframalpha.com/
http://www.sagemath.org/
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Example 5.1.5 To find the derivative of 40− 16t2 at t = 1, we would use the
following script.

# Tell Sage that t is an independent variable
var("t")
# Define h as function of t
# -- Notice how every operation must be typed
h(t) = 40-16*t^2
show(h(t))
# The derivative is also a function
# but let Sage figure it out using the derivative operation.
Dh(t) = derivative(h(t), t)
show(Dh(t))
# Find the value of the derivative at t=1
Dh(1)

-16*t^2+40
-32*t
-32

�

Example 5.1.6 A container of water has a volume V . Suppose that the
volume has an instantaneous rate of change with respect to time t given by

dV

dt
= −40 + 3t.

When dV

dt
is negative, the volume is decreasing; when dV

dt
is positive, the

volume is increasing. The expression defines exactly how fast the water is
entering or leaving the container. Find the volume of water as a function of
time if V = 500 when t = 1.

The following SageMath script will start by defining the formula for the
rate of change. It then uses a definite integral to create the variable for the
volume,

V (t) = 500 +
∫ t

1
−40 + 3z dz.

# Define the independent variable.
var("t")
# Define dV as a function for rate
DV(t) = -40+3*t
show(DV(t))
# Define the V using integral , but need dummy variable
var("z")
V(t) = 500 + integrate(DV(z), [z, 1, t])
show(V(t))

3*t-40
3/2*t^2-40*t+1077/2

The integration variable z was needed in the integral for the same reason
that a summation in sequence accumulations requires a dummy index variable.
The formula DV(z) represents the formula for the rate of change evaluated at
this integration variable instead of t, −40+3z. This could have been computed
in WolframAlpha with the query integrate -40+3z with respect to z from
1 to t. �
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5.1.3 Summary
• Calculus is developed using ideas similar to those for sequences—limits,

increments, and accumulation— to limits of functions, derivatives, and
integrals.

• The derivative dQ

dx
measures the instantaneous rate of change of a

quantity Q with respect to the independent variable x, represented by a
limit,

dQ

dx
= lim

∆x→0

∆Q
∆x .

Consequently, increments of change in Q, ∆Q, will be approximately
proportional to the increment in x,

∆Q ≈ dQ

dx
·∆x,

for sufficiently small ∆x.

• Given a function f ′ for the rate of change of a quantity Q, x f ′7→ dQ
dx , and

an initial value Q0 when x = x0, the accumulation function will be
that function with derivative dQ

dx = f ′(x), represented by the integral

Q = Q0 +
∫ x

x0

f ′(z) dz.

• Computational tools, such as WolframAlpha and SageMath, are available
to perform these calculations, leaving us the responsibility of formulating
problems and interpreting the results.

5.1.4 Exercises

Use appropriate tables to approximate the following function limits. For a
two-sided limit, be sure that your work verifies that both sides approximate
the same value

1. lim
x→3−

2x − 8
x− 3

2. lim
x→3+

2x − 8
x− 3

3. lim
x→2

x2 − 4
2x − 4

4. lim
x→1

x2 − 1
|x− 1|

Find the instantaneous rate of change for the relationship described in each
problem using the limit of the average rate of change between the given point
and a second variable point. Compare the instantaneous rate to the average
rate for the specified increments.

5. An object tossed into the air has a height that changes in time. Let
h measure the height from the ground in feet and let t measure the
time since the object was tossed in seconds. Then h has a model

t 7→ h = 4 + 30t− 16t2.
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Find dh

dt
at t = 1 and compare this to the average rate ∆h

∆t with
∆t = 0.1.

6. The material cost for producing an aluminum box the shape of a cube
is a function of the size of the cube. Let C be the cost in dollars and
let s measure the length of each side of the box in centimeters. Then
C has a model

s 7→ C = 0.03s2.

Find dC

ds
at s = 10 and compare this to the average rate ∆C

∆s with
∆s = −0.2.

7. For a circle of radius r, the area A satisfies a relation

r 7→ A = πr2.

Find dA

dr
at r = 2 and compare this to the average rate ∆A

∆r with
∆r = 0.05.

For each problem, write down the formula involving an integral for the quan-
tity whose derivative and initial value are given. Use technology to find the
algebraic formula of the quantity.

8. Given dy

dx
= 4 and y = 5 when x = 2. Find y as a function of x.

9. Given dy

dx
= 2 + 3x and y = 4 when x = 1. Find y as a function of x.

10. Given dQ

dt
= t3 and Q = 2 when t = 1. Find Q as a function of t.

11. Given dP

dt
= 500e0.2t and P = 4000 when t = 0. Find P as a function

of t.
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5.2 Functions Defined on Intervals
Overview. In this section, we consider how functions are defined on different
sets. We learn about the domain of the function and how to find the domain
given a formula. Finding the natural domain of a function involves solving
inequalities using sign analysis. Sometimes, we need to restrict a function to
use a rule only on a particular set, called the explicit domain. Other times, we
need the function to use different rules on different sets, creating a piecewise
function. With piecewise functions, a function might not be continuous. We
learn about limit notation as a way of evaluating what a rule to the left or right
of a point would have given at a point. Continuity requires that the function is
defined and that the left- and right-limits both agree with the actual function
value.

5.2.1 Functions and Sets
We earlier learned that sequences are functions. A sequence x defined a map
n 7→ xn from the value of the index to the value in the sequence list at that
index position. An explicit definition of the sequence might even use a formula,
say xn = 2n+ 5. An interactive figure below illustrates this mapping. As you
move the value on the n-axis, an arrow shows the corresponding value on the
xn-axis. However, because n must be an integer, the sequence value is not
defined for any other values on the axis.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 5.2.1 The sequence xn = 2n+ 5 for n = 0, 1, 2, . . . as a map.
We also learned that if we had an equation involving two variables, say

x and y, and could solve that equation for y as a dependent variable being
equal to an expression in x, then the map x 7→ y also defined a function. For
example, we might have y = 2x+ 5.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 5.2.2 The function y = 2x+ 5 as a map.
The equations xn = 2n+ 5 and y = 2x+ 5 involve the same operations or

rule for going from the independent variable to the dependent variable. Never-
theless, we think of these as fundamentally different functions. The sequence
only allows n to have integer values, but the dependent variable y would allow
x to have any real value. In order to distinguish functions at this level, we
must extend the definition of a function to include the domain and codomain.
Definition 5.2.3 Function. A function f is a rule or relation from a given
set D (the domain) to another set D′ (the codomain) such that every value
a ∈ D is related (mapped) to a unique value b ∈ D′. We write f : D → D′. ♦

Our notation for a function involving sets uses a different arrow f : D → D′

than the mapping arrow we used earlier for independent variable to dependent
variable, f : x 7→ y. Think of the set arrow (→) as specifying sets and the
mapping arrow ( 7→) as specifying variables. When a function is described in
terms of both sets and variables, we can use both to completely characterize
the function.
Example 5.2.4 The sequence x = (2n + 5)∞n=0 is a function from a domain
D = N0 = {0, . . . ,∞} to a codomain of the real numbers R. The notation that
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gives indicates all of this would be

x : N0 → R;n 7→ xn = 2n+ 5.

�
Sets relating to functions used in calculus, including domains, are usually

expressed as a union of intervals. An interval represents all real numbers from a
connected segment of the real number line. The left end-point of the segment is
listed first and the right end-point is listed second, using infinity if the segment
continues indefinitely. A square bracket is used when the end-point is included
(closed) and a round parenthesis is used when the end-point is not included
(open). For a review of interval notation, see Subsection A.1.2.

Example 5.2.5 The function f(x) = 2x + 5 is a function corresponding to
y = 2x + 5. To indicate that the value of x is allowed to be any real number,
we could write

f : R→ R;x 7→ 2x+ 5.

The set of all real numbers can also be represented as an interval, (−∞,∞),
so the function could also have been written

f : (−∞,∞)→ (−∞,∞);x 7→ 2x+ 5.

Instead of using mapping notation for the formula, we could also have written

f : (−∞,∞)→ (−∞,∞); f(x) = 2x+ 5.

�
When we want to restrict the domain to a set smaller than the natural

domain, we can use mapping notation as described above, or we can use a
conditional statement on the formula. A conditional statement provides the
condition for when the equation or rule should be applied.

Example 5.2.6 The function f defined by

f : [0, 1]→ R;x 7→ 2x+ 5

has a domain D = [0, 1]. The interval corresponds to values x that satisfy
0 ≤ x ≤ 1. Consequently, we could also write the function using a conditional
statement as

f(x) = 2x+ 5, 0 ≤ x ≤ 1.

The graphical representations of f as a map and as a graph are shown in
the interactive figures below. Note how the value of the dependent variable
is undefined for values of the independent variable outside of the restricted
domain.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 5.2.7 The restricted function f(x) = 2x+ 5 for 0 ≤ x ≤ 1 as a map.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 5.2.8 The graph of the restricted function y = f(x) = 2x + 5 for
0 ≤ x ≤ 1 in the (x, y) plane.

�
Restricting a domain is necessary to define inverse functions when a function

is not one-to-one. For example, we have earlier noted that y = x2 is not one-
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to-one because when solving for x, we get two solutions x = ±√y. The next
example explores this in more depth.

Example 5.2.9 We intuitively, but incorrectly, think of f(x) = x2 and g(x) =√
x as inverse functions. The composition g ◦ f(x) =

√
x2 is not the identity

because
√
x2 = |x|. This is illustrated in the figure below. For x < 0, g◦f(x) 6=

x; but for x ≥ 0, g ◦ f(x) = x.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 5.2.10 The chain x 7→ u = x2 7→ y =
√
u .

The function restricted to this domain, f : [0,∞) → R;x 7→ x2, can be
written using a standard equation with a constraint as

f(x) = x2, x ≥ 0.

The restricted function is the inverse of the square root. �

5.2.2 Finding the Domain and Range
When a function is defined by a formula, as in f(x) = 2x+ 5, if the domain is
not specified, then the largest domain consistent with the formula is assumed.
We call this the natural domain of the function. Related to the domain is
a set known as the range, which is the set of all output values. The range is
always a subset of the codomain.

Definition 5.2.11 For a function f defined by a formula, such as y = f(x),
the natural domain is the set of all real numbers for which the formula is
defined. ♦

Definition 5.2.12 For a function f : D → D′, the range is the set of all
values y for which there exists a state (x, y). That is, there exists x ∈ D so
that f(x) = y. ♦

We find the natural domain by identifying which operations might not
be defined for all values and then solve either equations or inequalities that
will identify where the function is defined. Our elementary operations and
functions use the following constraints to find the domain.

• Division is undefined if the denominator equals zero.

• Even roots (e.g., square roots) and irrational powers are undefined if the
inner expression is negative.

• Logarithms are undefined if the inner expression is non-positive (zero or
negative).

Example 5.2.13 Determine the domain of f(x) = 2x+ 3
x2 − 4 .

Solution. Because f(x) is defined as a quotient, the domain will be the set
of all values except where x2 − 4 = 0. We solve this equation by factoring,
since a product can only equal zero if one of the factors equals zero.

x2 − 4 = 0
(x+ 2)(x− 2) = 0

x+ 2 = 0 or x− 2 = 0
x = −2 or x = 2

This means f(x) is defined for all inputs except x = −2 or x = 2.
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To describe the domain using intervals, we think of the real number line
and remove x = ±2. A graphical representation of the set using a number line
is shown below. Intervals are read from the line left-to-right. It starts at −∞
and continues until −2, then goes from −2 to 2, and finally goes from 2 until
+∞. We write

D = (−∞,−2) ∪ (−2, 2) ∪ (2,+∞).

−2 2
D

�
Sometimes finding the domain of a function involves solving an inequality (such
as for a square root or a logarithm). To solve the inequality, we perform
sign analysis. We identify end points of intervals where the expression of
interest might change sign by solving equations. These end points only occur
where the expression equals zero or where the expression itself is undefined
(a discontinuity). We test the sign of the expression in each of the resulting
intervals by using test points.

Example 5.2.14 Find the domain of the function g(x) = log4(x2 − x− 6).
Solution. The logarithm in g(x) will only have a real value when the input
expression is positive, x2 − x − 6 > 0. Our task becomes determining the
signs of the expression x2−x− 6. First, we find possible sign-changing points.
The expression is always defined (no discontinuities) so we just solve for zeros
x2 − x− 6 = 0.

x2 − x− 6 = 0
(x− 3)(x+ 2) = 0

x− 3 = 0 or x+ 2 = 0
x = 3 or x = −2

If we mark these points on a number line, we can easily identify the intervals to
test for signs. It is helpful to use the same number line to record the resulting
signs, so we can label x-values below the line and the resulting sign or value of
the expression above the line.

x2 − x− 6
x−2

0

3

0

The number line shows we need to test the intervals (−∞,−2), (−2, 3), and
(3,∞). Choosing one value from each interval, we can evaluate the expression
at that point and identify the sign.

x = −3 ⇒ x2 − x− 6 = (−3)2 − (−3)− 6 = 6
x = 0 ⇒ x2 − x− 6 = 02 − 0− 6 = −6
x = 4 ⇒ x2 − x− 6 = 42 − 4− 6 = 6

We can now update the number line we started by recording either + or −
above each interval that we tested.

x2 − x− 6
x−2

0

3

0+ − +

We were finding the domain of g(x) = log4(x2 − x − 6), which requires
x2− x− 6 > 0. Based on our summary, we need to find all values which result
in the expression having a positive sign. So our solution is the set D formed
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from the union of intervals (−∞,−2) and (3,∞),

D = (−∞,−2) ∪ (3,∞).

A visualization of the domain on the number line might also help solidify the
connections between the sign analysis number line and the domain set.

−2 3
D

�

Example 5.2.15 Find the domain of the function h(x) =
√

4x
x2 − 9 .

Solution. A square root (any even root) requires that the input expression
is non-negative. Our domain is to solve the inequality

D = {x : 4x
x2 − 9 ≥ 0}.

To use sign analyis, we need to know the zeros and discontinuities and then
test each resulting interval. Discontinuities occur when we try to divide by
zero.

x2 − 9 = 0
(x+ 3)(x− 3) = 0

x+ 3 = 0 or x− 3 = 0
x = −3 or x = 3

Zeros for a quotient require that the numerator equals zero.

4x = 0
x = 0

Our sign analysis number line will have three points.
4x

(x+ 3)(x− 3)
x−3

und

0

0

3

und

Checking one point in each resulting interval gives us the sign. Because
we only need to know the sign, it is simpler to think of factors of positive or
negative values.

x = −4 ⇒ 4x
(x+ 3)(x− 3) = 4(−4)

(−4 + 3)(−4− 3) = (−)
(−)(−)

x = −1 ⇒ 4x
(x+ 3)(x− 3) = 4(−1)

(−1 + 3)(−1− 3) = (−)
(+)(−)

x = 1 ⇒ 4x
(x+ 3)(x− 3) = 4(1)

(1 + 3)(1− 3) = (+)
(+)(−)

x = 4 ⇒ 4x
(x+ 3)(x− 3) = 4(4)

(4 + 3)(4− 3) = (+)
(+)(+)

The signs can be summarized on the number line.

4x
(x+ 3)(x− 3)
x−3

und

0

0

3

und− + − +
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We interpret our analysis to find the domain of h(x). The domain must
include intervals where the inner expression is positive, (−3, 0) and (3,∞),
along with points where the expression equals zero, x = 0. The set is visualized
below. We do not include the points where the expression was undefined,
x = ±3. The domain is the set

D = (−3, 0] ∪ (3,∞).

−3 0 3
D

�
When a function is one-to-one, it has an inverse. Because the input and

output values for a function and its inverse exactly switch roles, we can find
the range of a function by finding the domain of its inverse.

Theorem 5.2.16 Suppose f : D → D′ is one to one, and let R be the range
of f . Then the domain of f−1 is R and the range of f−1 is D.

Example 5.2.17 Find the range of f(x) = 3x
x+ 4 .

Solution. We see if f is one-to-one by finding the inverse. Start with the
equation y = 3x

x+ 4 and solve for x. First, clear the fraction by multiplying
both sides by x+ 4. Then collect terms involving x.

y = 3x
x+ 4

y(x+ 4) = 3x
xy + 4y = 3x
xy − 3x = −4y

Now factor out the common factor of x and finish solving.

x(y − 3) = −4y

x = −4y
y − 3

The inverse function is f−1(y) = −4y
y − 3 .

The domain of f−1 is the set of all numbers y so y− 3 6= 0. That is, y 6= 3.
In interval notation, this is (−∞, 3)∪(3,∞). Because the domain of the inverse
function is the range of the original function, we know that the range of f is
(−∞, 3) ∪ (3,∞). �

When a function is not one-to-one, we will need to know how to find extreme
values to find the range of a function. That will have to wait until we know
about derivatives.

5.2.3 Piecewise Defined Functions
When different rules or formulas are used for different conditions, we have a
piecewise-defined function. The standard notation for piecewise function
is to create a list of rules using an equation with conditional statements on the
domain for each given rule. To satisfy the unique-output property of a function,
the conditional statements should ensure that each value in the domain only
gets one output value.
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Example 5.2.18 Describe the piecewise function

f(x) =


3, x < 0,
x2, 0 < x ≤ 2,
4− x, x > 2.

Include a graph.
Solution. The function f : x 7→ y is listed with three different rules. For
inputs x ∈ (−∞, 0) (i.e., x < 0), we use the rule y = 3; for inputs x ∈ (0, 2],
we use the rule y = x2; and for x ∈ (2,∞), we use the rule y = 4− x. Notice
that for x = 0, there is no rule provided. The domain of f is the union of the
component domains, so

D = (−∞, 0) ∪ (0,∞).

Notice how we would evaluate the function at different points. Looking at
the input, we determine which rule applies and then use only that rule.

f(−2) = 3
f(1) = 12 = 1
f(2) = 22 = 4

f(2.01) = 4− 2.01 = 1.99

The graph of the relation y = f(x) is created by pasting the graphs y = 3,
y = x2, and y = 4−x into a single graph, but including only that portion of the
graphs that is relevant for the constrained domains of those rules. For points
at the edge of a domain interval, we use filled circles only when the point is
explicitly included.

−4 −2 2 4

−2

2

4

6

�
In the previous example, the graph of the function had breaks. Those

breaks occurred at the edges of the constrained domains of the rule. We call
such a break a discontinuity. When a function is connected, we say it is
continuous. For a piecewise function to be continuous at a point, the rule
used to the left and right of a point need to give the same value as the rule at
the point.
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We need a notation that says to use the different rules around a point.
Function evaluation notation f(x) finds the value using the rule at the point.
We use a new notation, called limit notation, to apply the rules coming from
the left or from the right to predict the value at a point.

Definition 5.2.19 Intuitive Meaning of Limit Notation. For a piecewise
function using otherwise continuous expressions around a point x = c,

f(x) =


fleft(x), x < c,

fat(x), x = c,

fright(x), x > c,

the left- and right-limits of f(x) at c are the values of the expressions fleft(c)
and fright(c) and are written using limit notation,

lim
x→c−

f(x) = fleft(c),

lim
x→c+

f(x) = fright(c).

♦

Example 5.2.20 For the piecewise function

f(x) =


3, x < 0,
x2, 0 < x ≤ 2,
4− x, x > 2,

evaluate the limits at x = 0 and at x = 2.
Solution. Around x = 0, the function f(x) uses f(x) = 3 to the left of x = 0
and f(x) = x2 immediately to the right of x = 0. Using limit notation, we
write

lim
x→0−

f(x) = 3,

lim
x→0+

f(x) = 02 = 0.

Around x = 2, the function f(x) uses f(x) = x2 to the left and f(x) = 4 − x
to the right. For limits, we then have

lim
x→2−

f(x) = 22 = 4,

lim
x→2+

f(x) = 4− 2 = 2.

In the earlier example using this same function, we included a filled circle
at the point (2, 4) for the value f(2) = 22 = 4. When a limit is different from
the value of the function (or the function value doesn’t exist), we can include
an empty circle to show the limit of either the left or the right branch. The
limits at x = 0 leads to two empty points at (0, 3) (left-limit) and at (0, 0)
(right-limit). The limits at x = 2 leads to one empty point at (2, 2), since the
left-limit matches the value of the function at (2, 4). This improved graph is
shown below.
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−4 −2 2 4

−2

2

4

6

�
At a point away from break points of piecewise functions, the same rule is

applied on the left and on the right. Consequently, we can compute left- and
right-limits for formulas that are not defined piecewise as well.

Example 5.2.21 Find lim
x→1−

[
x2 − 2x

]
and lim

x→1+

[
x2 − 2x

]
.

Solution. We can think of the expression x2 − 2x as a function. The same
rule is applied everywhere, so this is equivalent to a piecewise function

f(x) =


x2 − 2x, x < 1,
x2 − 2x, x = 1,
x2 − 2x, x > 1.

.

(You wouldn’t normally write this down—just think it.) Consequently, we have

lim
x→1−

[
x2 − 2x

]
= 12 − 2(1) = −1,

lim
x→1+

[
x2 − 2x

]
= 12 − 2(1) = −1.

�
Continuity captures the idea of connectedness. The rule for a function to

either side of a point should perfectly match up with the rule for the point
itself. We express this with limits.

Definition 5.2.22 Continuity at a Point. The statement “the function
f is continuous at a point x = c” means that the left-limit and right-limit at
x = c are equal to the value f(c),

lim
x→c−

f(x) = f(c),

lim
x→c+

f(x) = f(c).

♦

Note 5.2.23 Our definition for continuity is, at the moment, a bit circular
because our intuitive definition of limits (Definition 5.2.19) indicated that we
needed “otherwise continuous expressions”. We will need a definition for limits
that captures the same idea but does not require continuous expressions. We
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will then show that every simple algebraic expression is continuous using that
new definition.
Example 5.2.24 For the function

f(x) =


2x+ a, x < 2,
1, x = 2,
−3x+ b, x ≥ 2,

what values of a and b are needed to make f continuous at x = 2?
Solution. The parameters a and b for these formulas set the y-intercepts of
the lines, allowing us to slide the lines up or down. We are looking for values
that make these lines intersect at the point (2, 1). We use limit notation to
create the equations we need to solve.

To make the rule f(x) = 2x + a (to the left of x = 2) reach the correct
point, we use the left-limit.

lim
x→2−

f(x) = lim
x→2−

[2x+ a]

= 2(2) + a = 4 + a

So that the left branch intersects at the correct point, we need 4 + a = 1 with
a = −3.

To make the rule f(x) = −3x+ b (to the right of x = 2) reach the correct
point, we use the right-limit.

lim
x→2+

f(x) = lim
x→2+

[−3x+ b]

= −3(2) + b = −6 + b

We need −6 + b = 1 so that b = 7.
The function

f(x) =


2x− 3, x < 2,
1, x = 2,
−3x+ 7, x > 2,

is continuous at x = 2. A graph of this function is shown below.

−4 −2 2 4

−10

−5

5

�
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5.2.4 Summary
• A complete definition of a function must specify the domain, namely the

set of all possible inputs to the function. Functions using the same rule
on different domains are different functions.

• Sets are often defined as the union of intervals. An open interval (a, b)
describes a set that is a solution to a < x < b. A closed intervals [a, b]
includes the endpoints, a ≤ x ≤ b.

• The natural domain of a function is found by determining the set of
inputs for which the function output is defined.

◦ A quotient u
w is defined for non-zero denominator w 6= 0.

◦ An even root (e.g., square root)
√
u is defined for a non-negative

input u ≥ 0.
◦ A logarithm logb u is defined for a positive input u > 0.

• Inequalities related to zero can be solved by sign analysis: (1) create
intervals separated by zeros and discontinuities of the expression, (2)
test the sign of the relevant expression on the resulting intervals, and (3)
interpret the results.

• An explicit domain for a function can be specified using mapping nota-
tion,

f : D → R;x 7→ f(x),
or using a constraint.

• The range of a one-to-one function is the domain of the inverse function.

• A piecewise function uses different rules for different sets of the domain.
The boundaries of these sets are the break-points of the function.

• Continuity of functions is introduced as a concept to guarantee that
piecewise functions are connected. At each break-point, we need to verify
using limits that the formula to the left and the formula to the right both
match the value at the break-point.

• Limit notation indicates that we use a function rule to the left or right
of a point and find the value if that rule were extended continuously to
the point of interest.

lim
x→c−

f(x) = value from rule on left

lim
x→c+

f(x) = value from rule on right

5.2.5 Exercises
1. Write the function

f : [0, 3)→ R;x 7→ 2x− 3

as an equation with a restriction.
2. Write the function

f(x) = 4x+ 1, −2 < x ≤ 1

using mapping notation.

For each of the functions, find the natural domain.
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3. f(x) = 3x
x2 + 1

4. f(x) = 3x
x2 − 1

5. f(x) = x+ 2
x2 − 4x− 21

6. f(x) = log3(x+ 5)

7. f(x) = log10

(
x+ 2
x− 1

)
8. f(x) =

√
x2 − 2x− 15

9. f(x) = 3

√
x2 − 2x− 3
x2 + 2x

10. f(x) = 4

√
x3 − 8x
x2 − 1

11. Find the range of f(x) = 3
x+ 1 − 2.

12. Find the range of f(x) = x+ 3
x− 2 + 4.

For each function, find the indicated values.

13. f(x) =


x2 − 3x, x < 1,
2, x = 1,
3x− 2, x > 1.

(a) f( 1
2 )

(b) f(1)

(c) f(2)

(d) lim
x→1−

f(x)

(e) lim
x→1+

f(x)

(f) lim
x→2−

f(x)

(g) lim
x→2+

f(x)

Is f continuous at x = 1? Is f continuous at x = 2?

14. g(x) =


−3x+ 1, x < 0,
2x, 0 < x < 3,
2x+ 3, x ≥ 3.

(a) g(−2)

(b) g(0)

(c) g(3)

(d) lim
x→0−

g(x)

(e) lim
x→0+

g(x)
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(f) lim
x→3−

g(x)

(g) lim
x→3+

g(x)

Is g continuous at x = 0? Is g continuous at x = 3?
15. Find the value of a so that

f(x) =
{

2x+ 5, x ≤ 3,
ax− 4, x > 3,

is continuous at x = 3.
16. Find the values of a and b so that

f(x) =


5− 2x, x ≤ −1,
ax+ b, −1 < x < 2,
2x− 5, x ≥ 2,

is continuous at x = −1 and at x = 2.
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5.3 Limits of Functions
We have previously studied limits of sequences. In the last section, we con-
sidered the continuity of piecewise functions as it depended on whether the
function rules to the left and to the right of a point agreed with the value at
the point. We used limit notation to describe the values coming from the left
and from the right.

In this section, we seek to harmonize these two views of limits. We will
introduce the idea that the limit of a function describes the limit of a sequence
of output values for a converging sequence of input values. The behavior of
limits of sequences justify our rules to calculate limits of functions. We will
also discuss horizontal and vertical asymptotes of functions in the context of
limits.

5.3.1 Limits
For sequences, we introduced the idea of limits as the value the sequence was
approaching further and further in that sequence. We saw that the decimal
approximations of the sequence values would eventually converge to the decimal
approximation of the limiting value. The mathematical definition of the limit
was stated in terms of the possibility of eventually waiting long enough in the
sequence that the sequence values would approximate the limit value within
any desired accuracy of approximation.

The only limits of interest in sequences were when the index went to infinity.
For functions, in order to understand continuity 5.2.19, we have found that we
also need to think about limits as the independent variable approaches a value
from either the left or the right. Sequences can give us a way to think about
this possibility.

Definition 5.3.1 Limits of Function. For a function f defined on intervals
to the left and right of c, we say

lim
x→c

f(x) = L

to mean that for every independent sequence x such that xn 6= c and xn → c,
the dependent sequence y = (f(xn))∞n=n0

must have the limit L,

lim
n→∞

f(xn).

One-sided limits add constraints to the independent sequences, with x → c+

requiring xn > c and x→ c− requiring xn < c. ♦
Function limits are properties of the function itself and do not depend on

the sequences chosen. If different independent sequences that converge to c
result in different limits for the dependent sequence, then the function does
not have a limit. The following example illustrates how this new definition re-
lates our earlier concept of continuity of piecewise functions with the sequence
definition of function limits. We create a table of sequence values, one column
corresponding to the independent variable (input) and another column corre-
sponding to the dependent variable (output). The input sequence is chosen to
converge to the value c, and we examine what happens to the sequence of the
dependent variable.
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Example 5.3.2 A function is defined piecewise as

f(x) =
{
x+ 2, x < 3,
4x− x2, x > 3.

Find lim
x→3−

f(x), lim
x→3+

f(x), and lim
x→3

f(x) using sequences for approximation.

Solution. The left-sided limit needs to consider an independent sequence
xn < 3 with xn → 3. The following partial table illustrates an example with
xn = 3− 10−n.

n xn f(xn)
1 2.9 f(2.9) = 2.9 + 2 = 4.9
2 2.99 f(2.99) = 2.99 + 2 = 4.99
3 2.999 f(2.999) = 2.999 + 2 = 4.999

If we compare the values of the dependent sequence f(xn) with the value
of the formula x+ 2 evaluated at x = 3, which is x+ 2 = 5, we can see that the
dependent sequence is approaching that limit f(xn)→ 5. We therefore write

lim
x→3−

f(x) = 5.

In a similar way, a right-sided limit requires xn > 3 with xn → 3, such as
the sequence xn = 3 + 10−n.

n xn f(xn)
1 3.1 f(3.1) = 4(3.1)− (3.1)2 = 2.79
2 3.01 f(3.01) = 4(3.01)− (3.01)2 = 2.9799
3 3.001 f(3.001) = 4(3.001)− (3.001)2 = 2.997999

If we compare the values of the dependent sequence f(xn) with the value of
the formula 4x− x2 evaluated at x = 3, which is 4x− x2 = 3, we can see that
the dependent sequence is approaching that limit f(xn) → 3. We therefore
write

lim
x→3+

f(x) = 3.

The two-sided limit requires only xn → 3. The sequence values might be
either above or below 3. Above, we found that when the independent variable
values are on the left xn < 3, we had f(xn) → 5. But when xn > 3, we had
f(xn) → 3. Because different sequences with xn → 3 result in different limits
for f(xn),

lim
x→3

f(x) does not exist.

�
While the previous example attempted to connect our simpler understand-

ing of limits with the limits of sequences, the given solution really only illus-
trated the first few terms from two out of infinitely many possible independent
sequences. Using tables of sequence values might suggest possible values of the
limits, but we need a more definitive reason that the limit agrees with simple
evaluation of the formula.

When a function is visualized as a graph, a limit can be determined by
looking at the branches of the graph immediately to the left or right of the
point of interest. A limit of f(x) with x→ c− means to look at the branch of
the function with x < c and identify what point that branch would lead to as
x→ c. Similarly, a limit of f(x) with x→ c+ means to look at the branch of
the function with x > c and identify what point that branch would lead to as



CHAPTER 5. LIMITS AND DIFFERENTIABILITY 294

x→ c.
Example 5.3.3 Consider the function f whose graph is shown below. Find
the following limits based on the graph, assuming the coordinates of shown
points are integers.

1. lim
x→−1

f(x)

2. lim
x→0

f(x)

3. lim
x→2

f(x)

4. lim
x→4

f(x)

−4 −2 0 2 4

−4

−2

0

2

4

x

y
=
f

(x
)

Solution.

1. lim
x→−1

f(x)

We consider a sequence for x on the x-axis that converges to −1. It is
best to consider a sequence on the left and another on the right. For
xn < −1, our function will be using the cubic portion of the graph. As
xn → −1 (from the left), the function will move closer and closer to the
open point at (−1,−2). The y-value of this point is the corresponding
limit of the dependent sequence:

lim
x→−1−

f(x) = −2.

For xn > −1, we will be somewhere to the right. As xn → −1 (from the
right), we will eventually be on the portion of the function corresponding
to the concave down parabola. The sequence will move us closer and
closer to the filled-in point at (−1, 1):

lim
x→−1+

f(x) = 1.

Because the left- and right-limits have different values, the two-sided limit
does not exist.

2. lim
x→0

f(x)

We consider a sequence for x on the x-axis that converges to 0. Regardless
of whether the sequence is to the left or the right of x = 0, the value xn
will eventually use the function defined by the concave down parabola.
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The point on the graph of the function will converge to the vertex of this
parabola at (0, 2). This is our limit.

lim
x→0

f(x) = 2.

3. lim
x→2

f(x)

For a sequence xn → 2 with xn < 2, the point on the graph will eventually
be on the parabola and approaching the open point at (2,−2). For values
with xn > 2, the point on the graph will eventually be on the line and
also approaching the point (2,−2). Because the sequence always results
in approaching the point (2,−2), we have a limit

lim
x→2

f(x) = −2.

Notice that a limit does not depend on whether the point is included in
the function or not. All that matters is whether the sequence of points
converges to that point.

4. lim
x→4

f(x)

For a sequence xn → 4 and xn 6= 4, eventually the function will be on
the line to the left or right of x = 4. Either way, the corresponding point
on the graph will be converging to (4, 0):

lim
x→4

f(x) = 0.

The value of the function f(4) = 2 has no effect on the limit.

�
When we have a formula for a function, we already know that a table can

be helpful but will not guarantee the value of the limit. We might think we
can graph the function, but even our graphs of functions are ultimately based
on a table of values. We need some methods to evaluate limits based on the
formulas alone.

Our earlier motivation for limits involving piecewise functions suggest that
we can find a limit by evaluating a function at the point of interest. In most
cases, this is true. This is a consequence of the algebraic structure of expres-
sions and the fact that limits behave very nicely with algebraic operations.
The rest of this section explains why limits usually behave so well.

5.3.2 Limit Rules for Combining Sequences
We start by formalizing some rules about how sequence limits relate to the
arithmetic of sequences. These rules are stated as theorems. We begin each
theorem with one or more sequence that is given with a particular limit. We
then define a new sequence using arithmetic involving those sequences. The
conclusion of each theorem describes the limit of the new sequence. To apply
a theorem, we must verify that the hypotheses are satisfied before we can use
the conclusion.

For a converging sequence x = (xn) with xn → L, we can think of the
sequence values as approximating L. The absolute error of approximation
|xn − L| must vanish as n → ∞. In other words, for any margin of error
ε > 0, there must be some index N so that |xn − L| < ε once n > N . The
proofs of these theorems rely on showing how the error of approximation for
the arithmetic combination of the sequences can be related to the errors of
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approximations of the given sequences to their limits in a way to show that
the approximation error will eventually vanish.

The first three rules involve elementary operations involving constants on
a single sequence. They correspond to the operations used to construct ex-
pressions involving another expression and a constant, as discussed in (((Unre-
solved xref, reference "subsubsection-elementary-arithmetic-operations"; check
spelling or use "provisional" attribute))) .

Theorem 5.3.4 Sequence Limit of a Constant Sum (SL:CS). Given a
sequence u = (un) with un → L and any constant k, the transformed sequence
wn = un + k has limit

lim
n→∞

un + k = L+ k.

Proof. The error of approximation for wn from its proposed limit L+ k can be
rewritten

|wn − (L+ k)| = |un + k − L− k| = |un − L|.

This is the same as the error of approximation for un from its limit L. As soon
as |un − L| < ε, we also have |wn − (L + k)| < ε. Because |un − L| → 0, this
proves

lim
n→∞

un + k = L+ k.

�

Theorem 5.3.5 Sequence Limit of a Constant Multiple (SL:CM).
Given a sequence u = (un) with un → L and any constant k, the transformed
sequence wn = k · un has limit

lim
n→∞

k un = k L.

Proof. The error of approximation for wn from its proposed limit kL can be
rewritten

|wn − kL| = |kun − kL| = |k(un − L)| = |k| · |un − L|.

If k = 0, then wn = 0 for all n and wn → 0 must be true. If k 6= 0, then the
error of approximation for w from its proposed limit is exactly |k| times the
error of approximation for u from its given limit. As soon as |un − L| < 1

|k|ε,
we must have |wn − kL| < ε. Because |un − L| → 0, this proves

lim
n→∞

k un = k L.

�

Theorem 5.3.6 Sequence Limit of a Reciprocal (SL:MInv). Given a
sequence u = (un) with un → L 6= 0, the transformed sequence of multiplicative
inverses wn = 1

un
has limit

lim
n→∞

1
un

= 1
L
.

Proof. Division is not defined when the denominator equals zero. Because
un → L and L 6= 0, we know that |un − L| < 1

2 |L| eventually. When L > 0,
this means that 1

2L < un <
3
2L. If L < 0, then 3

2L < un <
1
2L. Either way,

un is kept away from 0 and wn = 1
un

is guaranteed to be defined. (Before this
point, we might have had un = 0 so that wn is not defined.

The error of approximation for wn from its proposed limit 1
L can be rewrit-

ten using a common denominator

|wn −
1
L
| = | 1

un
− 1
L
| = |L− un

unL
| = |un − L| ·

1
|un||L|

.
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Because |un| > 1
2 |L|, we know that 1

|un|
<

2
|L|

. Thus,

|wn −
1
L
| < |un − L| ·

2
|L|2

.

The error of approximation for wn is always smaller than 2
|L|2 times the error

of approximation for un from its limit. Because |un − L| → 0, this proves

lim
n→∞

1
un

= 1
L
.

�
The second group of limit rules of combination allow us to take two limits

that we know and combine them with arithmetic. Notice how the limit rules
correspond exactly with the arithmetic operations used to construct expres-
sion, as discussed in Subsection 2.2.2. The proofs of these theorems are more
advanced and will not be given in this section.

Theorem 5.3.7 Sequence Limit of a Sum (SLC:Sum). Given sequences
u = (un) with un → L and v = (vn) with vn →M , the sequence defined by the
sum wn = un + vn has limit

lim
n→∞

[un + vn] = L+M.

Theorem 5.3.8 Sequence Limit of a Difference (SLC:Diff). Given
sequences u = (un) with un → L and v = (vn) with vn → M , the sequence
defined by the difference wn = un − vn has limit

lim
n→∞

[un − vn] = L−M.

Theorem 5.3.9 Sequence Limit of a Product (SLC:Prod). Given
sequences u = (un) with un → L and v = (vn) with vn → M , the sequence
defined by the product wn = un · vn has limit

lim
n→∞

[un · vn] = L ·M.

Theorem 5.3.10 Sequence Limit of a Quotient (SLC:Quot). Given
sequences u = (un) with un → L and v = (vn) with vn → M and M 6= 0, the
sequence defined by the sum wn = un

vn
has limit

lim
n→∞

un
vn

= L

M
.

In addition to algebraic operations combining sequences, we have operations
associated with functions. This includes raising sequences to powers, applying
exponential or logarithm functions, or using trigonometric functions. We will
learn that each of these functions are continuous. Consequently, the following
theorem will apply.

Theorem 5.3.11 Sequence Limit of a Continuous Function (SLC:CFxn).
Given a sequence u = (un) with un → L and a function f that is continuous
at L, the sequence defined by the sum wn = f(un) has limit

lim
n→∞

f(un) = f(L).
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5.3.3 Elementary Limit Rules for Functions
Having established the limit rules associated with sequences, we can apply
those rules to create corresponding limit rules for functions.

The first collection of limit rules are some basic limits. We can think of
them as our building blocks for more complicated limits. We begin by showing
that constant functions and the identity functions are continuous.

Theorem 5.3.12 Limit of a Constant (LE:Const).
Hypothesis k is a real number.

Conclusion lim
x→a

k = k.
Proof. For a constant function f(x) = k, the output sequence is a constant
sequence regardless of the input sequence. �

Theorem 5.3.13 Limit of the Identity (LE:Ident).
Hypothesis none

Conclusion lim
x→a

x = a.
Proof. For identity function f(x) = x, the output sequence is will be the same
as the input sequence. Since xk → a, the output sequence has limit a. �

We include the limit of linear functions in our known limits of elementary
functions.
Theorem 5.3.14 Limit of a Linear Function (LE:Line).
Hypothesis m and b are real numbers.

Conclusion lim
x→a

[mx+ b] = ma+ b.
Proof. Given a sequence xk with xk 6= a and xk → a, define the output
sequence yk = mxk + b. This is a constant sum and constant multiple of xk.
By SLC:CM, we know mxk → ma. By SLC:CS, we then have yk = mxk + b→
ma+ b. �

5.3.4 Limit Rules of Combination
The second collection of limit rules tell us how we can take limits that we
already know (starting with building blocks) and use them to compute more
complicated limits. The first three rules take a single limit that is known
to be valid and use arithmetic with a constant to find a new limit. Each of
the theorem simply applies the corresponding limit rule for sequences on the
sequence created by the function.

Theorem 5.3.15 Limit of a Constant Sum (LC:CS).
Hypothesis lim

x→a
f(x) = L and k is a real number.

Conclusion lim
x→a

[f(x) + k] = L+ k.

Theorem 5.3.16 Limit of a Constant Multiple (LC:CM).
Hypothesis lim

x→a
f(x) = L and k is a real number.

Conclusion lim
x→a

[k · f(x)] = k · L.

Theorem 5.3.17 Limit of a Reciprocal or Multiplicative Inverse
(LC:MInv).

Hypothesis: lim
x→a

f(x) = L and L 6= 0.



CHAPTER 5. LIMITS AND DIFFERENTIABILITY 299

Conclusion: lim
x→a

1
f(x) = 1

L
.

The next limit rules of combination allow us to take two limits that we
know and combine them with arithmetic. In each of the cases, note that both
limits in the hypothesis have x→ a (i.e., x approaches the same value in both
limits).

Theorem 5.3.18 Limit of a Sum (LC:Sum).
Hypothesis lim

x→a
f(x) = L and lim

x→a
g(x) = M .

Conclusion lim
x→a

[f(x) + g(x)] = L+M .

Theorem 5.3.19 Limit of a Difference (LC:Diff).
Hypothesis lim

x→a
f(x) = L and lim

x→a
g(x) = M .

Conclusion lim
x→a

[f(x)− g(x)] = L−M .

Theorem 5.3.20 Limit of a Product (LC:Prod).
Hypothesis lim

x→a
f(x) = L and lim

x→a
g(x) = M .

Conclusion lim
x→a

[f(x) · g(x)] = L ·M .

Theorem 5.3.21 Limit of a Quotient (LC:Quot).
Hypothesis lim

x→a
f(x) = L and lim

x→a
g(x) = M and M 6= 0.

Conclusion lim
x→a

f(x)
g(x) = L

M
.

In addition to the arithmetic of functions, composition of functions plays an
important role in algebra and calculus. So we need a limit rule associated with
composition. Recall that for composition, the output of one function becomes
the input to another function.

Theorem 5.3.22 Limit of a Continuous Composition (LC:Comp).
Hypothesis lim

x→a
f(x) = L and g is continuous at L, or in other words,

lim
u→L

g(u) = g(L).

Conclusion lim
x→a

g ◦ f(x) = lim
x→a

g(f(x)) = g(L).

If f is continuous at a so that lim
x→a

f(x) = f(a) then we have lim
x→a

g ◦f(x) =
g◦f(a). In other words, the composition of continuous functions is a continuous
function.

5.3.5 Justifying Limit Calculations
There are two ways in which limit rules are applied. One way is to provide
formal justification of limit calculations, or in other words, to write a proof of
limit statements. The other way limit rules are used is to break a computation
down into recognizable and manageable parts. This section focuses on the
process of formal justification.

A mathematical proof is essentially a sequence of statements, each of which
is demonstrably true based only on previously stated knowledge and logical
arguments. This means that when writing a proof or any careful justification,
we must be careful that when we write something down we have previously
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established all of the necessary conditions at a previous step. In order to avoid
circular reasoning, we should avoid referring to something as true before we
actually show it is true.

For justification of limit statements, this means that we start from the small
building blocks that create our formula and put them together one step at a
time until we can justify the limit statement we are trying to prove.

Example 5.3.23 Compute and justify lim
x→2

3x2(2x− 5).

Solution. Start by planning ahead. The formula 3x2(2x− 5) is a product of
3x2 and 2x−5. This second factor 2x−5 is a linear function so there is a limit
rule for that piece. But 3x2 is not linear, and we recognize it as a product of
3 (a constant) and x2. Finally, we see that x2 = x · x is the product of the
identity with itself. We will start with the elementary formulas and build them
back up to the full function.

1. lim
x→2

x = 2 by LE:Ident.

2. lim
x→2

x · x = 2 · 2 = 4 by LC:Prod using limits of f(x) = x (step 1) and
g(x) = x (step 1).

3. lim
x→2

3x2 = 3 · 4 = 12 by LC:CM using constant k = 3 and limit of
f(x) = x2 (step 2).

4. lim
x→2

2x− 5 = 2(2)− 5 = −1 by LE:Line (m = 2, b = −5).

5. lim
x→2

3x2(2x − 5) = 12(−1) = −12 by LC:Prod using the limits found in
step 3 and step 4.

�

Example 5.3.24 Compute and justify lim
x→3

x3 + 4x2 − 3x+ 1.

Solution. It is important to note that limit rules of combination only combine
two formulas at a time. In this calculation, we will need the limit of x3. Writing
this as x3 = x · x · x is not going to be as useful as writing x3 = x · x2 because
there are no rules to combine three limits at once. In addition, subtraction is
always problematic, so it is best to rewrite subtraction as a sum,

x3 + 4x2 − 3x+ 1 = x3 + 4x2 +−3x+ 1.

1. lim
x→3

x = 3 by LE:Ident.

2. lim
x→3

x · x = 3 · 3 = 9 by LC:Prod using the limits in step 1 (twice).

3. lim
x→3

x · x2 = 3(9) = 27 by LC:Prod using the limits in step 1 and step 2.

4. lim
x→3

4x2 = 4(9) = 36 by LC:CM using k = 4 and the limit in step 2.

5. lim
x→3
−3x+ 1 = −3(3) + 1 = −8 by LE:Line (m = −3, b = 1).

6. lim
x→3

x3 + 4x2 = 27 + 36 = 63 by LC:Sum using limits in step 3 and step
4.

7. lim
x→3

x3 + 4x2 +−3x+ 1 = 63 +−8 by LC:Sum using limits in step 6 and
step 5.

�
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Because most expressions that we work with are defined strictly in terms
of the basic arithmetic operations and elementary functions, the limit rules we
have developed essentially allow us to replace the independent variable in the
formula f(x) with the limiting point x→ c. That is, whenever the expression
involves basic arithmetic operations (addition, subtraction, multiplication, and
division), we know that we could apply the limit rules step-by-step to justify

lim
x→c

f(x) = f(c).

The exception is that our rule for quotients does not allow division by zero.

Theorem 5.3.25 If f(x) is an algebraic expression that involves only arith-
metic operations, then lim

x→c
f(x) = f(c) so long as f(c) is defined.

Example 5.3.26 Determine lim
x→2

2x+ 3
x2 − 5 .

Solution. At first glance, we might worry that the theorem does not apply
because x2 is a power and not an arithmetic operation. However, because
x2 = x · x is a product, we have a function f(x) = 2x+ 3

x · x− 5 defined in terms
of arithmetic operations. We evaluate f(2):

f(2) = 2(2) + 3
22 − 5 = −7.

Consequently, by Theorem 5.3.25, we have

lim
x→2

2x+ 3
x2 − 5 = −7.

�
We will learn in the next section how to deal with expressions where the

value is not defined.

5.3.6 Summary
• The limit of a function lim

x→c
f(x) represents the value L that is the limit

of the dependent sequence f(xn) for every independent sequence (xn)
that satisfies xn 6= c and xn → c. One-sided limits add the constraint
that the sequence must stay below c (x→ c−) or above c (x→ c+).

• Numerically, a function limit lim
x→c

f(x) can be approximated by testing
the value of the function for values of the independent variable following
a sequence x→ c.

• Graphically, a function limit lim
x→c

f(x) corresponds to the y-value of the
point in the plane that the sequence of points (xn, f(xn)) approaches
from the left and from the right as xn → c. If the two branches (left vs
right) approach different points, the two-sided limit does not exist.

• Limit rules associated with all of the arithmetic operations justify apply-
ing the same operations with limits.

• An argument justifying limits using limit rules must demonstrate that
the component limits are known prior to combining them with a limit
rule.
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5.3.7 Exercises

Use appropriate tables to approximate the following function limits. For a
two-sided limit, be sure that your work verifies that both sides approximate
the same value

1. lim
x→3−

2x − 8
x− 3

2. lim
x→3+

2x − 8
x− 3

3. lim
x→2

x2 − 4
2x − 4

4. lim
x→1

x2 − 1
|x− 1|

Consider the function f whose graph is shown below. Find the following values,
if they exist, based on the graph and assuming the coordinates of shown points
are integers.

−4 −2 0 2 4

−4

−2

0

2

4

x

y
=
f

(x
)

5.
(a) f(−2)

(b) lim
x→−2−

f(x)

(c) lim
x→−2+

f(x)

(d) lim
x→−2

f(x)

6.
(a) f(0)

(b) lim
x→0−

f(x)

(c) lim
x→0+

f(x)

(d) lim
x→0

f(x)

7.
(a) f(2)

(b) lim
x→2−

f(x)
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(c) lim
x→2+

f(x)

(d) lim
x→2

f(x)

Consider the function f whose graph is shown below. Find the following values,
if they exist, based on the graph and assuming the coordinates of shown points
are integers.

−4 −2 0 2 4

−4

−2

0

2

4

x

y
=
f

(x
)

8.
(a) f(−2)

(b) lim
x→−2−

f(x)

(c) lim
x→−2+

f(x)

(d) lim
x→−2

f(x)

9.
(a) f(1)

(b) lim
x→1−

f(x)

(c) lim
x→1+

f(x)

(d) lim
x→1

f(x)

10.
(a) f(2)

(b) lim
x→2−

f(x)

(c) lim
x→2+

f(x)

(d) lim
x→2

f(x)

Compute and justify the value of each limit applying the limit rules for func-
tions step-by-step.

11. lim
x→−3

4x+ 1
2x+ 3
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12. lim
x→2

3x2 − 4x+ 5

13. lim
x→4

5x2

2x2(3x− 1)
14. lim

x→−2
x3 − 4x2 + 5x− 7
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5.4 Continuity of Functions

5.4.1 Overview
The elementary limit rules for functions tell us that the limit of an algebraic
expression made from arithmetic operations will equal the value of the expres-
sion at the point in question, if that value exists. So why bother introducing
limits at all if they are the same as function evaluation?

The fact of the matter is, they aren’t the same thing at all. Recall that for
piecewise functions, we can use limits to find the limiting value of a function
to the left and to the right of a break point. Function evaluation would only
allow us to look at the point itself. Having a function value agree with the
limits is a characteristic of a function being continuous. A value for x where a
function is not defined is an example of a discontinuity.

In this section, we consider the continuity of functions. We learn about
removable and infinite discontinuities, which correspond to holes and vertical
asymptotes in a graph. We learn to compute limits of functions at these dis-
continuities by looking at simplified, factored expressions. Sign analysis is used
for infinite discontinuities to determine whether the discontinuity corresponds
to unbounded positive or negative values.

5.4.2 Removable and Infinite Discontinuities
The intuitive idea of a continuous function is a function whose graph is con-
nected. Sometimes, this is thought of as being able to draw the graph without
lifting the pen. The technical definition of a continuity at a point, say at x = c,
involves three parts. First, the limit on the left exists. This means that we
can trace the graph on a branch with x < c. Second, the limit on the right
exists. This means that we also can trace the graph on a branch with x > c.
Third, both limits are equal to f(c). This gives us the connection from the left
branch to the right branch through the point.

Any time a function has a break, it has a discontinuity at that location. A
break can be a simple hole, a jump between values, or an infinite discontinuity
associated with a vertical asymptote. Discontinuities might also occur due to
limits themselves not existing for any reason.

Consider two functions, f(x) = 1
(x− 3)(x+ 2) and g(x) = x2 − 4x+ 3

x− 3 .

In both functions, the value of the function is not defined at x = 3; f and
g are both discontinuous at x = 3. Consequently, the corresponding limits
lim
x→3

f(x) and lim
x→3

g(x) can not be computed directly using the limit rules for
functions.

If we look at the graphs of our functions, as shown below, we see that there
is something fundamentally different about the behavior around x = 3. The
function f(x) = 1

(x− 3)(x+ 2) appears to have a vertical asymptote at x = 3.

The function g(x) = x2 − 4x+ 3
x− 3 looks continuous, even though we know it

has a break at x = 3.
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Figure 5.4.1 y = 1
(x− 3)(x+ 2)

−4 −2 0 2 4
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x
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=
g
(x

)

Figure 5.4.2 y = x2 − 4x+ 3
x− 3

If we factor the formula for g(x), we discover that the formula simplifies.

g(x) = x2 − 4x+ 3
x− 3

= (x− 3)(x− 1)
x− 3

= x− 1, x 6= 3

Notice that we must include a domain restriction when we simplify. The orig-
inal function is not defined for x = 3, but the simplified version is. To ensure
the functions are the same, they must have the same domain. Because x− 1 is
continuous at x = 3, g(x) has a hole at x = 3 and we call this a removable
discontinuity. A vertical asymptote at a point corresponds to a infinite
discontinuity.

Example 5.4.3 The function f(x) = 3x2 − x− 2
x− 1 has a removable disconti-

nuity at x = 1. What is the continuous function equivalent to f(x)?
Solution. A polynomial, like 3x2 − x − 2, will have a factor of x − 1 if and
only if that polynomial has a value of 0 when x = 1. So we can see if it will
cancel a factor by checking 3(1)2 − (1) − 2 = 0. Knowing this factor, we can
soon find 3x2 − x− 2 = (x− 1)(3x+ 2). For all x 6= 1, we have

f(x) = 3x2 − x− 2
x− 1 = (x− 1)(3x+ 2)

x− 1 = 3x+ 2.

We can only say this for x 6= 1 since the domain of f is (−∞, 1)∪ (1,∞). That
is,

f(x) = 3x+ 2, x 6= 1.

Our function f(x) has the same graph as y = 3x + 2 except it has a hole at
x = 1.
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�
The previous example illustrates a basic feature of rational functions

(i.e., a ratio or quotient of two polynomials). That is that there will be a
canceling factor if the numerator and denominator have a common zero.

Theorem 5.4.4 A rational function f(x) = p(x)
q(x) where p and q are polynomial

functions has a domain defined by

D = {x : q(x) 6= 0}.

Further, p and q will have canceling common factors of the form (x− a) where
a is a constant if and only if p(a) = 0 and q(a) = 0.

For rational functions, the only possible discontinuities are holes and infinite
discontinuities at vertical asymptotes. Holes correspond to points that are not
in the domain but can be removed by canceling common factors. Any other
points of discontinuity must be vertical asymptotes.

Example 5.4.5 Describe the discontinuities of the function

f(x) = x3 − 5x2 + 6x
x2 + x− 6 .

Solution. The discontinuities are determined for a rational function by find-
ing the zeros of the polynomial in the denominator, q(x) = x2 + x − 6. We
solve this by factoring:

q(x) = (x+ 3)(x− 2).

There are discontinuities (breaks in the graph) at x = −3 and at x = 2.
We determine the type of discontinuity by seeing if common factors cancel.

The numerator p(x) = x3 − 5x2 + 6x can be tested even before factoring. At
x = −3, we have p(−3) = −27− 5(9) + 6(−3) = −90 so that x+ 3 is not going
to be a common factor. There must be a vertical asymptote at x = −3. At
x = 2, we have p(2) = 8 − 5(4) + 6(2) = 0 so that there will be a common
factor that cancels.

f(x) = x3 − 5x2 + 6x
x2 + x− 6

= x(x2 − 5x+ 6)
(x+ 3)(x− 2)

= x(x− 2)(x− 3)
(x+ 3)(x− 2)
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= x(x− 3)
x+ 3 , x 6= 2.

Because the new formula has a natural domain x 6= −3, the discontinuity at
x = 2 was removable. The graph has a hole at x = 2 and a vertical asymptote
at x = −3. (Notice the addition of an explicit domain on the last step when
we canceled, corresponding to the hole.)
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5.4.3 Limits at Discontinuities
The limit rules do not apply when substitution would result in division by zero.
These precisely occur at points of discontinuity. Suppose a rational function
f(x) = p(x)

q(x) has p(c) = 0 and q(c) = 0. Immediate substitution of x = c into

f(x) would result in 0
0 , which we have earlier identified as an indeterminate

limit form. Because p(c) = 0 and q(c) = 0, p(x) and q(x) have a common
factor x − c. Cancellation of that factor gives f(x) a simplified form, and we
can try again to evaluate the limit.

Example 5.4.6 Evaluate lim
x→2

x2 − 5x+ 6
x2 − 4 .

Solution. The formula is defined in terms of elementary arithmetic, so we
try to evaluate the expression by substituting x = 2.

lim
x→2

x2 − 5x+ 6
x2 − 4

?= 22 − 5(2) + 6
22 − 4 = 0

0
The limit has an indeterminate form. We can factor x−2 from numerator and
denominator and rewrite the expression.

f(x) = x2 − 5x+ 6
x2 − 4

= (x− 2)(x− 3)
(x− 2)(x+ 2)

= x− 3
x+ 2 , x 6= 2

Limits use the function to the side of the point in question. In this case, f(x)
uses the same formula on the left and the right of the discontinuity. Because
the new formula is continuous, we can use substitution.

lim
x→2

x2 − 5x+ 6
x2 − 4 = lim

x→2

x− 3
x+ 2
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= 2− 3
2 + 2 = −1

4

�
When a limit has a form 0

0 , we know to rewrite the formula in a simplified
form. For sequences, we learned that if an > 0 and an → 0, then 1

an
→ +∞.

That is, the reciprocal of a small positive number will be a large positive
number. The smaller an becomes, the larger 1

an
will be. Consequently, a

rational function with a limit of the form L
0 has a vertical asymptote, and the

limit will be unbounded. We use sign analysis to determine if the left- and
right-limits are +∞ or −∞.

Example 5.4.7 Evaluate lim
x→−2

x2 − 5x+ 6
x2 − 4 .

Solution. In the example above, we already found

f(x) = x2 − 5x+ 6
x2 − 4 = x− 3

x+ 2 , x 6= 2.

Attempting substitution, we find

lim
x→−2

f(x) ?= −2− 3
−2 + 2 = −5

0 .

This is an undefined expression and indicates that f(x) has an infinite discon-
tinuity.

To find the limit as either +∞ or −∞, we do sign analysis on the simplified
formula. The test intervals are separated by the roots and discontinuities. The
roots are at solutions to x − 3 = 0; the discontinuities are at solutions to
x+ 2 = 0. We have a root at x = 3 and a discontinuity at x = −2, illustrated
in the number line shown below.

x

x−3
x+2

-2

dc

3

0

For the limit, we need the signs of the function in each interval bordering
the point x = −2. The intervals to test are (−∞,−2) and (−2, 3).

f(−3) = −3− 3
−3 + 2 = 6

f(−1) = −1− 3
−1 + 2 = −4

We could update the number line with these signs.

x

x−3
x+2

-2

dc

3

0+ −

To the left of x = −2, we see that f(x) > 0 (positive), so a limit from the
left at the vertical asymptote must be

lim
x→−2−

x− 3
x+ 2 = +∞.

To the right of x = −2, we see that f(x) < 0 (negative), so a limit from the
right at the vertical asymptote must be

lim
x→−2+

x− 3
x+ 2 = −∞.
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On the graph of the function, shown below, we see that the graph is unbounded
above (+∞) to the left of the vertical asymptote and unbounded below (−∞)
to the right of the vertical asymptote.
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Motivated by our example, we are ready for a definition of a removable

discontinuity. A removable discontinuity occurs when the graph to the left
and to the right of a discontinuity approach the same point, but the function
itself is not defined to match.
Definition 5.4.8 A function f has a removable discontinuity at x = c if
lim
x→c

f(x) exists (left- and right-limits have same value) and lim
x→c

f(x) 6= f(c),
either because they are different values or f(c) does not exist. ♦

An infinite discontinuity occurs at any point where the function has an
infinite limit.
Definition 5.4.9 A function f has an infinite discontinuity at x = c if
one or both of lim

x→c−
f(x) and lim

x→c+
f(x) is infinite. The graph y = f(x) has a

vertical asymptote x = c. ♦
A jump discontinuity occurs when the limits on the left and right of a

point both exist but have different values. We usually see these with piecewise
functions.
Definition 5.4.10 A function f has an jump discontinuity at x = c if
lim
x→c−

f(x) and lim
x→c+

f(x) both exist but lim
x→c−

f(x) 6= lim
x→c+

f(x). The graph
y = f(x) has a vertical gap between the branches to the left and to the right
of x = c. ♦

5.4.4 Continuity on Intervals
Having discussed the continuity of functions at individual points, we introduce
the idea of describing continuity on intervals. We want to be able to say that
the graph of the function is connected over an entire interval.

Recall that a limit of a function lim
x→c

f(x) is defined in terms of sequences
xn → c with xn 6= c. When thinking about continuity on an interval, we also
require that the sequences stay in the interval.

We begin with open intervals. An open interval (a, b) is the set {x : a <
x < b}. Open intervals have the feature that for every value in the set, say
c ∈ (a, b), there will be a sub-interval (a, c) to the left of the point and another
sub-interval (c, b) to the right of the point. In relation to a sequence with
xn → c, we can deal with left- and right-limits inside the interval.
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Definition 5.4.11 A function f is continuous on the open interval (a, b)
if for every c ∈ (a, b), f is continuous at x = c. ♦

Closed intervals are a little trickier. A closed interval [a, b] = {x : a ≤ x ≤
b} includes the end points. For values c strictly between a and b, we know
that there are subintervals to the left and the right of c. However, at x = a,
the interval only contains points to the right; and at x = b, the interval only
contains points to the left. Continuity of a function on a closed interval must
take this into account.
Definition 5.4.12 A function f is continuous on the closed interval [a, b]
if for every c ∈ (a, b), f is continuous at x = c and limx→a+ f(x) = f(a) and
limx→b− f(x) = f(b). ♦

Continuity on an interval including only one end point requires one-sided
continuity at that point using a limit that stays inside the interval. All of these
definitions can be combined into a single definition.

Definition 5.4.13 A function f is continuous on an interval I if for every
c ∈ I and every sequence with values xn ∈ I, xn 6= c, and xn → c, we have
f(xn)→ f(c). ♦

5.4.5 Extreme and Intermediate Value Theorems
There are two important theorems that describe what we know about functions
that are continuous on closed intervals. The Extreme Value Theorem guaran-
tees that any function that is continuous on a closed interval has a highest and
lowest point within that interval. The Intermediate Value Theorem guaran-
tees that a function that is continuous on a closed interval can not skip over
any values between its values at the endpoints. The proofs for both of these
theorems require advanced methods not taught at this level. We treat them
essentially as axioms, statements that are true without proof.

Theorem 5.4.14 Extreme Value Theorem. Suppose f is a function that
is continuous on [a, b]. Then there must exist values cm, cM ∈ [a, b] so that for
any x ∈ [a, b] we have

f(cm) ≤ f(x) ≤ f(cM ).

The values f(cm) and f(cM ) are the minimum and maximum values, respec-
tively, of the function f on [a, b].

If a function is not continuous on [a, b], then it does not necessarily have a
maximum or minimum value. One way that this might happen is if f has a
vertical asymptote within the interval. In that case, the values of f would be
unbounded. Another way that this might happen is that f is bounded by what
would be a maximum (or minimum) value but just doesn’t reach it because of
a sudden jump.

Example 5.4.15 Consider the function defined piecewise as

f(x) =
{

1
x2 , x 6= 0,
0, x = 0.

This function has a non-removable discontinuity at x = 0, corresponding to a
vertical asymptote. Because the formula has x2 in the denominator (always
positive), we have

lim
x→0

f(x) = +∞.

This function is unbounded on the interval [−1, 1] and has no maximum. It
does have a minimum at f(0) = 0 since that is below the rest of the graph.
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Example 5.4.16 Consider the function defined piecewise as

f(x) =
{
x2, −1 < x < 1,
1
2 , x = ±1.

This function has a removable discontinuities at x = ±1, where the limits are 1
but the values are 1

2 . In this case, f is continuous on (−1, 1) but not on [−1, 1].
The maximum value should have been y = 1, but the graph never reaches that
value because of the discontinuity. The function does have a minimum value
at f(0) = 0.
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Example 5.4.17 Consider the function defined piecewise as

f(x) =
{
x2, −1 < x ≤ 1,
2, x = −1.

This function has a removable discontinuity at x = −1. In this case, f is
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continuous on (−1, 1] but not on [−1, 1]. In spite of the discontinuity at x = −1,
this function has a maximum value f(−1) = 2 because that value is above every
other point in the interval.
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The previous example is included to emphasize that a theorem gives con-

ditions that guarantee something is true. But those conditions are not always
required. The extreme value theorem gives conditions that guarantee a func-
tion will have a maximum value. There are no exceptions for a continuous
function on a closed interval to have both maximum and minimum values.
But there are discontinuous functions that have them as well. It is just that
there are also discontinuous functions that do not have extreme values.
Theorem 5.4.18 Intermediate Value Theorem. Suppose f is a function
that is continuous on [a, b]. Then for every y between f(a) and f(b), there
exists some x ∈ (a, b) so that f(x) = y.

The Intermediate Value Theorem guarantees that the graph of y = f(x)
intersects every horizontal line between y = f(a) and y = f(b) at least once for
values of x between a and b. Because continuity is essentially connectedness,
the only way for the graph to go from y = f(a) to y = f(b) is to cross through
all intermediate values. A discontinuous function has the ability to jump across
values without touching them.

Example 5.4.19 Consider the function defined piecewise as

f(x) =


−1, x < 0,
0, x = 0,
1, x > 0.

This function has a jump discontinuity at x = 0, and is otherwise constant. If
we consider the interval [−1, 1], the values at the endpoints are f(−1) = −1
and f(1) = 1. Except for y = 0, the function y = f(x) has no solutions for
−1 < y < 1 because of the jump.



CHAPTER 5. LIMITS AND DIFFERENTIABILITY 314

−1.5 −1 −0.5 0 0.5 1 1.5

−1

0

1

�
The Intermediate Value Theorem allows us to know that a continuous func-

tion has a solution to an equation within a particular interval. If the interval
is small, we have an approximation to the value of the solution. We say that
the interval brackets the solution. Finding successively smaller bracketing
intervals allows us to approximate the root to any needed precision. The In-
termediate Value Theorem guarantees this works for continuous functions.

Example 5.4.20 The function f(x) = x3 − x − 3 is continuous because it is
a polynomial and defined everywhere. Because f(1) = −3 and f(2) = 3, we
know that f(x) must pass through every y-value between -3 and 3 for at least
one value of x in the interval (1, 2). In particular, if we are solving f(x) = 0,
since y = 0 is between f(1) = −3 and f(2) = 3, we know that there is a
solution x bracketed by the interval [1, 2].
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If we find a smaller interval, then we can know more precisely where the
root occurs. In particular, since f(1.6) = −0.504 and f(1.7) = 0.213 and y = 0
is between those values, the Intermediate Value Theorem guarantees that our
continuous function has a root bracketed by the interval [1.6, 1.7]. �

The Intermediate Value Theorem is our justification for performing sign
analysis by testing intervals at single points. If we have solved for all of the
roots (zeros) and all of the discontinuities of a function f , then f can not change
sign on any interval containing none of the roots or discontinuities. Suppose
that f(a) and f(b) have opposite sign with a < b. Then y = 0 is between
f(a) and f(b). If a and b were chosen from an interval with no discontinuities,
f must be continuous on [a, b]. The Intermediate Value Theorem would then
guarantee that f(x) = 0 has a solution with a < x < b. Because the interval
contained no roots, f(a) and f(b) must not have had opposite signs. Thus, f
can never change sign on an interval containing no roots or discontinuities.

5.4.6 Summary
• A function defined by an algebraic formula has discontinuities at every

point for which the formula is undefined.

• A rational function is defined as the quotient of two polynomials. Discon-
tinuities of rational functions only occur at the zeros of the denominator.
If the numerator and denominator have a zero at the same location x = c,
then x− c is a common factor that can be cancelled.

• A limit of the form 0
0 is indeterminate. For rational functions with a

limit of this form, we must factor and simplify to continue. If the limit
ultimately exists (as a number), the discontinuity is removable and the
limit corresponds to having a hole in the graph.

• A rational function with a limit of the form L
0 where L 6= 0 has an infinite

discontinuity. The graph of such a function has a vertical asymptote. The
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left- and right-side limits have signs that are based on sign analysis of
the function in the intervals to the left and right of the point of interest.

• A function is continuous on an interval if it continuous at every point in
the interval. If an end point is included in the interval, the function must
be one-sided continuous from the side contained in the interval.

• The Extreme Value Theorem guarantees that whenever a function f is
continuous on a closed interval [a, b], there are points in the interval where
f reaches its maximum and minimum (extreme) values restricted to that
interval.

• The Intermediate Value Theorem guarantees that whenever a function
f is continuous on a closed interval [a, b], the equation f(x) = y has a
solution with a < x < b for any y between f(a) and f(b).

• The Intermediate Value Theorem guarantees that a function can only
change sign at its roots or discontinuities.

5.4.7 Exercises

Compute each of the following limits. If the limit is infinite, state both left-
and right-side limits.

1. lim
x→3

2x− 6
x− 3

2. lim
x→3

2x
x− 3

3. lim
x→2

x2 − x− 2
x− 2

4. lim
x→−1

x− 2
x2 − x− 2

5. lim
x→2

x2 − 2x− 8
x2 − 4

6. lim
x→−2

x2 − 2x− 8
x2 − 4

7. lim
x→4

x2 − 2x− 8
x2 − 4

8. lim
x→0

3x2 − 5x+ 2
2x2 − x− 1

9. lim
x→− 1

2

3x2 − 5x+ 2
2x2 − x− 1

10. lim
x→1

3x2 − 5x+ 2
2x2 − x− 1

Classify the discontinuities for each function, if any. State the limits at each
discontinuity.

11. f(x) = 3
x2 − 5

12. f(x) = 2x
x2 + 3x
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13. f(x) = x3 − x
2x− 2

14. f(x) = x3 + 7x2 + 12x
x2 + 3x

15. f(x) =


3x, x < 1,
2, x = 1,
4− x2, x > 1.

16. f(x) =
{

3
x−3 , x < 2,
2x− 7, x > 2.
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5.5 Instantaneous Rate of Change

5.5.1 Overview
Accumulation functions are defined in terms of their rate of accumulation.
That is, we started by knowing the rate of accumulation f ′(x) and used that
rate and an initial value to create the accumulation function

f(x) = f(a) +
∫ x

a

f ′(z) dz.

Thus far, we only know a few elementary accumulation formulas for simple
polynomials. What about other functions?

Perhaps the biggest breakthrough in the historical development of calculus
was the recognition of a relationship between accumulation computed through
definite integrals and the rate of change computed through derivatives. A
definite integral represents the exact accumulation for a given rate as the inde-
pendent variable goes between two points. A Riemann sum approximates this
accumulation by summing increments that treat the rate of accumulation as if
constant over short intervals. The definite integral is equal to the limit of the
Riemann sums.

In this section, we introduce the derivative of a function. The derivative
represents the instantaneous rate of change at a single point. We will in-
troduce the average rate of change between two points. The average rate of
change approximates the instantaneous rate of change when the two points are
close together. The derivative will then equal the limit of the average rate of
change.

5.5.2 Slope and the Average Rate of Change
Consider the point–slope equation of a line

y − b = m(x− a),

which is the equation of a line with slope m and passing through a point (a, b).
When we solve for y, so that y is a function of x,

y = f(x) = b+m(x− a),

we can recognize that this is in the form of an accumulation function with
constant rate,

f(x) = b+
∫ x

a

mdx.

That is, the slope acts as the rate of accumulation.
The slope of a line also represents a rate of change, meaning a ratio of

covarying changes. Given two points on the line, (x1, y1) and (x2, y2), the
slope is defined by the ratio

m = ∆y
∆x = y2 − y1

x2 − x1
.

If we think of the point f(a) = b as the initial value for f(x), then the increment
of change for f defined by

∆f = f(x)− f(a)
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will always be proportional to the change in the input

∆x = x− a.

The slope is the proportionality constant representing this constant ratio of
the changes, or rate of change.

Only in the case of a linear function do we actually find that the rate of
change ∆f/∆x is a constant. When the rate of change varies, the value of the
rate of change depends on the interval chosen. We call this the average rate
of change.

Definition 5.5.1 The average rate of change of a function f(x) going from
a to b is defined as the ratio

∆f
∆x

∣∣∣∣
a,b

= f(b)− f(a)
b− a

.

♦
The average rate of change is equal to the slope of the line that joins the

two points (a, f(a)) and (b, f(b)). That line is called the secant line. The
order of the points for the average rate of change does not matter.

∆f
∆x

∣∣∣∣
b,a

= f(a)− f(b)
a− b

= −(f(b)− f(a))
−(b− a)

= f(b)− f(a)
b− a

= ∆f
∆x

∣∣∣∣
b,a

Consequently, we often just refer to calculating the average rate of change over
an interval [a, b].

Example 5.5.2 Find the average rate of change of f(x) = x3 − 4x over the
interval [1, 2].
Solution. The average rate of change is the slope of the line joining the points
(1, f(1)) and (2, f(2)). So we first need to calculate the function values:

f(1) = (1)3 − 4(1) = −3; f(2) = (2)3 − 4(2) = 0.

This allows us to compute the average rate of change:

∆f
∆x

∣∣∣∣
1,2

= f(2)− f(1)
2− 1 = 0−−3

1 = 3.

�
A rate of change for a physical quantity has units corresponding to the ratio

it describes. One of the most common examples is calculating the velocity of
an object. Velocity measures the distance traveled per unit time, which means
velocity is the rate of change of position with respect to time. How would we
compute a velocity? Measure the position of the object at two times, measure
how much the position changed, and divide by the amount of time that passed.
The average velocity is the ratio of the change in position over the change in
time.
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Example 5.5.3 If the position (height, in feet) of an object above the ground
is defined by the function of time (in seconds)

h(t) = 5 + 64t− 16t2,

then what is the average velocity over the interval [1, 4]?

0 1 2 3 40

20

40

60

t

h

Solution. The average velocity is the slope of the line joining the points
(1, h(1)) and (4, h(4)). So we first need to calculate the function values which
gives the two positions:

h(1) = 5 + 64(1)− 16(1)2 = 53; f(4) = 5 + 64(4)− 16(4)2 = 5.

This allows us to compute the average velocity as an average rate of change:

∆h
∆t

∣∣∣∣
[1,4]

= h(4)− h(1)
4− 1 = 5− 53

3 = −48
3 = −16.

So the average velocity is -16 ft/s, since the height dropped by 48 feet during
those 3 seconds. �

In the previous example,the graph of the height of the object as a function of
time shows that the ball was initially going up and then came down. However,
the average rate of change calculated gave a negative rate. Over the three
minutes in the interval, the ball started going up and then fell enough so that
the overall change was negative. If we wanted to know the speed of the object
when t = 1, this interval is much too large to provide a good approximation.

5.5.3 Instantaneous Rate of Change
The instantaneous rate of change of a function is the rate of change at a
particular point. When we think about a rate of change as representing a
slope, our existing strategies require knowing two different points to compute
a slope. We expect that the average rate of change between two points should
approximate the instantaneous rate of change if the increment ∆x is not too
big. Further, we expect that the approximation should improve by making ∆x
smaller.

The figure below is an interactive graph of f(x) = x3−4x showing one point
at x = 1 and a second point at x = 1 + h where the value of h is controlled by
a slider. The average rate of change and slope of the secant line between these
two points is also calculated. Notice that when h is close to zero, h ≈ 0, the
secant line is closer and closer to a tangent line.
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A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 5.5.4
Graphically, the instantaneous rate of change equals the slope of the tangent

line at the point. A tangent line is defined in terms of a single point such that
the line is the line that best approximates the function near that point. We
define the instantaneous rate of change, or the derivative at a point, as a limit
of the average rate of change.

Definition 5.5.5 The instantaneous rate of change of a function f(x) at
x = a is the derivative at the point and is defined as the limit of the average
rate of change when the width of the interval is made arbitrarily small:

df

dx

∣∣∣∣
a

= lim
h→0

f(a+ h)− f(a)
h

or
df

dx

∣∣∣∣
a

= lim
x→a

f(x)− f(a)
x− a

♦
The limits defining the instantaneous rate of change or derivative, when

they exist, represent the limiting value of the average rate of change for a
sequence of points xn that converge to a, xn → a. The first limit using h
defines this sequence as xn = a+ hn where hn → 0. That is, h represents the
value of ∆x. This suggests defining the average rate of change in terms of a
reference point a and the displacement h to the second point,

∆f
∆x

∣∣∣∣
a;h

= f(a+ h)− f(a)
h

.

The derivative is the limit of this average rate of change as h→ 0. For the limit
to exist, the limit value of the average rate of change can not depend on which
sequence we choose. We explore the definition by considering an example.

Example 5.5.6 Find the instantaneous rate of change of f(x) = x3− 4x at 1.
Solution. In the earlier example, we found the average rate of change of f
on the interval [1, 2]:

∆f
∆x

∣∣∣∣
[1,2]

= 3.

The width of this interval was h = ∆x = 2 − 1 = 1. We need to consider a
sequence of intervals that include x = 1 but have a width that is decreasing to
zero. The following list of intervals is the start of one possible sequence.

[1, 2], [1, 1.1], [1, 1.01], [1, 1.001], . . .

To make this calculation more manageable, it is sometimes easier to create
an entry in a table that shows the value of the function at the second point that
is needed to compute a slope. The table only shows the summary information.
The average rate of change for each intervals was computed using the definition

∆f
∆x

∣∣∣∣
[1,xn]

= f(xn)−−3
h

where h = bk − 1.
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Table 5.5.7 Illustration of using shrinking intervals to estimate the
instantaneous rate of change.

n [1, xn] h = ∆x xn f(xn) ∆f
∆x

∣∣∣∣
[1,xn]

1 [1, 2] 1 2 0 3
2 [1, 1.1] 0.1 1.1 −3.069 −0.69
3 [1, 1.01] 0.01 1.01 −3.009699 −0.9699
4 [1, 1.001] 0.001 1.001 −3.000996999 −0.996999

From this table, we can see that the spacing between the points h is ap-
proaching zero as the second point in the interval is approaching the point in
question. As this happens, the sequence of values representing the average rate
of change on these intervals appears to be approaching the value of -1. From
the table, we would estimate that this is the instantaneous rate of change:

df

dx

∣∣∣∣
1
≈ −1.

�
In the previous example, the limit of the average rate of change was an easily

recognized value because it was an integer. When using a table and the limit
is not an integer, you need to look for a decimal value that is approximated.
This often works better if we consider a sequence of intervals on both sides of
the point of interest and use the average of the two sides.

Example 5.5.8 Find the instantaneous rate of change of f(x) = 3x at 1.
Solution. We will create two sequences of decreasing width intervals, one
on the left and the other on the right of 1. This will allow us to more easily
recognize the decimal representation of the limiting value. In addition, we will
use a variable h to represent the offset from 1 to the other endpoint of the
interval. One sequence will involve negative values of h (on the left) and the
other will involve positive values of h (on the right). Notice how in these tables,
we require more decimal places for the value of f(1 + h) in order to obtain the
average rate of change to the same number of significant digits.

Table 5.5.9 Illustration of using shrinking intervals on the left to
estimate the instantaneous rate of change.

h f(1 + h) f(1) ∆f ∆f
∆x

∣∣∣∣
1;h

-0.1 2.68788 3 -0.31212 3.1212
-0.01 2.967222 3 -0.032778 3.2778
-0.001 2.9967160 3 -0.0032940 3.2940

Table 5.5.10 Illustration of using shrinking intervals on the right to
estimate the instantaneous rate of change.

h f(1 + h) f(1) ∆f ∆f
∆x

∣∣∣∣
1;h

0.1 3.34837 3 0.34837 3.4837
0.01 3.033140 3 0.033140 3.3140
0.001 3.0032976 3 0.0032976 3.2976

Looking at the columns for the average rate of change in these two tables,
we notice that the values are rising when h < 0 as the size of the interval
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shrinks but that the values are dropping when h > 0. The limiting value
should therefore be somewhere between 3.2940 and 3.2976. The average of
these values gives an even better approximation,

df

dx

∣∣∣∣
1
≈ 3.2958.

�
A dynamic graph of this calculation is illustrated below.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 5.5.11

5.5.4 Using Algebra for Rates of Change
In the previous sections, we computed the instantaneous rate of change by
looking for a limiting value in the average rate of change for a sequence of
intervals that had decreasing width. It is important to realize that this is
the fundamental definition of the instantaneous rate of change. In many cases
involving basic algebraic functions, like polynomials, it is possible to determine
the limiting value of this process algebraically. This is because we can find a
formula for the average rate of change for any value of the spacing h and
determine what will happen when h→ 0.

The process for using this strategy is to consider the same calculations that
we used to form the tables, but to determine the formula for each step instead
of numerical values for the particular values of h.

• Identify the function f(x) and the point of interest a.

• Use composition to find the formula for f(a+ h) and expand.

• Compute the change in the function ∆f = f(a+ h)− f(a) and simplify.

• Compute the average rate of change,

∆f
∆x = f(a+ h)− f(a)

h
,

and use factoring in order to find a formula that does not divide by h.

• The limit or instantaneous rate of change is the value of this final formula
when h→ 0. This works because simplifying the rate of change formula
found a new expression that was continuous at the point h = 0.

• If it is not possible to rewrite without dividing by h, then you can use
the formula itself in a table to see what happens when h→ 0 by testing
a sequence of values for h that approach 0.

Take a moment to look at how the calculations described above compare to
our process of approximating the derivative using a table.

Example 5.5.12 Find the instantaneous rate of change for f(x) = x2 + 3x at
2.
Solution. We will just follow the steps outlined above.

1. The function has been identified and the point given. We also need
f(2) = 22 + 3(2) = 10 in later steps.



CHAPTER 5. LIMITS AND DIFFERENTIABILITY 324

2. Find f(2 + h) and expand:

f(2 + h) = (2 + h)2 + 3(2 + h) = (2 + h)(2 + h) + 3(2 + h)
= 4 + 4h+ h2 + 6 + 3h = 10 + 7h+ h2

3. Compute the change in function value, ∆f = f(2 + h)− f(2):

∆f = f(2 + h)− f(2) = (10 + 7h+ h2)− (10) = 7h+ h2

4. Compute the formula for the average rate of change:

∆f
∆x

∣∣∣∣
2;h

= 7h+ h2

h
= h(7 + h)

h
= 7 + h.

The average rate of change is only defined when h 6= 0.

5. The limit of the average rate of change uses the simplified formula on
both sides of h = 0. Because the reduced formula is continuous, the
limiting value can be found by substitution:

df

dx

∣∣∣∣
2

= lim
h→0

7 + h = 7 + 0 = 7.

�
The definition of the derivative allows us to compute the rate of change for

functions other than polynomials.

Example 5.5.13 Find the instantaneous rate of change for f(x) = 1
3x+1 at 1.

Solution. We again just follow the steps outlined above.
1. The function has been identified and the point given. We also need
f(1) = 1

3(1)+1 = 1
4 in later steps.

2. Find f(1 + h) and expand:

f(1 + h) = 1
3(1 + h) + 1 = 1

3 + 3h+ 1

= 1
4 + 3h

3. Compute the change in function value, ∆f = f(1 + h)− f(1):

∆f = f(1 + h)− f(1) = 1
4 + 3h −

1
4 .

We will later need to simplify this, so let us find a common denominator,
which requires multiplying each fraction’s numerator and denominator
by the missing factor:

∆f = 4
4(4 + 3h) −

4 + 3h
4(4 + 3h) = 4− (4 + 3h)

4(4 + 3h) = −3h
4(4 + 3h) .

4. Compute the formula for the average rate of change:

∆f
∆x

∣∣∣∣
1;h

=

(
−3h

4(4+3h)

)
h
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= 1
h
· −3h

4(4 + 3h)

= −3
4(4 + 3h) ,

defined when h 6= 0.

5. The instantaneous rate of change is the limit of the average rate of change.
Because the reduced formula is continuous at h = 0, the limit can be
computed using substitution

df

dx

∣∣∣∣
1

= lim
h→0

−3
4(4 + 3h)

= −3
4(4 + 3(0)) = −3

16 .

�

5.5.5 Interpretation of the Rate of Change
The rate of change often has a physical interpretation. For example, if we know
the position (e.g., height) as a function of time, then the rate of change corre-
sponds to the velocity of the object. In chemistry, if we know the concentration
of a reactant in solution as a function of time, then the rate of change of con-
centration describes the reaction rate. We can also have rates of change with
respect to variables other than time. For example, in biology, the number of
new fish born in a year (called recruitment) might be a function of the current
population size (called the stock). The rate of change of the recruitment with
respect to the stock measures how much the recruitment would change per unit
increase in the stock. In economics, if we know how an equation relating the
revenue that corresponds to the number of items being sold, then the rate of
change of revenue with respect to the number of items is called the marginal
revenue and corresponds to the amount of revenue change per extra item sold.

The units of a rate of change are determined by the units in the ratio. Since
velocity is the rate of change of position with respect to time, the units of
velocity are the units of length divided by the units of time, such as kilometers
per hour or meters per second. Marginal revenue is the rate of change of
revenue with respect to items sold, so the units would be a monetary unit per
item, such as dollars per item.

Example 5.5.14 In a chemical reaction, the concentration of a reactant is
measured as a function of time. If C represents the concentration measured
grams per liter and t represents the time elapsed since the reaction began
measured in seconds, then this function is the mapping t 7→ C.

What are the units of dCdt ?
Solution. The quickest solution to answer this question says to take the units
of the dependent variable C and divide by the units of the independent variable
t. That would give grams per liter per second, or g

L · s . To clarify why we divide
the units in that way, recall that the rate of change is the ratio of the change
in C (output) over the change in t (input). Because C has units of g

L , those
will also be the units of ∆C. Dividing this by the change in time ∆t, which
has units of seconds s, we obtain the units of the rate of change. �

We can use the definition of the rate of change to calculate an instantaneous
rate of change for a given model of a physical quantity.
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Example 5.5.15 A population grows in time according to a model

P (t) = 400 · 1.1t,

where P is the population count and t is the time in years from the start of
the model. How fast is the population growing when t = 2?
Solution. Because we do not yet know the rules of differentiation to find the
algebraic rule for the derivative, we will use the definition of the derivative in
terms of a limit. The derivative is defined as

dP

dt

∣∣∣∣
2

= lim
h→0

P (2 + h)− P (2)
h

.

Substituting the formula for P (t), we can write this as

dP

dt

∣∣∣∣
2

= lim
h→0

400 · 1.1(2+h) − 400 · 1.12

h
.

We can now set up a table of values of this average rate of change for values
of h with h→ 0. Our table will show a final value with 6 digits of accuracy so
that we can visualize the limit converging.

Table 5.5.16 Table of ∆P
∆t for

h < 0.

h
∆P
∆t

∣∣∣∣
2;h

= 400 · 1.1(2+h) − 400 · 1.12

h

-0.1 400 · 1.11.9 − 400 · 1.12

−0.1 ≈ 45.9110

-0.01 400 · 1.11.99 − 400 · 1.12

−0.01 ≈ 46.1082

-0.001 400 · 1.11.999 − 400 · 1.12

−0.001 ≈ 46.1279

Table 5.5.17 Table of ∆P
∆t for

h > 0.

h
∆P
∆t

∣∣∣∣
2;h

= 400 · 1.1(2+h) − 400 · 1.12

h

0.1 400 · 1.12.1 − 400 · 1.12

0.1 ≈ 46.3507

0.01 400 · 1.12.01 − 400 · 1.12

0.01 ≈ 46.1521

0.001 400 · 1.12.001 − 400 · 1.12

0.001 ≈ 46.1323

Comparing the tables using values on the left (h < 0) and values on the
right (h > 0), our calculations inform us that dP

dt

∣∣∣
2
is between 46.1279 and

46.1323 individuals per year. The best estimate would be the average of the
rates of change for h = ±0.001, or dP

dt

∣∣∣
2
≈ 46.1301 individuals per year. �

Example 5.5.18 A company determines that the number of a particular item
it can sell in a month depends on the sale price for that item according to the
demand function

x = 12000
p+ 3

where x measures the number of items sold per month and p measures the sale
price of an item in dollars.

Find the monthly revenue for a sale price of p = 5 and determine rate of
change of monthly revenue with respect to the sale price when p = 5. Com-
pare this rate of change with the actual change in revenue for particular price
changes.
Solution. The total revenue R is equal to the number of items sold times the
price of each item. That is,

R = x · p.
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Subsituting the demand function in place of x, we find

p 7→ R = 12000p
p+ 3 .

We can find the monthly revenue using p = 5 to obtain

p = 5 7→ R = 12000(5)
5 + 3 = 7500.

The monthly revenue will be $7500 when the item price is p = 5.
To find the rate of change of R with respect to p, we write down the

definition of the derivative.
dR

dp

∣∣∣∣
5

= lim
h→0

R(5 + h)−R(5)
h

= lim
h→0

12000(5+h)
5+h+3 − 7500

h

We can simplify this formula using algebra.

dR

dp

∣∣∣∣
5

= lim
h→0

60000+12000h
8+h − 7500

h

= lim
h→0

60000+12000h
8+h − 7500(8+h)

8+h
h

= lim
h→0

60000+12000h
8+h − 60000+7500h)

8+h
h

= lim
h→0

(
4500h
8+h

)
h

We should never use a fraction within a fraction. Dividing by h is equivalent
to multiplying by 1/h. This allows us to rewrite our formula for the average
rate of change in a way that can be simplified before finding the limit.

dR

dp

∣∣∣∣
5

= lim
h→0

4500h
8 + h

· 1
h

= lim
h→0

4500
8 + h

= 4500
8 + 0

= 562.50

This rate of change tells us that starting at a unit price of p = 5, the
monthly revenue is increasing at a rate of $562.50 for every $1.00 increase in
price. Because the derivative is an instantaneous rate of change, it will not
match the average rate of change. For example, if we set the unit price at
p = 6, we get a monthly revenue of R = 8000. The average rate of change for
the monthly revenue with respect to price would be

∆R
∆p

∣∣∣∣
5,6

= R(6)−R(5)
6− 5 = 8000− 7500

1 = 500,

which is lower than the instantaneous rate of change. However, if we consider
a smaller change in unit price, say h = 0.1, to get p = 5.10, we now find

∆R
∆p

∣∣∣∣
5,5.10

= R(5.10)−R(5)
0.1 ≈ 7555.55− 7500

1 = 555.5,
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which is much closer to the instantaneous rate of change. Even smaller changes
in the price will result in an average rate of change that is a closer approxima-
tion to the instantaneous rate of change. �

5.5.6 Summary
• A rate of change is the ratio of the change in a dependent variable (out-

put) over the change in the independent variable (input).

• The average rate of change of x 7→ y between x = a and x = b is

∆y
∆x

∣∣∣∣
a,b

= y(b)− y(a)
b− a

and represents the slope of the secant line or chord connecting points
(a, y(a)) and (b, y(b)).

• The instantaneous rate of change of x 7→ y at a point x = a is called
the derivative at x = a, defined by a limit of the average rate of change
where the second point approaches the first point:

dy

dx

∣∣∣∣
a

= lim
h→0

y(a+ h)− y(a)
h

.

The instantaneous rate of change represents the slope of the tangent line
to the curve at the point (a, y(a)).

• The units of measurement of a physical rate of change are the units of
the dependent variable divided by the units of the independent variable.

5.5.7 Exercises

For the given function, compute the average rate of change over the given
interval. Write the equation of the corresponding secant line.

1. f(x) = x2 − 2x on [1, 3].

2. x 7→ y = 3
x

on [1, 2].

3. y(x) = 2x on [2, 4].

Use a table to approximate the derivative of the given function at the specified
point. Include enough data to ensure that your approximation has five digits
of accuracy.

4. Find dy
dx

∣∣∣
1
for y(x) = x2 + x.

5. Find dQ
dt

∣∣∣
1
for Q(t) = 3t.

6. Find df
dx

∣∣∣
2
for f(x) =

√
x.

Use the definition of the derivative and compute the resulting limit exactly to
find the exact instantaneous rate of change for the specified function. Write
the equation of the corresponding tangent line.

7. Find dy
dx

∣∣∣
1
for y(x) = x2 + x.
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8. Find df
dx

∣∣∣
2
for y(x) = x2 − 3x.

9. Find df
dx

∣∣∣
−1

for y(x) = 2x2 + 3x.

10. Find dP
dt

∣∣∣
2
for P (t) = t3 − 2t.

11. Find dz
dr

∣∣∣
3
for z(r) = 3

r
.

12. Find dR
dz

∣∣∣
2
for R(z) = 3

2z + 1 .

Applications
13. The height h of an object dropped from a height of 100 feet as a

function of time t in seconds since the object was dropped satisfies a
model

h(t) = 100− 16t2.

(a) Find the average velocity over the interval [1, 2].

(b) Find the instantaneous velocity at t = 1.

Be sure to use appropriate units. What is the interpretation of the
sign of these values?

14. A vehicle accelerates from a stop at time t = 0 (in seconds) to highway
speed at t = 6. The velocity v of the vehicle (in miles per hour) is a
function of t given by

v(t) = −5
9 t

3 + 5t2, 0 ≤ t ≤ 6.

The rate of change of velocity is called acceleration.
(a) Find the velocity at t = 0 and t = 6.

(b) Determine the average acceleration over the interval [0, 6].

(c) Find the velocity at t = 1 and t = 2.

(d) Determine the average acceleration over the interval [1, 2].

(e) Determine the instantaneous acceleration at t = 1.

Be sure to use appropriate units. Was the vehicle accelerating at a
constant rate?

15. Researchers studying tree growth in Germany found a relationship be-
tween the age of the tree (years) and its total weight (kg) for sycamore
maples in a particular forest. If a represents the age of a tree andW is
its total weight, the relationship a 7→W was modeled using regression
with a quadratic polynomial as

W = 31.6601− 7.6351a+ 0.4334a2.

(Albert et al, 2014)
(a) Find the mass of a fifteen year old tree and of a twenty year old

tree.

(b) Determine the average rate of change of the mass of a tree with
respect to age over the interval [15, 20].

https://www.tandfonline.com/doi/full/10.1080/02827581.2014.910267


CHAPTER 5. LIMITS AND DIFFERENTIABILITY 330

(c) Determine the instantaneous rate of change of the mass of a tree
with respect to age at the age a = 15.

Be sure to use appropriate units.
16. Kinesin is a motor protein that facilitates transport along the axon of

a neuron. Researchers recorded the velocity of single kinesin molecules
pulling microscopic glass beads subject to a constant resistive force of
approximately 1 pN with varying ATP concentrations. The velocity
of transport along a microtubule V (nm

s ) depended on the concentra-
tion of ATP C (µmol · L) and was modeled with a Michaelis-Menten
equation

V = 85C
C + 814 .

(Schnitzer et al., 2000)
(a) Find the velocity of transport when ATP has concentrations of

100 µmol
L and 200 µmol

L

(b) Determine the average rate of change of the transport velocity
with respect to concentration over the interval [100, 200].

(c) Determine the instantaneous rate of change of the transport ve-
locity with respect to concentration at a concentration of 100 µmol

L .

Be sure to use appropriate units.

https://www.nature.com/articles/ncb1000_718
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5.6 The Fundamental Theorem of Calculus, Part
One

5.6.1 Overview
When we introduced the definite integral, we also learned about accumulation
functions. An accumulation function is a function A defined as a definite
integral from a fixed lower limit a to a variable upper limit where the integrand
is a given function f ,

A(x) = A(a) +
∫ x

a

f(z) dz.

The function f was called the rate of accumulation for the function A, and we
wrote A′(x) = f(x). Then we defined another rate of change, the instantaneous
rate of change, with a corresponding function called the derivative. For a
function F (x), the derivative was defined by a limit,

dF

dx
(x) = lim

h→0

F (x+ h)− F (x)
h

.

This section establishes a relation between these two concepts of the rate of
change. The Fundamental Theorem of Calculus proves that the derivative of an
accumulation function exactly matches the rate of accumulation at whenever
the rate of accumulation is continuous. That is, the instantaneous rate of
change of a quantity, which graphically gives the slope of the tangent line on
the graph, is exactly the same as the value of the rate of accumulation when
the function is expressed as an accumulation using a definite integral. The
proof of the fundamental theorem relies on properties of continuous functions
as well as properties of limits.

5.6.2 Illustration of an Example
To illustrate the concept that we will prove, let us consider a simple polynomial
function

f(x) = x3 − 3x+ 5.

Using our rules of accumulation, we know that f(x) can be written as an
accumulation,

f(x) = 5 +
∫ x

0
3z2 − 3 dz.

What happens if we compute the derivative using the definition?
We start with some preparatory algebra based on f(x) = x3 − 3x+ 5.

f(x+ h) = (x+ h)3 − 3(x+ h) + 5
= (x+ h)(x+ h)(x+ h)− 3(x+ h) + 5
= (x2 + 2xh+ h2)(x+ h)− 3x− 3h+ 5
= x3 + 3x2h+ 3xh2 + h3 − 3x− 3h+ 5

f(x+ h)− f(x) = (x3 + 3x2h+ 3xh2 + h3 − 3x− 3h+ 5)− (x3 − 3x+ 5)
= 3x2h+ 3xh2 + h3 − 3h
= h(3x2 + 3xh+ h2 − 3)
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The derivative can be computed using the limit:

df

dx
(x) = lim

h→0

f(x+ h)− f(x)
h

= lim
h→0

h(3x2 + 3xh+ h2 − 3)
h

= lim
h→0

3x2 + 3xh+ h2 − 3

= 3x2 + 3x(0) + (0)2 − 3
= 3x2 − 3.

The derivative exactly matches the rate of accumulation.
Our ultimate goal in this section is to show that this will always happen

for accumulation functions. To reach this goal, we require some additional
concepts.

5.6.3 Average Value of a Function
The derivative computes the limit of the average rate of change. In preparation
for the Fundamental Theorem of Calculus, we need a relation between the idea
of average value and the definite integral.

Consider how we compute the average value of a list of numbers. We add
up all the values and divide by the number of values in the list. When thinking
about a function f on an interval [a, b], there are infinitely many different values
to consider. We need a different way to think about it. We define the average
value of a function using a limit of a standard average value.

Let f be a piecewise continuous function on [a, b] so that the definite integral∫ b
a
f(x) dx will be defined. Consider a uniform partition of the interval [a, b]

with ∆x = b−a
n and xk = a + k · ∆x, just as we defined when creating a

Riemann sum. We approximate the average value of f on the interval [a, b],
which is represented by the symbol 〈f〉[a,b], by finding the average of the values
f(xk) for k = 1, 2, . . . , n:

〈f〉[a,b] ≈
1
n

n∑
k=1

f(xk).

The approximation is improved with larger and larger values of n, so the actual
average value will be the limit of the average as n→∞:

〈f〉[a,b] = lim
n→∞

1
n

n∑
k=1

f(xk).

The average value defined by this limit looks remarkably similar to the
limit of a Riemann sum that would define a definite integral. In particular,∫ b

a

f(x) dx = lim
n→∞

n∑
k=1

f(xk)b− a
n

.

Comparing our two limits reveals that the definite integral is the same as the
average value multiplied by b − a. This will be our formal definition of the
average value of a function.

Definition 5.6.1 For a function f(x) which has an integral on an interval
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[a, b], the average value of f(x) on [a, b] is defined by

〈f(x)〉[a,b] = 1
b− a

∫ b

a

f(x) dx.

♦
When we think of the definite integral as the total signed area between the

graph y = f(x) and the axis y = 0, the average value can be interpreted as the
value of a constant function that would have the same signed area. This is a
consequence of writing∫ b

a

f(x) dx = (b− a) · 〈f(x)〉[a,b].

The average value multiplied by b−a equals the total signed area of f(x) from
a to b, so we can think of (b− a) · 〈f(x)〉[a,b] as the signed area of a rectangle
with a vertical position given by the average value.

Imagine the region below the graph y = f(x) and between the lines x = a
and x = b as if it were frozen water. If the ice melted but was trapped between
the vertical lines x = a and x = b, the high regions of the ice would melt and fill
the valleys until the water level was flat. The resulting flat value is equivalent
to the average value of the original function. Any regions of area above the
average value line are used to fill an equivalent amount of area missing below
the line.
Example 5.6.2 Consider finding the average value of f(x) = x2 − 2 on the
interval [0, 2]. The average value is computed by dividing the definite integral
of f(x) = x2 − 2 as x goes from 0 to 2 by the length of the interval.

〈x2〉[0,2] = 1
2− 0

∫ 2

0
x2 − 2 dx

= 1
2

[1
3x

3 − 2x
]2

0

= 1
2

(8
3 − 2(2)

)
− 1

2

(0
3 − 2(0)

)
= 1

2

(−4
3

)
= −2

3
Having found the average value, we now create a graph of y = f(x) = x2−2

together with the graph y = 〈f(x)〉[0,2] = − 2
3 , as shown in Figure 5.6.3. The

graph of the average value is the horizontal line. We can see that the area
above the average value is matched by the unshaded area below the average
value line and above the function.

−3 −2 −1 1 2 3

−4

−2

2

4

x

y

Figure 5.6.3 The graph of y = x2 − 2 along with its average value over [0, 2].
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�
We need one more theorem before we discuss the Fundamental Theorem.

That theorem is called the Mean Value Theorem for Definite Integrals. The
phrase mean value is equivalent to average value, just as the mean of a set
of numbers is equivalent to the average of those numbers. We have previously
pointed out that the average or mean value of a function over an interval is
equal to the constant value (horizontal function) that would have the same
integral.

In Figure 5.6.3, we can see that the function actually crosses the line rep-
resenting average value. As an equation, this point of intersection corresponds
to a solution of the equation

f(x) = 〈f(x)〉[0,2] ⇔ x2 − 2 = −2
3 .

When a function is continuous, such an intersection point will always occur.
If a function is not continuous, it is possible for the function to skip over its
average value without such an intersection.

Theorem 5.6.4 Mean Value Theorem for Definite Integrals. If a
function f is continuous on [a, b], then there is a value c ∈ (a, b) so that

f(c) = 〈f〉[a,b] = 1
b− a

∫ b

a

f(x) dx.

Equivalently, the equation can be rewritten

f(c) · (b− a) =
∫ b

a

f(x) dx.

Proof. Because f is continuous on [a, b] (a closed interval), the Theorem 5.4.14
guarantees that f has an absolute maximum value fmax and an absolute min-
imum value fmin inside the interval. The average value must be between the
maximum and minimum values. Indeed, for all x ∈ [a, b] we have

fmin ≤ f(x) ≤ fmax.

Definite integrals preserve the ordering so that

fmin · (b− a) ≤
∫ b

a

f(x) dx ≤ fmax · (b− a),

and dividing by the length of the interval b− a we have

fmin ≤ 〈f(x)〉[a,b] ≤ fmax.

The Theorem 5.4.18 then guarantees that between the x-values where the ex-
tremes occur we must have at least one value x = c where f(x) = 〈f(x)〉[a,b].

�
The Mean Value Theorem for Definite Integrals will give us a tool with

which we can replace a definite integral by a corresponding value of the inte-
grand or rate function at some point within the interval times the length of
that interval.

5.6.4 The Fundamental Theorem of Calculus
Now, are you ready to be blown away? Having learned what the average
value of a function over an interval represents—the constant height that would
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give the same signed area over the interval— we can discover that there is a
relationship between the ideas of average rate of change and average value.

Let’s think about an accumulation function, A with its corresponding rate
of accumulation A′. What is the average rate of change of A(x) as x goes from
a to b?

∆A
∆x

∣∣∣
a,b

= A(b)−A(a)
b− a

= 1
b− a

(A(b)−A(a)) .

Because A is an accumulation, the change ∆A can be rewritten using an inte-
gral and

∆A
∆x

∣∣∣
a,b

= 1
b− a

∫ b

a

A′(x) dx.

But that is just the average value of the rate of accumulation function A′. Two
completely different ideas of average value end up measuring the very same
thing.

Theorem 5.6.5 The average rate of change (the difference quotient) of an
accumulation function A(x) is exactly equal to the average value (the integral
divided by interval length) of the corresponding rate of accumulation A′(x):

∆A
∆x

∣∣∣
a,b

= 〈A′〉[a,b].

Pay attention, however, that we are thinking about two different functions.
The average value of the rate of accumulation is based on the integral of the
rate A′(x). The average rate of change uses the rate of change based on the
difference quotient using A(x). The equivalence of these two averages pro-
vides exactly what is necessary to compute the derivative of an accumulation
function.
Theorem 5.6.6 The Fundamental Theorem of Calculus, Part One
(FTC1). Given any function f(x) that is continuous on an interval I and a
value a ∈ I. The accumulation function

A(x) =
∫ x

a

f(z) dz

is differentiable and dA
dx (x) = f(x) for all x ∈ I.

Proof. Given the accumulation function A(x) and its associated integrand
f(x), we consider the average rate of change of A between x and x + h. By
Theorem 5.6.5, we can rewrite this in terms of the value of the rate function f ,

∆A
∆x

∣∣∣
x,x+h

= A(x+ h)−A(x)
h

= f(ch),

for some value ch between x and x + h. The symbol ch includes the h to
emphasize that this value depends on h.

Now consider a sequence of values h → 0. Because ch is between x and
x+ h for all h, the corresonding sequence ch also converges, ch → x. As f is a
continuous function,

dA

dx
(x) = lim

h→0

∆A
∆x

∣∣∣
x,x+h

= lim
h→0

f(ch) = f(x).

�
What have we shown? Earlier, when discussing accumulation functions,

A(x) = A(a) +
∫ x

a

f(z) dz,
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we learned to identify the rate function based on its appearance within the
definite integral and we wrote A′(x) = f(x) as a way of describing this as-
sociation. In that association, the prime (apostrophe) of A′ was telling us to
identify the appropriate rate of accumulation.

Now we have learned about another concept, the derivative, which is defined
as the limiting value of the average rate of change of a function f from the input
value of interest x and a second point x+h as h→ 0. This is a fundamentally
different concept from accumulation defined as the limit of a Riemann sum.
Nevertheless, when we compute the derivative of an accumulation function, we
recover exactly that function’s corresponding rate of accumulation, so long as
the rate of accumulation is a continuous function.

The rate of accumulation and the derivative are really different perspectives
of the same function. This surprisingly deep relationship between definite
integrals and derivatives will continue to develop.

5.6.5 Summary
• For simple polynomials which we previously learned to express as accu-

mulation functions, the rate of accumulation seems miraculously to agree
with the derivative of the polynomial.

• The Fundamental Theorem of Calculus (FTC1) shows us that this isn’t
circumstance but will always happen when the rate of accumulation is a
continuous function. That is, the derivative of an accumulation function
will equal the corresponding rate function. When we write f ′(x), that
means both the rate of accumulation when f(x) is an accumulation func-
tion and the derivative of a function f(x) because those are ultimately
the same thing.

• We can compute the average value of a function on an interval [a, b]
using a definite integral,

〈f(x)〉[a,b] = 1
b− a

∫ b

a

f(x) dx.

The integral replaces the idea of adding a list of values and dividing by
the length of the interval replaces the idea of dividing by the number of
values being added.

• The average rate of change of an accumulation function f(x) and the
average value of the rate of accumulation f ′(x) for that function are
equal to each other.

• The Mean Value Theorem for Definite Integrals guarantees that for a
continuous function, the equation f(c) = 〈f(x)〉[a,b] has a solution for
some value c ∈ (a, b). It allows us to substitute∫ b

a

f(x) dx = f(c) · (b− a)

for some c between a and b, but does not tell us how to find c.

5.6.6 Exercises

Find the average value of the given function over the given interval. Sketch a
graph of the function and the average value over the interval. Then solve for
c so that f(c) = 〈f(x)〉[a,b], if it exists.
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1. f(x) = 4 + 2x with [a, b] = [0, 2].
2. f(x) = 4x− x2 with [a, b] = [0, 2].
3. f(x) = 4x− x2 with [a, b] = [0, 4].

4. f(x) =
{

1, 0 ≤ x < 2
3, 2 ≤ x ≤ 3

with [a, b] = [0, 3]. You will need to split the

integral into two intervals. (Hint: Think about the graph geometri-
cally.)

5. f(x) =
{

2x, 0 ≤ x < 2
6− x, 2 ≤ x ≤ 4

with [a, b] = [0, 4]. You will need to

split the integral into two intervals. (Hint: Think about the graph
geometrically.)

6. f(x) =
{
x, 0 ≤ x < 2
5− x, 2 ≤ x ≤ 3

with [a, b] = [0, 3]. You will need to

split the integral into two intervals. (Hint: Think about the graph
geometrically.)

Applying the Fundamental Theorem of Calculus.

7. Find dF
dx (x) where F (x) = 10+

∫ x

1
z2−3z dz. Then give the equation

of the tangent line at x = 1.

8. Find dG
dx (x) where G(x) =

∫ x

0

1
z2 + 4 dz. Then give the equation of

the tangent line at x = 0.

9. Find dH
dx (x) where H(x) = 3 +

∫ x

2
ze−z

2
dz. Then give the equation

of the tangent line at x = 2.

Applications of Average Value
10. The density (kilograms per meter) of a rod that is two meters long

depends on position along the rod according to the equation

ρ(x) = 2− 0.25x, 0 ≤ x ≤ 2.

Find the average density of the rod.
11. A car accelerates from 0 to 64 miles per hour over eight seconds so

that the velocity of the car is a function of time given by

v(t) = 16t− t2, 0 ≤ t ≤ 8.

What is the average velocity of the car during those eight seconds?
How far does the car travel? (Hint: Use Theorem 5.6.5 and pay
attention to units.)

12. During a rainstorm, the rate R (inches per hour) at which rain fell
varied according to the following relation,

R(t) =
{

2t, 0 ≤ t < 0.25,
0.5, 0.25 ≤ t < 0.5,

where t is measured in hours. What is the average rate at which rain
fell during the storm? What was the total amount of rain that fell
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during the storm? (Hint: Use Theorem 5.6.5)
13. When the state police measure vehicle speed from aircraft, one ap-

proach of determining a car’s speed is to time how long it takes to
travel a fixed distance, say a quarter mile. Suppose that you were
timed and the state police recorded 11.25 seconds. They charge you
with speeding at 80 mph. If the police never actually recorded your
exact speed, how can they guarantee that you must have been speed-
ing? (Hint: Use Theorem 12.5.5
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6.1 Accumulation Functions and the Definite In-
tegral

Overview. The concept of the definite integral can be motivated by the
notion of accumulated change. When we learn about linear functions, the idea
of a constant slope or rate of change serves as the fundamental concept. For a
definite integral, we generalize this notion to a changing rate.

In this section, we begin with an example of linear functions and piecewise
linear functions as models of accumulation. Using these examples, we establish
some basic principles that we want to hold in general. These principles become
the fundamental properties of the definite integral.

6.1.1 Linear Functions as Accumulation
The word accumulation is defined as “the acquisition or gradual gathering of
something” (Oxford Dictionary, , accessed August 27, 2019). Consider a tank
of water that has water added at a constant rate of 5 L

min . At the start of our
observation, the tank contains 200 L of water. We wish to think of the amount
of water in the tank as an accumulation of the water that has flowed into the
tank as a function of time.

Quantities that have a constant rate of change are modeled with linear
functions, and the rate of change is used as the slope. If V is the volume of
water that the tank contains (in liters) and t is the time of observation (in
minutes), then the state of the tank is given by (t, V ). The equation that
models the accumulation is then given by

V = 200 + 5t.

The V -intercept of 200 represents the starting value (when t = 0), and the
product 5t represents the accumulation of additional water that is added during
the interval of time (0, t).

The point-slope equation of a line similarly captures the idea of accumu-
lation. Suppose after 10 minutes, the water flowing into the tank stops and
water begins to drain at a rate of 15 L

min . We can use our earlier model to find
the volume of water after the 10 minutes of filling has completed,

V = 200 + 5(10) = 250.

This becomes a new initial value for the tank relative to the draining, which
corresponds to a negative rate of change or slope. For t > 10, we have a new
model,

V = 250− 15(t− 10).
The expression −15(t − 10) represents the accumulated loss of water. We
multiply the rate −15 by the increment of time t− 10, since that is how long
the tank was left to drain.

Putting our models together, we obtain a piecewise function that represents
the accumulation of water in the tank.

V =
{

200 + 5t, 0 ≤ t ≤ 10,
250− 15(t− 10), t > 10.

We can think of the rate of accumulation R as another variable, which is also
piecewise,

R =
{

5, 0 < t < 10,
−15, t > 10.
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We do not define R when t = 10 because of the ambiguity in how the transition
occurs. Because R is the rate of accumulation corresponding to the accumu-
lation V , we write R = V ′ (read V -prime). We will later learn that R is the
derivative of V at points where R is continuous.

5 10 15 20

100

200

300

t

V

5 10 15 20

−20

−10

10

20

t

R = V ′

Figure 6.1.1 The volume of the tank of water that fills for 10 minutes and
then drains, and the corresponding rate of accumulation, as functions of time.

Given any piecewise constant rate of accumulation f(x) = A′(x) for an
accumulation A(x), we can easily compute the formulas for A(x) as a piecewise
linear function. We repeatedly apply the point-slope equation of a line and
require that A(x) is continuous at each transition point. This will then help
motivate some general properties that will relate to the definite integral.

Example 6.1.2 Suppose f(x) = A′(x) is defined as

f(x) =


3, x < 2,
−2, 2 < x < 5,
5, x > 5.

If A(0) = 2, find A(x) as a piecewise function.
Solution. Because the initial value is given as A(0) = 2, we begin our con-
struction at x = 0. This point on the domain is inside the interval x < 2, so
we start with a rate A′ = 3. The formula for A(x) with x < 2 is therefore

A(x) = 2 + 3x, x < 2.

So that A(x) is continuous, we must have A(2) = 2 + 3(2) = 8.
Having found the value of A(x) on the interval (−∞, 2], we next consider

the interval (2, 5) where A′ = −2. Using our value A(2) = 8 as an initial value,
we can write

A(x) = 8 +−2(x− 2), 2 < x < 5.

To have continuity at x = 5, we require A(5) = 8 +−2(3) = 2. Repeating the
process on the last interval, (5,∞), where A′ = 5, we obtain

A(x) = 2 + 5(x− 5), x > 5.

Putting the pieces together, we obtain our final piecewise representation of
A(x):

A(x) =


2 + 3x, x ≤ 2,
8 +−2(x− 2), 2 < x ≤ 5,
2 + 5(x− 5), x > 5.
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Figure 6.1.3 Graphs of the piecewise constant rate of accumulation f(x) =
A′(x) and the piecewise linear accumulation A(x).

�

6.1.2 A Geometric Interpretation of Accumulation
In our earlier example (Example 6.1.2), we had the point A(0) = 2 and a rate
f(x) = 3 for x < 2. When we used the point-slope formula to find A(2), we
had

A(2) = 2 + 3(2) = 8.

Then, having found A(2) = 8 and knowing f(x) = −2 for 2 < x < 5, we were
able to compute A(5) as

A(5) = 8 +−2(5− 2) = 2.

In each case, we took a known starting value (A(0) = 2 or A(5) = 8) and then
added an increment of change. With a constant rate of accumulation, these
increments were calculated as the rate of change times the increment of change
in the independent variable, ∆x.

Expressing the increment of change as a product of two values has a useful
geometric interpretation. The most basic geometric idea that is calculated as
a product of two numbers is area. Can we interpret the increment of change
as an area? Almost. An area is always a positive number, but our second
increment of change −2(3) = −6 was a negative value. So we modify our idea
to signed area.

How does the area geometrically appear? Consider the graph of the rate of
accumulation, y = f(x). The rate of change corresponds to the height of the
graph from the axis. We should soon recognize that there are rectangles from
which we can find the signed area. When the graph is below the axis, we have
a signed height that is considered negative. When the graph is above the axis,
the signed height is positive. The increment of x depends on which direction
we are going. We compute

∆x = xend − xstart.

Consequently, if the increment moves to the right, we have ∆x > 0; if the
increment moves to the left, we have ∆x < 0. The signed area is simply the
product of the signed height times the signed increment of x.
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Figure 6.1.4 A graph of the rate of accumulation function y = f(x) showing
the increments of change as signed areas, shaded in color. The increment as x
goes from x = 0 to x = 2 is shaded in purple. The increment as x goes from
x = 2 to x = 5 is shaded in orange.

We will generalize the idea of accumulation from constant rates of change to
arbitrary rates of change using signed area. Suppose we are given the graph of
a function f(x) that is a rate of accumulation f(x) = A′(x) for some quantity
A(x). We will require the function to be piecewise continuous and have no
infinite limits. The increment of change for A(x) as x goes from x = a to x = b
will be equal to the sum of the signed areas formed by the regions between
y = f(x) and the axis y = 0. This increment of change will be represented by
a definite integral,

∆A = A(b)−A(a) =
∫ b

a

f(x) dx.

The notation for a definite integral is meant to be suggestive of this inter-
pretation. The integral symbol

∫
is drawn to look like the letter S to represent

summation. The limits of integration a and b indicate the value for x where
we start on the bottom the the value for x where we end on the top. What do
we add? The increments f(x) dx that are being accumulated. The expression
f(x) is the function giving the rate of accumulation and symbolically repre-
sents the signed height of incremental rectangles. The symbol dx is called the
infinitesimal and symbolically represents the signed increment of the inde-
pendent variable or width of the rectangle. When b > a, we are integrating to
the right and dx > 0; when b < a, we are integrating to the left (reverse) and
dx < 0.

When the shape of the graph of f(x) uses straight line segments or other
simple geometric shapes, we can calculate the signed area using simple geo-
metric formulas.

Area Formulas for Common Geometric Regions.

• Rectangle, length ` and width w.

A = `w

• Triangle, base b and height h (perpendicular to base).

A = 1
2b h
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• Parallelogram, base b and height h (perpendicular to base).

A = b h

• Trapezoid, parallel sides b1 and b2 and height h (perpendicular to
parallel sides).

A = 1
2 (b1 + b2)h

• Circle, radius r.
A = πr2

Example 6.1.5 Consider the graph of the function f(t) shown below. Suppose
that f(t) is the rate of accumulation for A(t), f(t) = A′(t). If we know A(2) =
5, find the values for A(6) and A(−3).

−6 −4 −2 2 4 6 8

−5

5

t

f(t)

Solution. To find A(6), we start at the known value A(2) = 5 and add the
accumulated increment of change as t goes from 2 to 6. That is, using the
notation of a definite integral, we have

A(6) = A(2) +
∫ 6

2
f(t) dt.

We will calculate this definite integral using geometric shapes.
We identify our shapes by considering the regions vertically between the

graph of f(t) and the t-axis. At t = 2, the graph is above the axis and remains
above the axis until t = 5. Our first region consists of a trapezoid bounded
by t = 2 on the left, the t-axis below, and the graph of f(t) above and to the
right. From t = 5 to t = 6, the graph of f(t) is below the axis. The second
region consists of a triangle bounded by the t-axis on the top, the line t = 6
on the right, and the graph of f(t) on the left. These shapes are illustrated in
the graph below as shaded regions.

−6 −4 −2 2 4 6 8

−5

5

t

f(t)
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Having identified the relevant regions, we now calculate their signed area.
We first recall that the direction of t is left to right, so that horizontal signed
lengths are positive. Vertical signed lengths depend on whether we are above
(positive) or below (negative) the axis. The trapezoid between t = 2 and t = 5
has parallel bases of signed length 1 (top) and 3 (bottom) and a perpendicular
height of 5 units. The resulting area for this trapezoid is

area1 = 1
2 (1 + 3)(5) = 10.

The triangle has a base of signed length 1 and a height of signed length −3,
with corresponding area

area2 = 1
2 (1)(−3) = − 3

2 .

Note that we could instead have used a single rectangle for t = 2 to t = 3 and
a triangle for t = 3 to t = 5 in place of the trapezoid.

The total accumulated increment of change is the sum of the signed areas,∫ 6

2
f(t) dt = 10 +− 3

2 = 17
2 .

Consequently, we find

A(6) = A(2) +
∫ 6

2
f(t) dt = 5 + 17

2 = 27
2 .

To find A(−3), we again start at the known value A(2) = 5 and add the
accumulated increment of change as t goes from 2 to -3. Using a definite
integral, we have

A(−3) = A(2) +
∫ −3

2
f(t) dt.

Because t is going backwards, our increments of t will be negative. When we
calculate geometric signed areas, illustrated in the graph below, our horizontal
edges will have negative signed lengths.

−6 −4 −2 2 4 6 8

−5

5

t

f(t)

This time, the regions consist of two rectangles. The signed area for the
rectangle from t = 2 to t = 0, formed by a horizontal edge with signed length
−2 and a vertical edge with signed length 6, is

area1 = (−2)(6) = −12.

The signed area for the second rectangle from t = 0 to t = −3, formed by a
horizontal edge with signed length −3 and a vertical edge with signed length
2, is

area2 = (−3)(2) = −6.
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The total accumulated increment is the sum,∫ −3

2
f(t) dt = −12− 6 = −18.

Consequently, we find

A(−3) = A(2) +
∫ −3

2
f(t) dt = 5− 18 = −13.

�

Example 6.1.6 A large tank of water initially contains 400 liters of water. For
ten minutes, water is added at a constant rate of 10 L

min . The rate of water flow
then steadily declines for the next five minutes from 10 L

min to 0 L
min . At this

point, a pump starts draining the tank, ramping its progress over five minutes
so that the rate of draining goes from 0 L

min to 25 L
min . The pump then drains

water at this steady rate of 25 L
min for another five minutes. How much water

is in the tank at the end of this procedure?
Solution. We start by describing the state variables. Let V represent the
volume of water in the tank, measured in liters. Let R represent the rate of
accumulation of water, which will be positive when water is flowing into the
tank and negative when it is pumped out, measured in liters per minute. Let t
represent the time since the situation begins, measured in minutes. As we read
the description of the problem, we should note that most of the information
is describing the rate of accumulation R = V ′ for the volume of water in the
tank. We can sketch a graph of R from the description, and we make the
assumption that the description implies that this graph should be formed with
line segments.

5 10 15 20 25

−40

−20

20

t

R

Now that we have a graph of the rate of accumulation R(t) = V ′(t), we can
use geometric methods to calculate the area of regions to compute the total
increment of change in the volume.

V (25) = V (0) +
∫ 25

0
R(t) dt.

We consider the shaded regions in the graph below.



CHAPTER 6. ACCUMULATION AND INTEGRALS 348
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−40

−20

20

t

R

We could interpret the regions as either two trapezoids or as rectangles and
triangles. The signed area of the trapezoid above the axis corresponding to
times t = 0 to t = 15 is

area1 = 1
2 (10 + 15)(10) = 125,

meaning that there were 125 liters added to the tank during the first 15 minutes.
The signed area of the trapezoid below the axis corresponding to times t = 15
to t = 25 is

area2 = 1
2 (10 + 5)(−25) = − 375

2 = −187.5.

This means that there were 187.5 liters drained from the tank during the last
10 minutes. Combining the results gives us the definite integral and overall
increment of change in the volume of the tank. Starting with our initial tank
level, we have

V (25) = V (0) +
∫ 25

0
R(t) dt = 400 + (125− 187.5) = 337.5.

The tank ends with 337.5 liters. �

6.1.3 Summary
• Piecewise constant rates of change correspond to continuous, piecewise

linear functions.

• Given a function f(x) that provides the rate of change for another func-
tion A(x), the function A is called the accumulation function with rate
f and the function f is called the rate of accumulation for A. We write
f(x) = A′(x).

• The change in an accumation function A(x) as x goes from x = a to
x = b, calculated from A by A(b) − A(a), is represented by a definite
integral of its rate of accumulation,

A(b)−A(a) =
∫ b

a

f(x) dx.

• The definite integral calculates a sum of increments, each represented by
the product f(x) dx.

• The geometric interpretation of the definite integral is the sum of the
increments of signed area of regions bounded by the graph of the rate of
accumlation f(x) and the x-axis.
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6.1.4 Exercises

1.
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6.2 Properties of Definite Integrals
Overview. Motivated by the properties of total accumulated change and of
area, the definite integral inherits several significant properties. These prop-
erties are stated as theorems. We will be interested in applying the results
of the theorems. However, to prove these properties is outside the scope of
this text. We essentially think of these properties as the axioms of definite
integrals, basic properties which must always be true.

Because accumulation functions are defined in terms of definite integrals, we
also develop properties of accumulation functions in terms of our knowledge of
the rate of accumulation. We will learn how the sign of the rate of accumulation
determines if the accumulation function is increasing or decreasing. We will
also learn how the concavity of the accumulation function is related to the rate
of accumulation.

6.2.1 Integrability
Before we talk about the properties of the definite integral, we need to establish
some terminology about when the definite integral is even defined. From our
introduction, we know that the definite integral will be defined if we can de-
scribe the geometric region as a finite number of rectangles and triangles. Such
shapes will occur for functions that are defined piecewise constant or piecewise
linear. However, more complicated functions might have potential issues.

One of the most significant developments of modern mathematics was de-
veloping an understanding of when functions can be integrated or not. Math-
ematicians would take an interpretation of the definite integral and then con-
struct bizarre functions for which that interpretation would break. Then they
would create new definitions for integrals that worked over progressively more
complex circumstances. For our purposes, we will focus on the definition of
the integral using limits of Riemann sums.

Definition 6.2.1 Integrability. A function f : [a, b]→ R is integrable (or,

more simply, integrable) on [a, b] if
∫ b

a

f(x) dx is defined. ♦

The actual interpretation of when the definite integral is defined is de-
scribed in (((Unresolved xref, reference "section-riemann-sums"; check spelling
or use "provisional" attribute))) . The scope of mathematics for this text is
not concerned with determining which functions are or are not integrable, with
one exception. Continuous functions are integrable.

Theorem 6.2.2 Continuous Functions are Integrable. If f : [a, b]→ R
is continuous, then f is integrable on [a, b].

In fact, we get a result a little better than this. The function can have a
finite number of discontinuities on the interval as long as left- and right-limits
exist at all of the discontinuities. We do not allow infinite discontinuities at this
stage of learning, as that will require a concept called improper integrals.

6.2.2 Splitting Properties
Consider any region in the plane for which we can find its area. Suppose we
could cut the region, like we might cut a shape in two parts with scissors. The
area of the original region would be the sum of the areas of the subregions cre-
ated by our cut. This fact of geometric area motivates the splitting property
of the definite integral.
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Splitting properties are motivated by considering adjacent intervals, say
[a, b] and [b, c], and requiring that the definite integral on [a, c] is the sum of
the integrals over the two pieces,∫ b

a

f(x) dx+
∫ c

b

f(x) dx =
∫ c

a

f(x) dx.

As described, this would seem to require that a < b < c. However, the definite
integral is defined in a way that the order does not matter, so long as we replace
our idea about intervals into directed excursions through an interval.

Recalling that the definite integral is motivated as the mathematical tool
to compute the total change in a quantity as the accumulated change resulting
from its rate of change, this result could be interpreted as saying, “The total
change in Q as x goes from a to c is equal to the change in Q as x goes first
from a to b plus the change as x then goes from b to c.”

Theorem 6.2.3 Splitting Property of Definite Integrals. Suppose that
f is integrable on an interval that contains a, b and c. Then∫ b

a

f(x)dx+
∫ c

b

f(x)dx =
∫ c

a

f(x)dx.

Similarly, if x does not change, then the dependent quantity Q should also
not change, regardless of the function defining the rate of change. This is the
motivation for the next theorem.
Theorem 6.2.4 Integral on an Empty Interval. For any function f ,∫ a

a

f(x) dx = 0.

Combining these theorems, we obtain a reversal property of definite inte-
grals. If we switch the order of the limits of integration, then the value of the
definite integral must change sign.

Theorem 6.2.5 Integral in Reverse. For any integrable function f ,∫ a

b

f(x) dx = −
∫ b

a

f(x) dx.

Proof. Because an integral starting and ending at a must equal zero, if we go
from a to b and then back, there must be no overall change:∫ b

a

f(x) dx+
∫ a

b

f(x) dx =
∫ a

a

f(x) dx = 0.

This means the two integrals are additive inverses to each other. �
When we interpret a definite integral as signed area, we must take into

account the direction of integration. The usual integration over an interval
[a, b] is interpreted as going from x = a to x = b. Regions above the axis
generate positive signed area; regions below the axis generate negative signed
area. However, if we were to reverse direction, going from x = b to x = a, then
the signs are reversed. This potential stumbling block can be mitigated if we
remember to think of dx as having a sign as well. Integrals going from left to
right result in dx > 0; integrals going from right to left have dx < 0.

Example 6.2.6 Suppose that we know
∫ 4

0
f(x) dx = 6 and

∫ 4

3
f(x) dx = 10.

Find
∫ 3

0
f(x) dx.
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Solution. We use the splitting property of definite integrals. The interval
[0, 4] can be split into [0, 3] and [3, 4] so that∫ 4

0
f(x) dx =

∫ 3

0
f(x) dx+

∫ 4

3
f(x) dx.

We know two of the integrals and can solve for the third:

6 =
∫ 3

0
f(x) dx+ 10 ⇔

∫ 3

0
f(x) dx = −4.

An alternate approach for finding the integral is to start with the integral
that is wanted, using the interval [0, 3], so that we start at 0 and end at 3. We
will use the splitting property using out-of-order points and go from 0 to 4 and
then from 4 to 3: ∫ 3

0
f(x) dx =

∫ 4

0
f(x) dx+

∫ 3

4
f(x) dx.

The second integral is in a reversed order. If we switch the order to go left-to-
right, then the integral is subtracted instead of added:∫ 3

0
f(x) dx =

∫ 4

0
f(x) dx−

∫ 4

3
f(x) dx = 6− 10 = −4.

�

Example 6.2.7 Suppose that the graph below shows y = f(x). Use the graph

to find
∫ −3

0
f(x) dx.

−4 −2 0 2 4

−2

0

2

Solution. Because the graph consists of straight lines, we can use geometry
to calculate areas and use signed area to determine values of definite integrals.
Shading the region between the graph y = f(x) and the axis y = 0 and between
x = −3 and x = 0, we get the figure shown below.
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−4 −2 0 2 4

−2

0

2

The region between x = −3 and x = −1 is a trapezoid that has area
1
2 (1 + 2)(3) = 9

2 . The region between x = −1 and x = 0 is a triangle with area
1
2 (1)(3) = 3

2 . Signed area corresponds to an integral from left-to-right so that∫ 0

−3
f(x) dx = −9

2 + 3
2 = −6

2 = −3.

The integral of interest uses the opposite order, and so has the opposite sign:∫ −3

0
f(x) dx = −

∫ 0

−3
f(x) dx = −(−3) = 3.

�

6.2.3 Summary
• Integrability: A function f(x) is integrable on an interval if the def-

inite integral
∫ b

a

f(x) dx can be computed for any values a, b in the in-
terval.
We will need a clear definition for the definite integral to be more specific.

• Continuity implies integrability. If f(x) is continuous on an interval, then
it is guaranteed to also be integrable on that interval.
In fact, so long as f(x) is piecewise continuous with a finite number of
discontinuities and f(x) has one-sided limits at all of those discontinu-
ities, then f(x) will still be integrable. (The value at the end points don’t
matter to integrals.)

• Splitting: A definite integral
∫ b

a

f(x) dx involves the independent vari-

able x going through the values from x = a (start) to x = b (end). The
splitting principle means that you can consider going from x = a and
take a diversion to any other point x = c, and then continue from x = c
to x = b and get the same result,∫ b

a

f(x) dx =
∫ c

a

f(x) dx+
∫ b

c

f(x) dx,

so long as f(x) is integrable on an interval that includes all three points
a, b, c.
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6.3 Riemann Sums
Overview. When a rate of change is a simple function (piecewise constant),
we can compute the definite integral as a summation of the increments. Each
increment is the product of the rate of change times the width of the subin-
terval in the partition. When a rate of change is not simple (varying), we can
approximate the total change by using simple functions that are either above
or below the true rate. If we can make these approximations as good as we
desire, then there is a limiting value and that value is defined as the definite
integral.

The approximations to the definite integral using simple functions are called
Riemann sums. In this section, we will learn how to create Riemann sums
using a uniform partition. The Riemann sum will depend on the number of
increments. The definite integral will be the limit of this sum as the number
of increments goes to infinity.

6.3.1 Uniform Partitions
Recall that a partition P of an interval [a, b] is an increasing, finite sequence
P = (x0, x1, . . . , xn) with x0 = a and xn = b and xk−1 < xk. Adjacent terms in
the sequence define subintervals, Ik = [xk−1, xk], which has a width increment
of size ∇xk = xk−xk−1. A uniform partition of an interval [a, b] is a partition
in which all increments are the same size.
Definition 6.3.1 Uniform Partition. The uniform partition of an in-
terval [a, b] of size n is the partition with equal increments

∇xk = ∆x = b− a
n

.

The partition points are defined by the arithmetic sequence

xk = a+ k ·∆x, k = 0, 1, . . . , n.

The kth subinterval is Ik = [a+ (k − 1)∆x, a+ k∆x]. ♦

The definition of the uniform partition suggests the basic steps required to
create such a partition.

• Identify the interval [a, b] and the size of partition n.

• Compute the partition increment size

∆x = b− a
n

,

which is the total width of the interval divided by the number of subin-
tervals.

• Create the partition points by using an arithmetic sequence with initial
value x0 = a and increment size ∆x (just calculated).

Example 6.3.2 Find the uniform partition of [1, 4] of size n = 8.
Solution. The interval uses a = 1, b = 4 and n = 8. Consequently we can
compute

∆x = b− a
n

= 4− 1
8 = 3

8 .



CHAPTER 6. ACCUMULATION AND INTEGRALS 355

Next, we define the partition points,

xk = a+ k∆x = 1 + k · 3
8 = 1 + 3

8k.

In particular, the partition includes the points shown in the table below.
k xk
0 1
1 1 + 3

8 = 1 3
8

2 1 + 6
8 = 1 6

8
3 1 + 9

8 = 2 1
8

4 1 + 12
8 = 2 4

8
5 1 + 15

8 = 2 7
8

6 1 + 18
8 = 3 2

8
7 1 + 21

8 = 3 5
8

8 1 + 24
8 = 4

�
One of the tasks required in computing Riemann sums will involve evaluating
a function at these partition points. This is yet another example of the impor-
tance of composition of functions in that we replace the independent variable
(input) of the function with a formula for the partition point of interest.

Example 6.3.3 Evaluate f(xk) where f(x) = x2 and xk is a point in the
uniform partition of [1, 4] of size n.
Solution. We start by defining the partition. The interval [1, 4] means that
a = 1 and b = 4, as in the previous example. However, the size of the partition
n is not specified, so we use the variable itself to compute the increment size,

∆x = b− a
n

= 4− 1
n

= 3
n
.

Once the increment is known, we can define the partition points which is an
arithmetic sequence with x0 = 1 and increments ∆x to define

xk = 1 + k∆x = 1 + k · 3
n

= 1 + 3k
n
.

Once the formula for the partition point is known, we use composition with
f(x) = x2 and then expand the formula.

f(xk) = f(1 + 3k
n

)

= [1 + 3k
n

]2

= (1 + 3k
n

)(1 + 3k
n

)

= 1 + 6k
n

+ 9k2

n2 .

�
From this section, you should be able to write down the formula for the

points in a uniform partition of an interval whether the size of the partition is
given as a specific number or as an unspecified value. Using this formula, you
should also be able to use that formula to evaluate a function at the partition
points.
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6.3.2 Uniform Riemann Sums
Recall that a simple function is a piecewise function that is constant on each
subinterval defined by the partition. We know how to compute the accumulated
change (definite integral) for every simple function. Suppose that we had any
function f(x) representing a rate of change of some quantity Q and we wanted
to determine the resulting increment of change

Q(b)−Q(a) =
∫ b

a

f(x) dx

as x changes from x = a to x = b. ARiemann sum approximates this definite
integral by approximating the function f(x) by a simple function defined on a
partition of [a, b].

A Riemann sum involves two steps: specifying the partition and choosing
the simple function defined on the partition. The most common choice for a
partition is a uniform partition. The simple function is defined by choosing a
constant function value on each resulting subinterval. A Riemann sum requires
that we choose the value to match the true function f(x) at some point within
the closed subinterval [xk−1, xk]. Different rules for how to choose the point
define some common methods.

Left-Hand Rule The simple function uses the value at the left end point,
f(xk−1).

Right-Hand Rule The simple function uses the value at the right end point,
f(xk).

Mid-Point Rule The simple function uses the value at the midpoint of the
interval, f(xk−1+xk

2 ).

Trapezoid Rule The simple function uses the average of the values at the
end-points, f(xk−1) + f(xk)

2 .

Lower-Sum Rule The simple function uses the minimum value of the func-
tion on the subinterval, min(f(x) : x ∈ [xk−1, xk]).

Upper-Sum Rule The simple function uses the maximum value of the func-
tion on the subinterval, max(f(x) : x ∈ [xk−1, xk]).

The left-hand rule and the right-hand rule are the simplest rules to work
with algebraically. We will focus on practicing using those rules. The trapezoid
rule typically is a much better approximation and is preferred when using a
computer. The lower-sum and upper-sum rules provide error bounds on our
approximation. The lower-sum always underestimates the definite integral; the
upper-sum always overestimates the value. If we know both the lower-sum and
upper-sum, then the true value must be between them.

To compute a Riemann sum using a particular choice of simple function, we
usually do not define the approximating simple function separately. We just
compute the approximating definite integral based on that simple function.
For clarity, our first example will define the function directly.

Example 6.3.4 Approximate
∫ 5

2
x2dx using the left-hand rule with a uniform

partition of size n = 4.
Solution. The first step is to define the partition. Our interval is [a, b] =
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[2, 5]. Consequently, the increment size of the partition will be

∆x = 5− 2
4 = 3

4 .

The partition points are defined by

xk = 2 + 3k
4 , k = 0, 1, 2, 3, 4.

In particular, the partition is defined by the sequence

x = (2, 2.75, 3.5, 4.25, 5).

The second step is to define the simple function, Lf (x). Using the left-
hand rule means that we will use the value of f(x) = x2 on each subinterval
[xk−1, xk] by the value of f(xk−1).

Lf (x) =


f(2) = 22 = 4, 2 < x < 2.75,
f(2.75) = 2.752 = 7.5625, 2.75 < x < 3.5,
f(3.5) = 3.52 = 12.25, 3.5 < x < 4.25,
f(4.25) = 4.252 = 18.0625, 4.25 < x < 5.

A graph of y = f(x) and the approximating simple function y = Lf (x) is shown
below. The shaded region corresponds to the definite integral represented by
the Riemann sum.

0 1 2 3 4 50

10

20

30

The Riemann sum is the definite integral of the approximating simple func-
tion. Notice how the limits of the integral correspond to the interval [2, 5] while
the limits of the sum correspond to counting the subintervals in the partition.∫ 5

2
Lf (x) dx =

4∑
k=1

f(xk−1)∆x
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= f(2) · 3
4 + f(2.75) · 3

4 + f(3.5) · 3
4 + f(4.25) · 3

4
= 4(0.75) + 7.5625(0.75) + 12.25(0.75) + 18.0625(0.75)
= 31.40625

�
In usual practice, the only steps we really need are identifying the partition,

determining the value of the function on each subinterval, and then computing
the Riemann sum, which corresponds to the definite integral of the simple
function. Writing down the piecewise formula for the simple function is not
actually necessary. A table often makes the computation simpler.

Example 6.3.5 Use a Riemann sum with the right-hand rule and a uniform

partition of size n = 5 to approximate
∫ 2

0

1
x+ 1dx.

Solution. Start by identifying the partition. First determine the increment
size,

∆x = 2− 0
5 = 2

5 = 0.4.

Use the increment size to find the partition,

x = (0, 0.4, 0.8, 1.2, 1.6, 2.0).

Once the partition is identified, calculate the value of the integrand function
f(x) = 1

x+ 1 at the right endpoint of each subinterval. The table below
summarizes these computations.

k (index) [xk−1, xk] (interval) f(xk) (value)
1 [0, 0.4] f(0.4) = 1

1.4 ≈ 0.7143
2 [0.4, 0.8] f(0.8) = 1

1.8 ≈ 0.5556
3 [0.8, 1.2] f(1.2) = 1

2.2 ≈ 0.4546
4 [1.2, 1.6] f(1.6) = 1

2.6 ≈ 0.3846
5 [1.6, 2] f(2) = 1

3 ≈ 0.3333
Knowing the constant values on each subinterval, if we called the simple

function using the right endpoint Rf (x), then we have the Riemann sum∫ 2

0
Rf (x) dx =

5∑
k=1

f(xk)∆x

≈ 0.7143(0.4) + 0.5556(0.4) + 0.4546(0.4) + 0.3846(0.4) + 0.3333(0.4)
≈ 0.9770

The graph below shows the original function y = f(x) and the simple function
y = Rf (x) that was used in the Riemann sum.
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�
The previous two examples illustrated very specific Riemann sums, where

the size of the partition was specified as a small number. In order to compute
definite integrals using limits of Riemann sums, we need to find an explicit
formula for a Riemann sum involving a partition of unspecified size n.

The basic steps for these problems are as follows.

• Create a formula for the partition with increment

∆x = b− a
n

and partition points defined by an arithmetic sequence

xk = a+ k∆x.

• Evaluate the integrand function f(x) at the appropriate choice, usually
at an end point such as f(xk−1) (left) or f(xk) (right), and expand the
formula as necessary.

• Write down the Riemann sum using summation notation. Apply the
properties of summation and the summation formulas to find an explicit
formula for the Riemann sum in terms of n. The typical representation
of the Riemann sum uses the form

n∑
k=1

f(x∗k)∆x,

where f(x∗k) is the function value chosen for the kth subinterval of the
partition depending on which rule is chosen.

• To find the actual definite integral, take a limit of the explicit formula
as n→∞. That is, the definite integral is computed as∫ b

a

f(x)dx = lim
n→∞

n∑
k=1

f(x∗k)∆x,
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Example 6.3.6 Use a Riemann sum with the right-hand rule and a uniform

partition of size n to approximate
∫ 5

−1
(5− 2x)dx.

Solution. To find the partition of the interval [a, b] = [−1, 5], we compute
the partition increment size

∆x = 5−−1
n

= 6
n
.

The partition points are defined using an arithmetic sequence

xk = −1 + k · 6
n

= −1 + 6k
n
.

The partition defines the kth subinterval [xk−1, xk] such that the right-hand
rule will evaluate the integrand f(x) = 5− 2x at the point xk,

f(xk) = 5− 2xk = 5− 2(−1 + 6k
n

)

= 5 + 2− 12k
n

= 7− 12k
n

The Riemann sum is equal to the sum of increments computed as the inte-
grand function (rate) times the partition increment width. That is, if we use
the function Rf (x) as the simple function using the right-hand end points of
the intervals, then the Riemann sum is∫ 5

−1
Rf (x)dx =

n∑
k=1

f(xk) ·∆x.

Using the value we found above and ∆x = 6
n , this gives∫ 5

−1
Rf (x)dx =

n∑
k=1

(7− 12k
n

) · 6
n

=
n∑
k=1

(42
n
− 72k

n2 )

Linearity= 1
n

n∑
k=1

42− 72
n2

n∑
k=1

k

= 1
n
· (42n)− 72

n2 ·
n(n+ 1)

2

= 42− 36(n+ 1)
n

This final formula is the value of the Riemann sum using the right-hand rule.
The limit of the Riemann sum is the value of the actual definite integral of

interest. That is, for this problem, we have∫ 5

−1
(5− 2x)dx = lim

n→∞
[42− 36(n+ 1)

n
]

= lim
n→∞

[42− 36 ·
n(1 + 1

n )
n

]

= 42− 36 · 1 = 6.
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Because the graph y = f(x) (shown below) is linear, we can compute the
corresponding signed area using the area of triangles and compare our calcu-
lation. The graph crosses the axis when f(x) = 0 which occurs at x = 2.5. So
we split the definite integral into two pieces,∫ 5

−1
f(x)dx =

∫ 2.5

−1
f(x)dx+

∫ 5

2.5
f(x)dx.

The first region on interval [−1, 2.5] is a triangle above the axis with height
7 and width 3.5 so that the area of the region is 1

2 (7)(3.5) = 12.25. The
second region on interval [2.5, 5] is a triangle below the axis with height 5
(since f(5) = −5) and base width 5 − 2.5 = 2.5. The area of the second
triangle is 1

2 (5)(2.5) = 6.25 but corresponds to a signed area of −6.25 (because
below the axis). So ∫ 5

−1
f(x)dx = 12.25 +−6.25 = 6.

Thus, the limit of the Riemann sum exactly agrees with the geometric calcu-
lation of total signed area.

−2 0 2 4 6

−5

0

5

10

�

6.3.3 Summary

• The definite integral
∫ b

a

f(x) dx of a general function f(x) can be approx-
imated by a Riemann sum, which is the definite integral of a simple
function that approximates f(x) as a piecewise constant function.

• A partition of an interval of size n is a finite sequence of values P =
(x0, x1, . . . , xn) which defines n subintervals Ik = [xk−1, xk]. The lengths
of the subintervals are the increments ∇xk = xk − xk−1.
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A uniform partition of the interval [a, b] of size n has equal incre-
ments ∇xk = ∆x = b− a

n
. The sequence of points is arithmetic with

formula
xk = a+ k∆x.

• A Riemann sum of
∫ b

a

f(x) dx on a partition P identifies values in each

subinterval, x∗k ∈ [xk−1, xk], uses the values f(x∗k) to define a simple
function, and computes the integral of the simple function as a simple
sum,

n∑
k=1

f(x∗k)∇xk.

Most calculations use simple rules to identify the points of evaluation.

◦ Left-Hand Rule: Choose x∗k = xk−1 (left end-point).
◦ Right-Hand Rule: Choose x∗k = xk (right end-point).

◦ Mid-Point Rule: Choose x∗k = xk−1 + xk
2 (mid-point).

◦ Trapezoid Rule: Choose x∗k so that f(x∗k) = f(xk−1) + f(xk)
2 (av-

erage height of sides).
◦ Lower-Sum Rule: Choose x∗k so that f(x∗k) = min(f(x) : x ∈

[xk−1, xk] (minimum value).
◦ Upper-Sum Rule: Choose x∗k so that f(x∗k) = max(f(x) : x ∈

[xk−1, xk] (maximum value).

• The definite integral is the limit of all Riemann sums as the partition
size grows n→∞ and the increments shrink ∆x→ 0. In particular, for
a uniform partition,∫ b

a

f(x) dx = lim
n→∞

n∑
k=1

f(x∗k)∆x.

• To approximate a definite integral
∫ b

a

f(x) dx for a specific size Riemann

sum (i.e., for a specific value of n), we apply the following steps.

1. Find the specific partition points.
2. Identify the evaluation points x∗k according to the rule being used.
3. Calculate the specific values of the integrand f(x∗k).
4. Add the increments of the Riemann sum, multiplying each rate value
f(x∗k) by the increment ∇xk,

n∑
k=1

f(x∗k)∇xk.

• To express a definite integral
∫ b

a

f(x) dx as the limit of uniform Riemann
sums, we apply the following steps.

1. Calculate the uniform increment ∆x = b−a
n .
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2. Find and simplify the explicit formula for the partition points

xk = a+ k∆x.

3. Compute f(x∗k), usually using x∗k = xk (right-hand rule), using func-
tion substitution (composition).

4. Write down the limit of the Riemann sum, remembering to multiply
the rate value f(x∗k) by ∆x,∫ b

a

f(x) dx = lim
n→∞

n∑
k=1

f(x∗k)∆x.

To compute the value of the definite integral using the limit of Riemann
sums, we first compute the formula for the Riemann sum in terms of n,

n∑
k=1

f(x∗k) ∆x,

and then evaluate the limit of that formula.

6.3.4 Exercises
1. Pending.
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8.1 Extreme Values
We have learned earlier that when a function f(x) can be written as an accu-
mulation function, we can describe the behavior of the function in terms of its
rate of accumulation f ′(x). We use sign analysis of f ′(x) to find the intervals
of monotonicity of f(x). And if f ′(x) can also be written as an accumulation
function with rate f ′′(x), the sign analysis of f ′′(x) determines the intervals of
concavity of f(x).

In this section, we apply this information to describe the extreme values of
a function. By identifying points where f ′(x) changes sign, we can find local
maximum and minimum values. Global extreme values require comparing local
extremes with end behaviors.

8.1.1 Local Extreme Values
When the derivative f ′(x) changes sign at a point where f(x) is continuous,
the function has a local or relative extreme value. We begin by focusing on
what we mean by a local extreme value. A local extreme is a point where the
function reaches either its highest or lowest point on an interval around that
point. The function might exceed the value on some other interval, but the
value needs to be the extreme in a neighborhood of the point.

Definition 8.1.1 Local (Relative) Extreme Values. A function f(x) has
a local maximum at a point x = c in the domain if there is an interval (a, b)
with c ∈ (a, b) so that f(x) ≤ f(c) for all x ∈ (a, b).

A function f(x) has a local minimum at a point x = c in the domain if
there is an interval (a, b) with c ∈ (a, b) so that f(c) ≤ f(x) for all x ∈ (a, b).

♦
The reason that the definition describes these extreme values as local ex-

tremes is that the function might go higher or lower at some point outside of
the interval. A local or relative extreme value is only at the highest or lowest
points relative to its immediate neighbors. The following graph illustrates a
function with multiple local extreme values.
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Figure 8.1.2 Illustration of a function with local extremes and no global
extremes.

The function shows local maxima at points labeled A, C, and E and local
minima at points labeled B, D, and F . Of the three maxima, the value at
A is the greatest. Because the graph continues to increase after F , however,
the function reaches values higher than all of the local maxima. Similarly, the
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minimum at F is the lowest of the three lolal minima but the function reach
values even lower at points to the left of A.

One observation we should make is that the local extreme values occurred
where the function transitioned between an interval of increasing to an interval
of decreasing. Such points are called turning points. Sign analysis using the
first derivative can often identify these turning points, so we use sign analysis to
find local extreme values. The applicable theorem is called the first derivative
test for extreme values.
Theorem 8.1.3 First Derivative Test. Suppose that f ′(x) exists on an in-
terval (a, b), possibly except at x = c with a < c < b and that f(x) is continuous
at x = c.

• If f ′(x) < 0 for x ∈ (a, c) and f ′(x) > 0 for x ∈ (c, b), then f(x) is de-
creasing on (a, c] and increasing on [c, b) so that f has a local minimum
at x = c.

• If f ′(x) > 0 for x ∈ (a, c) and f ′(x) < 0 for x ∈ (c, b), then f(x) is in-
creasing on (a, c] and decreasing on [c, b) so that f has a local maximum
at x = c.

• If f ′(x) does not change sign, then f does not have a local extreme value
at x = c.

Because f ′(x) most frequently changes sign at points where f ′(x) = 0, we
call such points the critical points of f(x). When we have a more precise
definition of the derivative, we will learn that critical points also need to include
points where f ′(x) is not defined.

Example 8.1.4 Find the local extreme values of f(x) = x3 − 6x2 − 36x+ 5.
Solution. The first step in a question about extreme values is to compute
the rate of change f ′(x).

f ′(x) = 3x2 − 12x− 36.

To apply the First Derivative Test, we need to complete sign analysis. Because
f ′(x) is defined and continuous everywhere, our critical points of f are the
roots of f ′(x). We solve the equation by factoring:

3x2 − 12x− 36 = 0
3(x2 − 4x− 12) = 0
3(x− 6)(x+ 2) = 0.

There are two roots of f ′, x = 6 and x = −2, which are the critical points of
f .

Next, we perform sign analysis using the roots as the end points of the test
intervals, which are (−∞,−2), (−2, 6), and (6,∞). Using the factored function
f ′(x) = 3(x + 2)(x − 6) makes it easier to find the signs without necessarily
computing the final value. We can just look at the signs of each factor:

f ′(−3) = 3(−3 + 2)(−3− 6) = (+)(−)(−) = +,
f ′(0) = 3(0 + 2)(0− 6) = (+)(+)(−) = −,
f ′(8) = 3(8 + 2)(8− 6) = (+)(+)(+) = +.

We now know f is increasing on (−∞,−2], decreasing on [−2, 6], and increasing
on [6,∞).

By the First Derivative Test, we now know that f has a local maximum at
x = −2 and a local minimum at x = 6. The y-coordinate of the local maximum
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can be found using the formula for f(x):

f(−2) = (−2)3 − 6(−2)2 − 36(−2) + 5 = 45.

This is guaranteed to be the maximum value over the interval (−∞, 6]. The
y-coordinate of the local minimum can also be found:

f(6) = (6)3 − 6(6)2 − 36(6) + 5 = −211,

which is guaranteed to be the minimum over the interval [−2,∞). If we wanted
to graph this function and show the local extrema, we would know that our
window would need to include the x-values of x = −2 and x = 6 as well these
y-values.
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−200

−100
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x = 6

x

f(x)

�
Although we do not yet know all of the rules that would allow us to compute

derivatives, with the help of technology we can analyze many other functions.

Example 8.1.5 Use technology to find the derivative of the function

f(x) = x

x2 + 3 .

Then describe the local extreme values of f(x).
Solution. In SageMath, we find the derivative formula using the diff com-
mand, which stands for the verb differentiate. The following script will define
our function for SageMath and then ask it to show us the derivative where x
is the independent variable.

# Define our function.
f(x)=x/(x^2+3)
# Show the derivative.
show( diff(f(x), x) )
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-2x^2/(x^2+3)^2 + 1/(x^2+3)

We see that f(x) has a derivative

f ′(x) = − 2x2

(x2 + 3)2 + 1
x2 + 3 .

We can simplify this if we get a common denominator.

f ′(x) = − 2x2

(x2 + 3)2 + (x2 + 3)
(x2 + 3)2

= −2x2 + x2 + 3
(x2 + 3)2

= 3− x2

(x2 + 3)2

The denominator of f ′(x) is never zero because x2 + 3 ≥ 3 will never equal
zero. So the sign can only change where 3−x2 = 0 which occurs at two values,
x = ±

√
3. There are three intervals of interest to test, (−∞,−

√
3), (−

√
3,
√

3),
and (

√
3,∞). We can find the signs of f ′(x) using the values x = −2, x = 0

and x = 2. The signs are summarized in the number line summary below.

f ′(x)
x

−
√

3

0
√

3

0− + −

We finish by interpreting our results.

• Because f ′(x) < 0 on (−∞,−
√

3) and f ′(x) > 0 on (−
√

3,
√

3), we know
f(x) has a local minimum at x = −

√
3. (Minimum over the interval

(−∞,+
√

3))

• Because f ′(x) > 0 on (−
√

3,
√

3) and f ′(x) < 0 on (
√

3,∞), we know
f(x) has a local maximum at x =

√
3. (Maximum over the interval

(−
√

3,∞))

A graph of the function is illustrated below.
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Having discussed how the first derivative f ′(x) allows us to identify local

extreme values of f(x), we should note that the second derivative f ′′(x) will
allow us to identify local extreme values of f ′(x). These points are the inflec-
tion points of the function f , where the concavity of f changes. Inflection
points are significant as being extreme values in that they represent points
where the rate of accumulation or rate of change reaches either a maximum or
minimum rate.

8.1.2 Global Extreme Values
In Figure 8.1.2, we saw that when a function has local extreme values, there
could still be other points that are not local extremes that exceed the extremes.
This leads to the idea of global extreme values.
Definition 8.1.6 Suppose the function f has domain D.

• f has a global maximum at c ∈ D if f(c) ≥ f(x) for all x ∈ D.

• f has a global minimum at c ∈ D if f(c) ≤ f(x) for all x ∈ D.

♦
To identify global extremes of a function, we first need to find all of the

local extreme values. Then we use additional information to test whether
the function manages to reach beyond those values. The sign analysis used
to analyze local extrema does give us some information about the intervals
immediately to the left and right of an extremum. For example, we know that
a local maximum will be greater than all points in the immediately adjacent
intervals, but we may not know how far down the function goes.

Finishing the analysis for global extremes generally involves computing lim-
its of the function on intervals not already accounted for by the local extremes.
If a limit has a real (finite) value, the function values approach that limit but
may not actually reach the limit as an actual function value. When a func-
tion is approaches a value in a limit that would be an extreme value but never
reaches it, we call that value a bound rather than an extreme.
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Example 8.1.7 Find the global extreme values of f(x) = 4x2 − x3 restricted
to each of the following domains.

1. D = (−∞,∞)

2. D1 = [−1, 3]

3. D2 = (−2, 4]

4. D3 = [−2, 2)

Solution. This question considers finding global extrema for a function when
it is restricted to different domains. Regardless of which domain we use, we
will need to find the local extreme values. Local extreme values are identified
from sign analysis of f ′(x). We find

f ′(x) = 4(2x)− (3x2) = 8x− 3x2.

Sign analysis begins by finding the roots, where f ′(x) = 0.

8x− 3x2 = 0
x(8− 3x) = 0

x = 0, 8− 3x = 0

x = 0, x = 8
3

Because f ′(x) is continuous, the roots determine the test intervals: (−∞, 0),
(0, 8

3 ), and ( 8
3 ,∞). Testing one value of x from each interval in f ′(x) = x(8−

3x), we find the signs summarized on the following number line.

f ′(x)
x0

0

8
3

0− + −

We can interpret the sign analysis of f ′(x) as characterizing the monotonic-
ity of f(x).

• f(x) is decreasing on (−∞, 0).

• f(x) is increasing on (0, 8
3 ).

• f(x) is decreasing on ( 8
3 ,∞).

Because f(x) is decreasing on the left of x = 0 and increasing on the right,
f(x) has a local minimum at x = 0. The value of the function at this minimum
is

f(0) = 4(0)2 − (0)3 = 0.

Similarly, because f(x) is increasing on the left of x = 8
3 and decreasing on the

right, f(x) has a local maximum at x = 8
3 . The value of the function at this

maximum is
f(8

3) = 4(8
3)2 − (8

3)3 = 256
27 ≈ 9.4815.

From our sign analysis of f ′(x), we know that f(0) is the minimum value
for the interval (−∞, 8

3 ] and that f( 8
3 ) is the maximum value for the interval

[ 8
3 ,∞). To complete the analysis of global extreme values, we need use limits
to compare f(0) with points on the interval ( 8

3 ,∞) and f( 8
3 ) with points on
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the interval (−∞, 0). To evaluate limits involving ±∞, we need to factor out
the dominant power,

f(x) = 4x2 − x3 = x3( 4
x
− 1),

before using the limit arithmetic of infinity.

lim
x→−∞

f(x) = lim
x→−∞

x3( 4
x
− 1)

= (−∞)3 · ( 4
−∞

− 1)

= −∞ · (0− 1) = +∞

lim
x→+∞

f(x) = lim
x→+∞

x3( 4
x
− 1)

= (∞)3 · ( 4
∞
− 1)

=∞ · (0− 1) = −∞

Let us now address the question of the global extreme values on each of the
requested restricted domains.

1. Find the global extremes on the interval (−∞,∞).
We have learned that on the interval (−∞, 0), f reaches all values be-
tween f(0) = 0 and lim

x→−∞
f(x) = ∞. Clearly, f(x) has no maximum

value because it is unbounded above. Similarly, we learned that on the
interval ( 8

3 ,∞), f(x) reaches all values between −∞ and f( 8
3 ) = 256

27 and
is unbounded below. So f(x) has no minimum value. The range of f
has been shown to be (−∞,∞) and f has no global extreme values on
(−∞,∞).

2. Find the global extremes on the interval D1 = [−1, 3].
We know f is decreasing on [−1, 0), a subset of (−∞, 0), so the maximum
value on that interval is

f(−1) = 4(−1)2 − (−1)3 = 5.

We also know f is decreasing on ( 8
3 , 3] so the minimum value on that

interval is
f(3) = 4(3)2 − (3)3 = 9.

Comparing these to the local minimum f(0) = 0 and the local maximum
f( 8

3 ) = 256
27 , we see that f(0) = 0 is the global minimum and f( 8

3 ) = 256
27

is the global maximum for the interval D1 = [−1, 3]. When restricted to
this domain, the range of f becomes [0, 256

27 ].

3. Find the global extremes on the interval D2 = (−2, 4].
We know f is decreasing on (−2, 0), so that the left end-point provides
an upper bound

lim
x→−2+

f(x) = f(−2) = 4(−2)2 − (−2)3 = 24.

This is not a maximum value because x = −2 is not included in the
domain. Because f is decreasing on ( 8

3 , 4] the minimum value on that
interval is

f(4) = 4(4)2 − (4)3 = 0.
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The global minimum occurs in two locations,

f(0) = f(4) = 0.

The value f(−2) = 24 is not a global maximum because x = −2 is not
included in the domain. However, f does include all values up to that
value through the limit so that f has an upper bound of 24. When f is
restricted to D2 = (−2, 4], the range is [0, 24).

4. Find the global extremes on the interval D3 = [−2, 2).
From the work above, we know f(−2) = 24 is the maximum value on
[−2, 0). Because the right end point x = 2 is to the left of the local
maximum at x = 8

3 , we need to consider the interval of monotonicity
(0, 2). f is increasing on this interval and bounded above by the limit

lim
x→2−

f(x) = f(2) = 4(2)2 − 23 = 8.

Our work shows that f has a global minimum at x = 0 with f(0) = 0
and a global maximum at x = −2 with f(−2) = 24. The range of f
restricted to D3 = [−2, 2) is [0, 24].

The following figure illustrates the graph y = f(x) restricted to each domain.
Be sure to compare the analysis that identified the global extremes with the
graphs.
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−2 0 2 4
−10

0

10

20

30

(c) Domain: (−2, 4]

−2 0 2 4
−10

0

10

20

30

(d) Domain: [−2, 2)

Figure 8.1.8
�

The process to find global extrema is summarized as the following algo-
rithm.
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Algorithm 8.1.9 Finding Global Extreme Values. To find the global
extrema of a function f(x) that is continuous on an interval:

• Determine the derivative f ′(x) and perform sign analysis.

• Identify all of the local extreme values and compute the value of f(x) at
each extreme.

• Find extremes or bounds for f(x) at the end points using values or limits,
respectively.

• Identify the highest and lowest values out of the local extremes and the
end points.

• If an extreme value occurs at a point in the interval, that value is a global
maximum/minimum. If an extreme value occurs as a limit at an excluded
end point, that value is a bound but not a global extremum.

8.1.3 Extreme Values involving Accumulation
In our examples above, we worked with functions with explicit formulas. How-
ever, most steps in the analysis involved only knowing information about the
derivative. Here we consider examples where the derivative is given as the rate
of accumulation and we do not know the explicit formula for the function in
question.

Example 8.1.10 Suppose f is defined as an accumulation function with an
initial value f(0) = 10 and a rate of accumulation f ′ shown in the graph
below. We assume the graph continues as shown outside of the viewing window.
Determine local and global extreme values for f(x).
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Solution. Our function of interest is defined by an accumulation

f(x) = 10 +
∫ x

0
f ′(z) dz.

We can find local extrema in the same way as before. However, instead of
solving an equation f ′(x) = 0, we can look at the graph to both find the roots
and the signs of f ′. The graph crosses the x-axis at x = −3, x = 1 and
x = 5. The signs of f ′(x) are identified in the following sign analysis number
line summary.
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f ′(x)
x−3

0

1

0

4

0+ − + −

The Theorem 8.1.3 allows us to conclude that f(x) has a local maximum
at x = −3, a local minimum at x = 1, and another local maximum at x = 4.
It is possible to decide which maximum has a higher value by considering the
signed area of the graph. In particular, because f ′(x) has linear segments, we
can compute the areas in question using elementary geometry to find∫ 1

−3
f ′(x) dx = −5,∫ 4

1
f ′(x) dx = 6.

Using the splitting property of definite integrals, this implies

f(4)− f(−3) =
∫ 4

−3
f ′(x) dx = −5 + 6 = 1.

Consequently, f(4) = f(−3) + 1 and f has a higher value at x = 4 than at
x = −3.

We can find actual values if we use the initial value,

f(−3) = 10 +
∫ −3

0
f ′(z) dz.

Because the integral goes right to left, we have dz < 0 and the signed area will
be negated. Again using geometry, we find

f(−3) = 10 +−(−4.5) = 14.5.

Using this point and the integrals above, we can quickly find

f(1) = f(−3) +
∫ 1

−3
f ′(z) dz = 14.5− 5 = 9.5,

f(4) = f(1) +
∫ 4

1
f ′(z) dz = 9.5 + 6 = 15.5.

To find global extrema, we need to think about what happens to the left
and right of these local extrema. The sign analysis of f ′(x) shows that f is
increasing on (−∞,−3). Thus, f(−3) is the maximum value on (−∞, 3]. The
value of f is unbounded below on this interval,

lim
x→−∞

f(x) = −∞.

We can see this by considering the integral
∫ x

−3
for x < −3. Because the

integral goes right to left, dz < 0, and f ′(z) > 0 on this interval, the integral
becomes more and more negative the further x goes to the left. With a similar
argument using

∫ x

4
f ′(z) dz, we find

lim
x→∞

f(x) = −∞

and f is again unbounded below on the interval (4,∞).
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We conclude that f has a global maximum f(4) = 13.5 and no global
minimum. A graph of y = f(x) is shown below.
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8.1.4 Summary
• A function f has a local maximum (plural: maxima) at x = c if f(c) ≥
f(x) in a neighborhood of c. The function f has a local minimum (plural:
minima) at x = c if f(c) ≤ f(x) in a neighborhood of c.

• A function f has a global maximum at x = c if f(c) ≥ f(x) for all x in the
domain. The function f has a global minimum at x = c if f(c) ≤ f(x)
for all x in the domain.

• We can use sign analysis of the derivative f ′ to find local extreme values.
Points where f ′(x) changes sign are local extrema. This is called the
First Derivative Test.

• Global extrema can occur at local extrema or at boundaries of intervals.
We need to compare the value of the function at each of the local extrema
with the end points. If an end point is not included, the value of the limit
at that point can serve as a bound for the function but would not be an
actual extreme value.

8.1.5 Exercises

For each function, identify all local extrema.
1. f(x) = x3 − 9x2 − 48x+ 60
2. f(x) = 120x+ 3x2 − 2x3

3. f(x) = x4 − 8x2

4. f(x) = x4 − 4x3 + 3x2 + 2

For each function, find the global extrema on the given intervals.
5. f(x) = 4x− x2 on (i) D = [−1, 6], (ii) D = (1, 4), and (−∞,∞)
6. f(x) = x2 + 3x on (i) D = [−1, 2], (ii) D = (−4, 1], and (−∞,∞)
7. f(x) = x3− 9x2− 48x+ 60 on (i) D = [−5, 5], (ii) D = [−10, 10), and

(−∞,∞)
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8. f(x) = x4 − 12x3 + 28x2 − 17 on (i) D = [−1, 3], (ii) D = (1, 8), and
(−∞,∞)
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8.2 The Derivative

8.2.1 Overview
Given a function, the derivative at a point allows us to measure the instanta-
neous rate of change at that point. This rate of change is defined as the limiting
value of the average rate of change as the space between the two points used
approaches zero. It would be quite tedious to compute the derivative at each
point using this process. Fortunately, we can create a function known as the
derivative that does this for us.

In this section, we introduce the derivative as a function rather than an
isolated calculation. The definition of the derivative is still in terms of a limit,
but with the point in question represented by a variable. The domain of
the derivative consists of all points where the limit exists, and corresponds
to the set of points where a tangent line can be defined as a function. For
algebraically defined functions, we can use the limit and algebra to find an
algebraic formula for the derivative. Several examples illustrate this process.
The derivative function can then be used to calculate the instantaneous rate
at any desired point.

8.2.2 Introducing the Derivative
A function is a rule that associates a unique output with each input value.
When we look at the graph of a function, the points on the graph are placed
so that the input value is the first coordinate (e.g., x) and the output value
is the second coordinate (e.g., y). Using the graph, we can find the value of
the function for a given input by looking for the input along the horizontal (x)
axis and then finding the point on the graph intersecting the corresponding
vertical line. The height of that point gives the output value of the function.

If that point of the graph has a well-defined tangent line, then we could
define another function that has as its output the slope of the tangent line
at that point. This function is called the derivative function. The following
website provides an interactive illustration of this concept: http://www.intmath.
com/differentiation/derivative-graphs.php

Consider the figure illustrated below. The graph of a function y = f(x)is
given and short segments of the tangent lines at various points have also been
included. The point at x = −1 has a y-value of 2 and a slope of 0 (horizontal
tangent line). So f(−1) = 2 while df

dx (−1) = 0. The point at x = 0 has a
y-value of 0 and a slope of -3, so f(0) = 0 and df

dx (0) = −3. The third point,
at x = 2 has a y-value of 2 and a slope of 9, corresponding to f(2) = 2 and
df
dx (2) = 9. The equations of these tangent lines, listed in the same order as
described above, and written in point–slope form, are given by

y = 2,
y = −3x,
y = 9(x− 2) + 2.

http://www.intmath.com/differentiation/derivative-graphs.php
http://www.intmath.com/differentiation/derivative-graphs.php
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Definition 8.2.1 The Derivative. Suppose f is a function relating two
variables f : x 7→ y. The derivative of y is a new dependent variable dy

dx that
for every value of the independent variable, x = a, has a value equal to the
instantaneous rate of change, dy

dx = dy
dx

∣∣∣
a
. The function f ′ : x 7→ dy

dx is called
the derivative of f . That is,

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

.

The domain of f ′ is the set of all values x where the limit exists. ♦
Our previous use of the notation f ′ to represent the rate of accumulation of

an accumulation function was intentional. It looked ahead to the Fundamental
Theorem of Calculus that connects the ideas of derivatives and integrals. In this
section, we will use the names f ′ and df

dx interchangeably. The Fundamental
Theorem of Calculus will justify this equivalence later.

8.2.3 Examples of Calculation
Recall that the definition of the instantaneous rate of change (which is what
the derivative measures) is the limiting value of an average rate of change of the
function between two points as the second point approaches the first. When
computing the derivative, we will use two points at symbolic values x (the
point of interest) and x+h (the second point), where h is the spacing between
the two points. The second point approaches the first when h→ 0. The basic
process is outlined in the following steps:

1. Compute f(x + h) using the rule for f(x). (Find the output for the
second point.)

2. Compute f(x+ h)− f(x) and simplify. (Find the change in output.)

3. Simplify ∆f
∆x = f(x+ h)− f(x)

h
. (Determine a simplified formula for

the average rate of change.)

4. Determine df

dx
= lim

h→0

f(x+ h)− f(x)
h

. (Evaluate the limiting value as
the second point approaches the first.)

Example 8.2.2 Use the definition of the derivative to find df
dx where f(x) =

x2 − 3x.
Solution.
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• Find the output at the second point:

f(x+ h) = (x+ h)2 − 3(x+ h) = x2 + 2xh+ h2 − 3x− 3h.

• Find the change in output between the two points:

f(x+ h)− f(x) = (x2 + 2xh+ h2 − 3x− 3h)− (x2 − 3x)
= x2 + 2xh+ h2 − 3x− 3h− x2 + 3x
= 2xh+ h2 − 3h.

• Simplify the average rate of change between the two points:

f(x+ h)− f(x)
h

= 2xh+ h2 − 3h
h

= h(2x+ h− 3)
h

= 2x+ h− 3.

• The derivative is the limit of the average rate of change:

df

dx
= lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

2x+ h− 3

= 2x+ 0− 3 = 2x− 3.

So we have found the derivative function, df
dx (x) = 2x − 3. We can see

this exactly agrees with the rate of accumulation f ′(x) = 2x− 3 that we
earlier learned to find in terms of the elementary accumulation formulas.

�
Often it is more convenient to combine some of these steps together. However,
just be careful that you create valid equations. Always have an equation that
says what you are computing, and do not write that two things are equal when
they are not the same. In the previous example, note how each time I started
to compute a new expression, I created a new system of equations.

In this next example, we are reminded of the need to find a common de-
nominator when a fraction is involved. Also, it is useful to recall that division
by a number his the same as multiplication by its inverse 1/h.

Example 8.2.3 Use the definition of the derivative to find f ′(x) where f(x) =
1

2x+ 3 .

Solution.

• Find the output at the second point:

f(x+ h) = 1
2(x+ h) + 3 = 1

2x+ 2h+ 3 .

• Find the change in output between the two points:

f(x+ h)− f(x) = 1
2x+ 2h+ 3 −

1
2x+ 3 .

Here is where we will need to use a common denominator. Recall from
ordinary fractions that a common denominator is formed by multiplying
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the top and bottom by a missing factor.

f(x+ h)− f(x) = (2x+ 3)
(2x+ 3)(2x+ 2h+ 3) −

(2x+ 2h+ 3)
(2x+ 3)(2x+ 2h+ 3)

= (2x+ 3)− (2x+ 2h+ 3)
(2x+ 3)(2x+ 2h+ 3)

= −2h
(2x+ 3)(2x+ 2h+ 3)

• Simplify the average rate of change between the two points. However,
it is dangerous to write a fraction divided by something (division is not
associative), so we will write division by h as multiplication by 1/h and
simplify the resulting expression:

f(x+ h)− f(x)
h

= −2h
(2x+ 3)(2x+ 2h+ 3) ·

1
h

= −2
(2x+ 3)(2x+ 2h+ 3)

Your goal at the simplification step should always be to make the h cancel
as a common factor.

• The derivative is the limit of the average rate of change:

df

dx
= lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

−2
(2x+ 3)(2x+ 2h+ 3)

= −2
(2x+ 3)(2x+ 0 + 3)

= −2
(2x+ 3)2 .

This gives us the derivative function,

df

dx
= −2

(2x+ 3)2 .

�
For our last examples, we consider finding the derivative using the definition

when the function involves the square root. We will find it necessary to use a
trick from algebra involving conjugate pairs. Recall that (a+b)(a−b) = a2−b2.
If a or b is a square root of some value, then the product of these conjugate
pairs will have the square of the square root, thereby no longer involving the
square root. For example,

(
√
x− 2)(

√
x+ 2) = (

√
x)2 − (2)2 = x− 4.

Example 8.2.4 Use the definition of the derivative to find f ′(x) where f(x) =√
x.

Solution.

• Find the output at the second point:

f(x+ h) =
√
x+ h
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• Find the change in output between the two points:

f(x+ h)− f(x) =
√
x+ h−

√
x.

• Simplify the average rate of change between the two points. This will
require multiplying the numerator and denominator by the conjugate
pair:

f(x+ h)− f(x)
h

=
√
x+ h−

√
x

h

= (
√
x+ h−

√
x)(
√
x+ h+

√
x)

h(
√
x+ h+

√
x)

= (
√
x+ h)2 − (

√
x)2

h(
√
x+ h+

√
x)

= x+ h− x
h(
√
x+ h+

√
x)

= h

h(
√
x+ h+

√
x)

= 1√
x+ h+

√
x
.

• The derivative is the limit of the average rate of change:

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1√
x+ h+

√
x

= 1√
x+ 0 +

√
x

= 1
2
√
x

This gives us the derivative function,

f ′(x) = 1
2
√
x
.

�

Example 8.2.5 Use the definition of the derivative to find f ′(x) where f(x) =√
2x− 5.

Solution.

• Find the output at the second point:

f(x+ h) =
√

2(x+ h)− 5 =
√

2x+ 2h− 5

• Find the change in output between the two points:

f(x+ h)− f(x) =
√

2x+ 2h− 5−
√

2x− 5.

• Simplify the average rate of change between the two points. This will
require multiplying the numerator and denominator by the conjugate
pair:

f(x+ h)− f(x)
h

=
√

2x+ 2h− 5−
√

2x− 5
h

= (
√

2x+ 2h− 5−
√

2x− 5)(
√

2x+ 2h− 5 +
√

2x− 5)
h(
√

2x+ 2h− 5 +
√

2x− 5)
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= (
√

2x+ 2h− 5)2 − (
√

2x− 5)2

h(
√

2x+ 2h− 5 +
√

2x− 5)
= (2x+ 2h− 5)− (2x− 5)
h(
√

2x+ 2h− 5 +
√

2x− 5)

= 2h
h(
√

2x+ 2h− 5 +
√

2x− 5)
= 2√

2x+ 2h− 5 +
√

2x− 5
.

• The derivative is the limit of the average rate of change:

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

2√
2x+ 2h− 5 +

√
2x− 5

= 2√
2x+ 0− 5 +

√
2x− 5

= 1√
2x− 5

This gives us the derivative function,

f ′(x) = 1√
2x− 5

.

�

8.2.4 Differentiability
A function is differentiable at points where the derivative is defined. Alter-
natively, because the derivative at a point represents the slope of the tangent
line, we say the function is differentiable at a point wherever the function has
a well-defined tangent line.

Definition 8.2.6 Differentiability. A function f is differentiable at a if
f ′(a) exists, or more precisely the limit

lim
h→0

f(a+ h)− f(a)
h

= lim
x→a

f(x)− f(a)
x− a

exists. ♦
A function f is not differentiable at x = a if the limit defining f ′(a) does

not exist. There are several reasons this might occur. The first reason is if the
function is not continuous.
Theorem 8.2.7 Differentiable Implies Continuous. If f is differentiable
at a, then f must be continuous at a. Equivalently, if f is not continuous, then
f must not be differentiable.
Proof. Suppose that f is differentiable at a. This means that f ′(a) is a value
defined by

lim
x→a

f(x)− f(a)
x− a

= f ′(a).

We also know that
lim
x→a

[x− a] = a− a = 0.

Using the product rule for limits (LC:Product), this implies

lim
x→a

[f(x)− f(a)] = lim
x→a

f(x)− f(a)
x− a

· (x− a) = f ′(a) · 0 = 0.
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Because lim
x→a

f(a) = f(a) (LE:Constant), we know that

lim
x→a

f(x) = lim
x→a

[f(x)− f(a) + f(a)] = 0 + f(a) = f(a)

using the sum rule (LC:Sum). Therefore, f is continuous at a. �

Example 8.2.8 Show that f(x) defined below is not continuous and not dif-
ferentiable at x = 1.

f(x) =
{

5− 2x, x < 1
3x+ 1, x ≥ 1

Solution. To check continuity, we evaluate limits from the left and right and
compare it to the value of the function f(1) = 3(1) + 1 = 4.

lim
x→1−

f(x) = lim
x→1−

5− 2x

= 5− 2(1) = 3
lim
x→1+

f(x) = lim
x→1+

3x+ 1

= 3(1) + 1 = 4

The function has a jump discontinuity at x = 1. The value on the function
does agree with the limit on the right, but not the limit on the left.

Theorem 8.2.7 guarantees that we will find f is not differentiable at x = 1.
We can verify this by computing the actual limits defining the derivative. When
h < 0,

f(1 + h) = 5− 2(1 + h) = 3− 2h.

Because f is not continuous from the left, computing the derivative from the
left will result in an infinite limit.

df

dx

∣∣∣
1−

= lim
h→0−

f(1 + h)− f(1)
h

= lim
h→0−

(3− 2h)− 4
h

= lim
h→0−

−2h− 1
h

→ −1
0− = +∞

On the other side, when h > 0,

f(1 + h) = 3(1 + h) + 1 = 4 + 3h

so that

df

dx

∣∣∣
1+

= lim
h→0+

f(1 + h)− f(1)
h

= lim
h→0+

(4 + 3h)− 4
h

= lim
h→0+

3h
h

= 3

With the derivative from the left being infinite, f ′(1) is undefined and f is not
differentiable at x = 1. �
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Another way that a function might not have be differentiable is where it
is continuous but has a corner. This means that the slope at the point looks
different from either of the two sides. Mathematically, if we computed the one-
sided limits of the difference quotient defining the derivative, we would get two
different values. The difference quotient has a jump discontinuity at h = 0.

Example 8.2.9 Consider the piecewise function defined by

f(x) =
{
x2, x ≤ 1,
x, x > 1.

Determine if f is differentiable at x = 1.
Solution. This function is continuous because the limit on the left and the
limit on the right are equal to the value of the function at x = 1, as follows:

lim
x→1−

f(x) = lim
x→1

x2 = 12 = 1,

lim
x→1+

f(x) = lim
x→1

x = 1 = 1,

f(1) = 12 = 1.

Now that we know the function is continuous, we can can compute the
derivative using limits from the left and from the right. Using the function
for x < 1, we have f(1 + h) = (1 + h)2 for h < 0. Consequently, the slope
computed from the left would be

df

dx

∣∣∣
1−

= lim
h→0−

f(1 + h)− f(1)
h

= lim
h→0−

(1 + h)2 − 1
h

= lim
h→0−

1 + 2h+ h2 − 1
h

= lim
h→0−

2h+ h2

h

= lim
h→0−

2 + h

= 2 + 0 = 2.

Next, using the function for x > 1, we have f(1 + h) = 1 + h when h > 0. The
slope computed from the right would be

df

dx

∣∣∣
1+

= lim
h→0+

f(1 + h)− f(1)
h

= lim
h→0+

(1 + h)− 1
h

= lim
h→0+

h

h

= lim
h→0+

1

= 1.

With different limits from the left and right,

df

dx
(1) = lim

h→0

f(1 + h)− f(1)
h
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does not exist and f is not differentiable at x = 1. The figure below illustrates
the graph of this function, showing that there is a corner at x = 1.

−2 −1 0 1 2 3
−1

0

1

2

3

�

Example 8.2.10 Consider the piecewise function defined by

f(x) =
{
x2 − 3x+ 8 x < 2,
5x− x2, x ≥ 2.

Determine if f is differentiable at x = 2.
Solution. This function is continuous because the limit on the left and the
limit on the right are equal to the value of the function at x = 2, as follows:

lim
x→2−

f(x) = lim
x→2

(x2 − 3x+ 8) = 22 − 3(2) + 8 = 6,

lim
x→2+

f(x) = lim
x→2

(5x− x2) = 5(2)− 22 = 6,

f(2) = 5(2)− 22 = 6.

Now that we know the function is continuous, we can compute the derivative
using left- and right-limits. Because f(x) = x2 − 3x+ 8 for x < 2, we have

f(2 + h) = (2 + h)2 − 3(2 + h) + 8 = 6 + h+ h2

when h < 0. Consequently, the derivative from the left is

df

dx

∣∣∣
2−

= lim
h→0−

f(2 + h)− f(2)
h

= lim
h→0−

(6 + h+ h2)− 6
h

= lim
h→0−

h(1 + h)
h
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= lim
h→0−

1 + h

= 1 + 0 = 1.

When h > 0, we have

f(2 + h) = 5(2 + h)− (2 + h)2 = 6 + h− h2.

The derivative from the right is

df

dx

∣∣∣
2+

= lim
h→0+

f(2 + h)− f(2)
h

= lim
h→0+

(6 + h− h2)− 6
h

= lim
h→0+

h(1− h)
h

= lim
h→0+

1− h

= 1− 0 = 1.

Since the left and right limits computing the left and right derivatives are the
same, we conclude that

df

dx
(2) = lim

h→0

f(2 + h)− f(2)
h

= 1

So f is differentiable at x = 2.
The function consists of two parabolas joined together at x = 2. When

the left and right derivatives agree, the function transitions smoothly with no
corner at x = 2.
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8.2.5 Summary
• The derivative of a function f is the function

df

dx
: x = a 7→ df

dx

∣∣∣
a

defined by the limit

df

dx
(x) = lim

h→0

f(x+ h)− f(x)
h

whenever the limit exists. Alternatively,

df

dx
(x) = lim

t→x

f(t)− f(x)
t− x

.

• The derivative function df
dx is also written f ′(x).

• The value f ′(a) is the slope of the tangent line of y = f(x) at x = a.

• Saying f is differentiable at x = a means f ′(a) exists. A function is
not differentiable at any point where there is not a well-defined tangent
line.

• If a function is differentiable, it must be continuous. If a function has a
discontinuity, it will not be differentiable at that point.

• A function can be continuous without being differentiable. For example,
a piecewise function that is continuous but that has mismatching slopes
at a point (the graph shows a corner) will not be differentiable.

8.2.6 Exercises

For each function, compute the derivative using the definition of the derivative.
Use the result to find the equation of the tangent line at x = 5.

1. f(x) = 4x− 7
2. g(x) = x2 + 4x
3. k(x) = x2 − 5x+ 2
4. p(t) = 3t− t2

5. q(x) = x3

6. V (p) = 3
p+ 2

7. F (x) = 1
2x− 3

8. G(x) =
√
x+ 4

9. H(x) =
√

3x+ 1

For each piecewise function, determine if it is continuous and differentiable at
the break point by evaluating the relevant limits.

10. f(x) =
{

3x− 2, x ≤ 2,
x2 − x, x > 2.



CHAPTER 8. MODELING RATES OF CHANGE 390

11. g(x) =
{

2x− 3, x ≤ 1,
x2 − 2, x > 1.

12. k(x) =
{
x2 − 2x, x < 2,
−x2 + 6x− 8, x ≥ 2.
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9.1 Derivative Rules
We have learned that the derivative is defined by the limit of an average rate of
change as the gap between the two points goes to zero. For functions already
defined as an accumulation function with a known, continuous rate of accu-
mulation, the Fundamental Theorem of calculus guarantees that the derivative
equals the rate of accumulation. Every time we need a derivative of any other
function, we must use the definition and compute the limit

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

and then go through the algebra and simplification to find the resulting for-
mula.

It would be much nicer if we could look at the formula of f(x) and know
what the formula of the derivative f ′(x) should be. Computing the formula
for f ′(x) based on the structure of the formula for f(x) is a process called
differentiation. Rules for derivatives will provide us with a methodical way
to differentiate algebraic formulas.

Differentiation is a process of taking a function and using it to determine
another function. That is, differentiation defines a map between functions,
f 7→ f ′. The entire function f(x), not just a value, is the input to the map
and an entirely different function f ′(x) is the output. Maps that take numbers
as inputs and give numbers as outputs are called functions; a map that takes
an entire function as an input is called an operator. When the independent
variable is x, the symbol for the differential operator is d

dx . The x in the symbol
is replaced by the appropriate independent variable for the function of interest.

Definition 9.1.1 The differential operator d
dx takes a function as its input and

provides the derivative function as its output,

d

dx
[f(x)] = df

dx
(x) = f ′(x).

If y is a dependent variable defined by a function y = f(x), then we can also
write

dy

dx
= d

dx
[y] = f ′(x).

♦
In this section, we establish some elementary rules of differentiation. The

rules of differentiation begin with linearity, matching the corresponding prop-
erties of definite integrals. The similarity ends here. Differentiation also has
rules for multiplication and division, where the definite integral has no such
rules. Differentiation goes even further and has a rule for function composition,
called the chain rule. Each rule is justified by returning to the definition of the
derivative using a limit of the difference quotient that represents an average
rate of change.

9.1.1 Derivative Building Blocks
In order to differentiate algebraic formulas, we need to know the derivatives
of elementary functions that will be our building blocks. Because we have the
Fundamental Theorem of Calculus, any rate of accumulation that we know for
an accumulation function is automatically going to be a derivative. However,
it is also useful to show derivatives of elementary functions directly.
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Theorem 9.1.2 Derivative of a Constant. For a constant k,

d

dx
[k] = 0.

Proof. The function of interest is x 7→ k, or f(x) = k. Using the definition of
the derivative,

d

dx
[k] = lim

h→0

f(x+ h)− f(x)
h

= lim
h→0

k − k
h

= lim
h→0

0

= 0.

The last step in this sequence of equations is a consequence of the Limit Rule
for a Constant. �

Theorem 9.1.3 Derivative of the Identity. For the identity function
f(x) = x,

d

dx
[x] = 1.

Proof. Using the definition of the derivative,

d

dx
[x] = lim

h→0

f(x+ h)− f(x)
h

= lim
h→0

x+ h− x
h

= lim
h→0

h

h

= lim
h→0

1

= 1.

Again, the limit calculation at the last step uses the Limit Rule for a Constant.
�

The identity function and constant functions are special cases of linear
functions.
Theorem 9.1.4 Derivative of Linear Functions. For a linear function
f(x) = mx+ b,

d

dx
[mx+ b] = m.

Proof. Using the definition of the derivative,

d

dx
[mx+ b] = lim

h→0

f(x+ h)− f(x)
h

= lim
h→0

(m(x+ h) + b)− (mx+ b)
h

= lim
h→0

mx+mh+ b−mx− b
h

= lim
h→0

mh

h

= lim
h→0

m

= m.

�
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To establish additional derivatives of elementary formulas, we need now to
develop rules that are based on the algebra of combining other formulas.

9.1.2 Overview of the Derivative Rules
Derivative rules are theorems that take as a hypothesis that one or two func-
tions have known derivatives and the conclusion tells how to find the derivative
of some combination of those functions. We start by stating the basic rules
together for convenience in finding them.

Theorem 9.1.5 Differentiation Rules. This theorem is a collection of
multiple theorems. The hypothesis for any statement that involves f(x) or
g(x) is that d

dx [f(x)] = f ′(x) or that d
dx [g(x)] = g′(x). Further, k is assumed

to be a constant.
Table 9.1.6 Summary of the Differentiation Rules

d
dx [k · f(x)] = k · f ′(x) Constant Multiple Rule
d
dx [f(x) + g(x)] = f ′(x) + g′(x) Sum Rule
d
dx [f(x)− g(x)] = f ′(x)− g′(x) Difference Rule
d
dx [ 1

g(x) ] = −g′(x)
(g(x))2 Reciprocal Rule

d
dx [f(x) · g(x)] = f ′(x)g(x) + f(x)g′(x) Product Rule
d
dx [ f(x)

g(x) ] = g(x)f ′(x)−f(x)g′(x)
(g(x))2 Quotient Rule

d
dx [f

(
g(x)

)
] = f ′

(
g(x)

)
· g′(x) Chain Rule

One of these differentiation rules, the chain rule, will require its own section.
That rule is focused on how to differentiate compositions of functions. The
other rules focus on arithmetic combinations of functions and are the primary
focus of this section. The chain rule was included for completeness in the listing
of differentiation rules.

The proofs for these differentiation rules are based on applying the defini-
tion of a derivative to the formula in question while knowing that the limits
that define the derivatives in the hypothesis are valid. To illustrate, we will
look at four of the differentiation rules in detail.

9.1.3 Proofs of Algebraic Differentiation Rules
In each of our proofs for derivative rules, we are going to use the definition of
the derivative for the function defined by the conclusion of the rule. We then
use algebra to rewrite the difference quotient in a way that the divison by h
(and recall h → 0) only appears in expressions where a ratio converges to a
known derivative.

In the proofs, in order to keep the algebra a little cleaner, we will use the
notation ∆f to represent

∆f = f(x+ h)− f(x)

and similarly define
∆g = g(x+ h)− g(x).

Then, because f ′(x) and g′(x) are the derivatives of f(x) and g(x), respectively,
we can substitute the following limits

lim
h→0

∆f
h

= f ′(x) and lim
h→0

∆g
h

= g′(x).

The first rule we consider is the constant multiple rule. This rules states
that if we know how to differentiation a function, then we can compute any
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constant multiple of that function by multiplying the derivative by the same
constant.
Theorem 9.1.7 Constant Multiple Rule for Derivatives. If d

dx [f(x)] =
f ′(x) and k is a constant, then d

dx [kf(x)] = kf ′(x).
Proof. The rule is interested in finding the rate of change of a new function
k · f(x) knowing that d

dx [f(x)] = f ′(x). We begin by stating the definition of
the derivative of the function x 7→ k · f(x), and then we use algebra to factor
k out as a common factor in the numerator:

d

dx
[k · f(x)] = lim

h→0

k · f(x+ h)− k · f(x)
h

= lim
h→0

k(f(x+ h)− f(x))
h

.

= lim
h→0

k · ∆f
h
.

Now notice that the formula is a product of the constant k and the average rate
of change of f . The rules for limits act with the ordinary rules of arithmetic.
In particular, the constant multiple rule for limits states that the limit of a
constant times a function equals that constant times the limit of the function.
Consequently, we have

d

dx
[k · f(x)] = lim

h→0
k

∆f
h

= k · lim
h→0

∆f
h

= k · f ′(x).

�
For our second example of proving a differentiation rule, we consider the

reciprocal of a function. We know that d
dx [x2 + 3] = 2x. This reciprocal rule

will tell us how to compute the derivative d
dx [ 1

x2 + 3]. We might be tempted
to think the answer would be 1

2x , but this is not correct. Derivatives do not
follow simple rules for either division or multiplication.

Theorem 9.1.8 Reciprocal Rule for Derivatives. If d
dx [g(x)] = g′(x),

then d

dx
[ 1
g(x) ] = −g

′(x)
(g(x))2 .

Proof. By hypothesis, d

dx
[g(x)] = g′(x). This means that g′(x) is defined by

its limit
lim
h→0

g(x+ h)− g(x)
h

= lim
h→0

∆g
h

= g′(x).

The rule is interested in finding the rate of change of a new function x 7→ 1
g(x) .

We will use that function to compute the derivative using the definition, which
will require finding a common denominator.

d

dx
[ 1
g(x) ] = lim

h→0

1
g(x+h) −

1
g(x)

h

= lim
h→0

g(x)
g(x)g(x+h) −

g(x+h)
g(x)g(x+h)

h
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= lim
h→0

g(x)− g(x+ h)
g(x)g(x+ h) · 1

h

= lim
h→0

−∆g
g(x)g(x+ h) ·

1
h

= lim
h→0

−1
g(x)g(x+ h) ·

∆g
h

Since the limit involves h → 0, g(x) is a constant relative to the limit. In
addition, because a differentiable function is continuous, we have g(x + h) →
g(x) as x → h. Consequently, the limit rules for reciprocals and constant
multiples imply

lim
h→0

−1
g(x)g(x+ h) = −1

(g(x))2 .

Using the limit rule for a product, we have

d

dx
[ 1
g(x) ] = lim

h→0

−1
g(x)g(x+ h) ·

g(x+ h)− g(x)
h

= −1
(g(x))2 · g

′(x) = −g
′(x)

(g(x))2 .

�

Example 9.1.9 Find d

dx
[ 1
x2 + 3].

Solution. We start by recognizing the formula 1
x2+3 as the reciprocal of

g(x) = x2 + 3. We know g′(x) = 2x, so the Theorem 9.1.8 gives

d

dx
[ 1
x2 + 3] = −g

′(x)
(g(x))2

= −2x
(x2 + 3)2 .

That is, if f(x) = 1
x2+3 , the derivative is f ′(x) = −2x

(x2+3)2 . �

In the solution to the previous example, we introduced a name for a function
for the sole reason of being able to refer to its derivative. This is one of the
primary reasons for introducing the differentiation operator d

dx . It allows us
to refer to derivatives using the operator with the original function as input.
The work in the example could be rewritten

d

dx
[ 1
x2 + 3] =

− d
dx [x2 + 3]

(x2 + 3)2

= −2x
(x2 + 3)2 .

The two rules of differentiation proved thus far involve operations on a
single function. We now turn our attention to rules that combine multiple
functions. The first rule we consider is the sum rule, which states that the
derivative of a function formed by adding two functions will be the sum of
those functions’ derivatives.
Theorem 9.1.10 Sum Rule for Derivatives. If d

dx [f(x)] = f ′(x) and
d
dx [g(x)] = g′(x), then d

dx [f(x) + g(x)] = f ′(x) + g′(x).

Proof. By hypothesis, d

dx
[f(x)] = f ′(x) and d

dx
[g(x)] = g′(x). This means
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that

lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

∆f
h

= f ′(x),

lim
h→0

g(x+ h)− g(x)
h

= lim
h→0

∆g
h

= g′(x).

The sum rule is interested in finding the rate of change of a new function
x 7→ f(x) + g(x). Because ∆f = f(x + h) − f(x), we can rewrite f(x + h) =
f(x) + ∆f . Similarly, we can rewrite g(x+ h) = g(x) + ∆g. When we use the
definition of the derivative, we find

d

dx
[f(x) + g(x)] = lim

h→0

[f(x+ h) + g(x+ h)]− [f(x) + g(x)]
h

= lim
h→0

f(x) + ∆f + g(x) + ∆g − f(x)− g(x)
h

= lim
h→0

∆f + ∆g
h

= lim
h→0

[
∆f
h

+ ∆g
h

]
.

Again, because limit rules satisfy the ordinary rules of arithmetic, the limit
rule for sums implies

d

dx
[f(x) + g(x)] = lim

h→0

[
∆f
h

+ ∆g
h

]
= lim
h→0

[
∆f
h

]
+ lim
h→0

[
∆g
h

]
= f ′(x) + g′(x).

�
For our final example of a proof of a differentiation rule, we consider the

derivative of a product. Consider a function like f(x) = (x2 − 3) · (2x+ 1). It
is tempting to take derivatives of each formula in place and assume that f ′(x)
would be (2x) · (2) = 4x. We can see that this is incorrect if we rewrote f(x)
after expanding the product,

f(x) = 2x3 + x2 − 6x− 3.

Once written as a simple polynomial, our experience with accumulation func-
tions and the Fundamental Theorem of Calculus allows us to recognize

f ′(x) = 6x2 + 2x− 6.

Proper differentiation rules will be consistent regardless of how a function
is represented. For a function that is represented as a product of two other
functions, the product rule shows that the derivative is a sum of contributions
resulting from the rate of change of each factor.

Theorem 9.1.11 Product Rule for Derivatives. If d
dx [f(x)] = f ′(x) and

d
dx [g(x)] = g′(x), then d

dx [f(x) · g(x)] = f ′(x) · g(x) + f(x) · g′(x).

Proof. By hypothesis, d

dx
[f(x)] = f ′(x) and d

dx
[g(x)] = g′(x). This means

that

lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

∆f
h

= f ′(x),
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lim
h→0

g(x+ h)− g(x)
h

= lim
h→0

∆g
h

= g′(x).

The product rule is interested in finding the rate of change of a new function
x 7→ f(x)g(x). As we did in the sum rule, we will take advantage of rewriting
f(x+ h) = f(x) + ∆f and g(x+ h) = g(x) + ∆g. When f ′(x) and g′(x) both
exist, f and g are both continuous so that

lim
h→0

∆f = lim
h→0

f(x+ h)− f(x) = 0,

lim
h→0

∆g = lim
h→0

g(x+ h)− g(x) = 0.

The derivative in question is defined by

d

dx
[f(x)g(x)] = lim

h→0

[f(x+ h)g(x+ h)]− [f(x)g(x)]
h

= lim
h→0

(f(x) + ∆f)(g(x) + ∆g)− f(x)g(x)
h

= lim
h→0

f(x)g(x) + ∆fg(x) + f(x)∆g + ∆f∆g − f(x)g(x)
h

= lim
h→0

∆fg(x) + f(x)∆g + ∆f∆g
h

= lim
h→0

[
∆fg(x)

h
+ f(x)∆g

h
+ ∆f∆g

h

]
= lim
h→0

[
∆f
h
· g(x) + f(x) · ∆g

h
+ ∆f · ∆g

h

]
.

= f ′(x) · g(x) + f(x) · g′(x) + 0 · g′(x)
= f ′(x) · g(x) + f(x) · g′(x),

using the Limit Rule of a Sum and the Limit Rule of a Product. �

Example 9.1.12 Show that the derivative using the product rule for d

dx
[(x2−

3) · (2x + 1)] is consistent with first expanding and then differentiating the
polynomial.
Solution. The function f(x) = (x2 − 3) · (2x+ 1) is a product of u = x2 − 3
and v = 2x+ 1. The product rule informs us that d

dx [uv] = du
dx v + u dv

dx :

d

dx
[(x2 − 3) · (2x+ 1)] = d

dx
[x2 − 3] · (2x+ 1) + (x2 − 3) · d

dx
[2x+ 1]

= (2x) · (2x+ 1) + (x2 − 3) · (2)
= 4x2 + 2x+ 2x2 − 6
= 6x2 + 2x− 6

We saw prior to the theorem that f(x) = (x2 − 3)(2x+ 1) = 2x3 + x2 − 6x− 3
has a derivative f ′(x) = 6x2 + 2x − 6, which is consistent with the result we
obtained using the product rule. �

The quotient rule is a combination of the product rule and the reciprocal
rule.
Theorem 9.1.13 Quotient Rule for Derivatives. If d

dx [f(x)] = f ′(x) and
d
dx [g(x)] = g′(x), then d

dx

[
f(x)
g(x)

]
= f ′(x)g(x)− f(x)g′(x)

(g(x))2 .
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9.1.4 Applying the Rules to Formulas
In this section, we have established rules of differentiation for elementary for-
mulas and for algebraic combinations of functions with known derivatives. We
now consider how we can apply these rules together to compute derivatives
from more complex formulas.

To illustrate how functions are formed as combinations of elementary func-
tions, let us revisit the derivative of a linear function, f(x) = mx + b. This
function is algebraically the sum of the expressions mx and b. Consequently,
the derivative will be the sum of the derivatives of those expressions. The first,
mx is a constant multiple of the identity function, so

d

dx
[mx] = m

d

dx
[x] = m · 1 = m.

The second, b is a constant function, so

d

dx
[b] = 0.

Adding these together, we find

d

dx
[mx+ b] = d

dx
[mx] + d

dx
[b] = m+ 0 = m,

exactly the same as we found applying the definition of the derivative in The-
orem 9.1.4.
Example 9.1.14 Use the differentiation rules to show

d

dx
[x2] = 2x.

Solution. The function that is the input to the differentiation operator is
x2. The elementary building blocks so far only include constant functions,
the identity function, and other linear functions. We need to see how x2 is a
combination of these elementary functions. To do this, we need to recognize
that the square corresponds to multiplication,

x2 = x · x.

Once we recognize that our function is a product, we use the product rule
with f(x) = x and g(x) = x. The product rule says

d

dx
[f(x)g(x)] = f ′(x)g(x) + f(x)g′(x),

for which we use f ′(x) = 1 and g′(x) = 1. Consequently,

d

dx
[x2] = d

dx
[x · x]

= 1 · x+ x · 1
= x+ x = 2x.

�
We can repeat this process to find the derivative of x3 and then x4. The

pattern generalizes to a rule that we call the power rule.
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Example 9.1.15 Continue to use the product rule of derivatives to show that

d

dx
[x3] = 3x2,

d

dx
[x4] = 4x3.

Solution. We rewrite the power as products:

x3 = x · x2, x4 = x · x3.

We already know

d

dx
[x] = 1,

d

dx
[x2] = 2x.

It is useful to remember the product rule using dependent variables instead of
functions. That is, if u = f(x) and v = g(x), then the product rule becomes

d

dx
[u · v] = du

dx
· v + u · dv

dx
.

because this will guide our use of the differentiation operator.
The derivative of x3 = x · x2 will use u = x and v = x2:

d

dx
[x3] = d

dx
[x · x2]

= d

dx
[x] · x2 + x · d

dx
[x2]

= 1 · x2 + x · (2x)
= 3x2

The derivative of x4 = x · x3 uses u = x and v = x3, whose derivative we
learned just above.

d

dx
[x4] = d

dx
[x · x3]

= d

dx
[x] · x3 + x · d

dx
[x3]

= 1 · x3 + x · (3x2)
= 4x3

Notice that the derivative rules are self consistent. We could have written
x4 = x2 · x2, and the product rule would still have given the same answer.

d

dx
[x4] = d

dx
[x2 · x2]

= d

dx
[x2] · x2 + x2 · d

dx
[x2]

= 2x · x2 + x2 · 2x
= 4x3.

�
We can continue to find more derivatives using these results. In particular,
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all of the polynomials that we learned earlier in terms of the rates of accumu-
lation for accumulation functions, we now can justify as derivatives using the
derivative rules.

Example 9.1.16 Find d

dx
[x3 + 5x2 − 8x+ 3].

Solution. It is helpful to give the original function a name, so we define
f(x) = x3 + 5x2 − 8x+ 3. We start by using the sum rule of derivatives. That
rule was formulated with adding two formulas together. Consequently, we need
to repeat our use of the rule, breaking up the sum into two parts at a time.

df

dx
= d

dx
[x3 + 5x2 − 8x+ 3]

= d

dx
[x3] + d

dx
[5x2 − 8x+ 3]

= d

dx
[x3] + d

dx
[5x2] + d

dx
[−8x+ 3]

We can stop at this point with the sum rule because −8x + 3 is a linear
function, and we have a derivative rule for any linear function. We can use the
constant multiple rule to factor the 5 from the derivatives of x2, and then use
the derivatives that we know.

f ′(x) = d

dx
[x3] + 5 d

dx
[x2] + d

dx
[−8x+ 3]

= 3x2 + 5(2x) +−8
= 3x2 + 10x− 8.

We have shown d

dx
[x3 + 5x2 − 8x+ 3] = 3x2 + 10x− 8. �

The previous example was one that we learned previously using accumula-
tion functions. Because definite integrals also have constant multiple and sum
rules, the process we used earlier is essentially the same. The new differenti-
ation rules really show their value in finding derivatives of functions we that
are not written as a sum.

Example 9.1.17 Find d

dx
[ 1
x3 ].

Solution. We use the reciprocal rule of derivatives,

d

dx
[ 1
u

] =
−dudx
u2 .

So our derivative is

d

dx
[ 1
x3 ] =

− d
dx [x3]

(x3)2

= −(3x2)
x3 · x3 = −3x2

x6

= −3
x4 .

�
We have found derivative formulas for quite a few different elementary

powers now. One of the themes in mathematics is to look for patterns and
then determine whether that pattern would always hold. Consider the following
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sequence of statements that we have proved:
d

dx
[x2] = 2x,

d

dx
[x3] = 3x2,

d

dx
[x4] = 4x3.

There appears to be a pattern that the derivative of the power includes as a
constant multiple the value of the power and another power of the variable
that is one lower than the original function.

How does this relate to more other expressions? The identity function can
also be thought of as a power, x = x1, and we can rewrite the derivative rule
for the identity as

d

dx
[x1] = 1x0 = 1.

We can think of reciprocals of powers as equivalent negative powers. For
example, the reciprocal rule guarantees

d

dx
[ 1
x

] = −1
x2

and we just showed
d

dx
[ 1
x3 ] = −3

x4 .

If we rewrote these derivatives in the form of simple negative powers, we dis-
cover the pattern continues:

d

dx
[x−1] = −1x−2,

d

dx
[x−3] = −3x−4.

When learning about the definition of the derivative, we found the derivative
of the square root function,

d

dx
[
√
x] = 1

2
√
x
.

By rewriting the square root as a fractional power, we discover that even this
rule is following the same pattern.

d

dx
[x1/2] = 1

2x
−1/2.

We have seen seven examples that appear to follow the same pattern. In-
ductive reasoning is the process of using examples to develop a generalization
that we belief might be true. For this example, inductive reasoning would lead
us to a conjecture that for any power,

d

dx
[xp] = pxp−1.

Deductive reasoning is the process of establishing the truth of such a statement
built on a logical argument, or a proof, that applies the definitions and other
proved conclusions to show whether or not that conjecture is true.

In this case, the claim can be proved true. We will prove the result in
stages. First, we will generalize to all positive integer powers. Next, we will
show that the result for positive integer powers implies a similar result for
negative integer powers. As we continue to develop calculus, we will show our
result is true for rational powers and ultimately for any real number.
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Theorem 9.1.18 Power Rule for Derivatives. For any real number p,

d

dx
[xp] = pxp−1.

Proof. As indicated, we currently are only ready to prove this theorem for the
integer powers. We start with positive integers. We have already proved the
result for p = 1, 2, 3, 4 as part of our discovering the pattern. As we developed
that pattern, we discovered that we were using a recursive argument each time.
The powers p = 3 and p = 4 were based on knowing the results for p = 2 and
p = 3, respectively. Our proof builds on this recursive argument to create a
general statement.

Suppose that we know for p = n,

d

dx
[xn] = nxn−1.

Next consider the power p = n+ 1, and rewrite it xn+1 = x · xn. The product
rule guarantees

d

dx
[xn+1] = d

dx
[x · xn]

= d

dx
[x] · xn + x · d

dx
[xn]

= 1 · xn + x · nxn−1

= xn + nxn

= (n+ 1)xn.

This general recursive argument shows that if the rule is satisfied for an initial
value of p = n, the statement will be immediately known to be true for the
sequence of values p ∈ (n, n+ 1, n+ 2, . . .). Having earlier shown the rule was
true for p = 1, the recursive argument shows it will be true for all positive
integers. In addition, because we know the rule is true for p = 1

2 , the same
argument shows that the rule is true for all p ∈ ( 1

2 ,
3
2 ,

5
2 , . . .).

The reciprocal rule for derivatives allows us to use the rule for positive
integers to show the pattern holds for negative integers. For a positive integer
n, consider the corresponding negative power p = −n as a reciprocal.

d

dx
[xp] = d

dx
[x−n] = d

dx
[ 1
xn

]

=
− d
dx [xn]

(xn)2

= −nx
n−1

x2n

= −nxn−1 · x−2n = −nxn−1−2n

= −nx−n−1 = pxp−1.

The argument did not depend so much on n being an integer as it required that
we knew the power rule was true for p = n. Consequently, the same argument
proves that the power rule is also true for p ∈ (− 1

2 ,−
3
2 , . . .). �

9.1.5 Exercises

Each function is an algebraic combination of more elementary expressions.
Identify the last operation in the expression and the component expressions
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that operation combines. Repeat the process for each of the component ex-
pressions.

For example, 3x2 − 8x involves a final operation of subtraction involving
the terms 3x2 and 8x; 3x2 is a constant multiple of the expression x2 with the
constant 3; and 8x is a constant multiple of the identity x with constant 8.

1. u(x) = 5x4 + (2x+ 3)(3x− 2)
2. f(x) = (x2 + 5x)(x3 − 7)

3. g(x) = 2x3

4x+ 1

Show that the derivative of each product is the same whether the function is
expanded into a sum before differentiation or the product rule is used on the
original formula.

4. P (x) = (2x+ 5)(3x− 4)
5. Q(t) = (3t− 1)(t2 + 4t− 5)
6. R(y) = (y2 − 2)(y2 + 2)

Compute the derivatives.

7. d

dx
[4
√
x]

8. d

dx
[2x5/2 − 5x3/2]

9. d

dt
[ 1
t2 + 4t ]

10. d

dt
[ 5
3t− 1 ]

11. d

dr
[ r

r2 + 4]

Applications
12. Find the tangent line for y = x−1

x+1 at x = 2.

13. Find the tangent line for y =
√
x at x = 100.

14. Find all points on the graph y = 1
x
such that the slope of the tangent

line has slope −4.
15. The height y (feet) from the ground of an object tossed from a tower

is a quadratic function of time t (seconds) given by

y = 50 + 40t− 16t2.

(a) Determine the velocity at which the object is thrown. (Velocity
is the instantaneous rate of change of height.)

(b) Find the time when the object is traveling at the same speed
but opposite direction as when it was thrown.

(c) Find the time such that the velocity is equal to the average
velocity over the first two seconds of flight.
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9.2 Differentiation and Related Rates
The rules of differentiation provide directions for how a desire rate of change is
computed relative to the rates of change of its components. We often think of
these rules in terms of differentiating formulas. However, because a derivative
is a function that gives the instantaneous rate of change, the rules also apply
to any instantaneous rate of change of a dependent variable that is made from
other variables.

In this section, we will develop our understanding of the differentiation
rules. First, we focus on how the rules apply to formulas. That is, given
the explicit formula for a function, we can compute the explicit formula for
its derivative. Then we study related rates. In that setting, we do not have
explicit formulas for the dependent variable of interest. Instead, we know how
the variable relates to other dependent variables. If we know the instantaneous
rates of change of the related variables, then the differentiation rules will allow
us to compute the instantaneous rate of change of our variable of interest.

9.2.1 Derivatives Take Practice
I want to recommend that you practice as much as possible. You might find
it useful to do some of this practice using the following web-based app that
will also work on smart phones or tablets: Derivative Practice on Algebraic
Formulas. Work your way until you can do all of the types of calculations
without hesitation.

Start by knowing basic derivatives of power functions using the power rule

d

dx
[xp] = pxp−1.

We looked at why this rule is true when p is a positive integer, but the rule is
true for any power function. Combining this with the constant multiple rule,
you can find the derivative

d

dx
[Axp] = Apxp−1.

Example 9.2.1 Compute the following derivatives:

1. d

dx
[5x3]

2. d

dx
[x

4

7 ]

3. d

dx
[ 2
7x2 ]

Solution.

1. To compute d

dx
[5x3], we recognize the elementary power x3 which has

power p = 3 so that its derivative is d
dx [x3] = 3x2. Use the constant

multiple rule to get the final derivative.

d

dx
[5x3] = 5(3x2) = 15x2.

2. To compute d

dx
[x

4

7 ], we recognize the elementary power x4 which has
power p = 4 so that its derivative is d

dx [x4] = 4x3. The fraction is a

http://educ.jmu.edu/~waltondb/webapp/derivs_algebraic.html
http://educ.jmu.edu/~waltondb/webapp/derivs_algebraic.html
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constant multiple in disguise with constant 1
7 .

d

dx
[x

4

7 ] = d

dx
[ 17x

4] = 1
7(4x3) = 4

7x
3.

3. To compute d

dx
[ 2
7x2 ], we use the properties of powers to rewrite division

by a power as a negative power,

2
7x2 = 2

7x
−2.

The basic power p = −2 has a derivative with new power p− 1 = −3, so

d

dx
[ 2
7x2 ] = d

dx
[ 27x
−2] = 2

7(−2x−3) = −4
7x3 .

�
Once you have mastered these elementary building blocks with the con-

stant multiple rule, you can move to sums of these building blocks. Deriva-
tives behave nicely with sums, since the derivative of a sum is the sum of the
derivatives,

d

dx
[f(x) + g(x)] = d

dx
[f(x)] + d

dx
[g(x)] = f ′(x) + g′(x).

In practice, this means that as soon as you recognize a function is combined as
a sum of elementary parts, you can just compute the derivatives of each part
separately and add the results. (Subtraction is just addition with an inverse,
so both are done at the same time.)

Example 9.2.2 Compute the following derivatives:

1. d

dx
[2x5 − 3x3 + 5x2 + 7]

2. d

dx
[x2 + 3x− 1

2x3 ]

Solution. For each problem, pay attention to how the differentiation operator
is applied, starting from the entire formula to individual components until the
ultimate answer is found.

1.

d

dx
[2x5 − 3x3 + 5x2 + 7] = d

dx
[2x5] + d

dx
[−3x3] + d

dx
[5x2] + d

dx
[7]

= 2(5x4) +−3(3x2) + 5(2x) + 0
= 10x4 − 9x2 + 10x

2.

d

dx
[x2 + 3x− 1

2x3 ] = d

dx
[x2] + d

dx
[3x] + d

dx
[−1

2x
−3]

= 2x+ 3 + −1
2 (−3x−4)

= 2x+ 3 + 3
2x4

�
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Now that you can compute derivatives of sums of elementary terms, you
should practice computing derivatives of products. The product rule for deriva-
tives do not follow the same simple rule as sums. A little memorization jingle
that might help is, "The derivative of u times v is U dee-V plus V dee-U,"
which as formula is

d

dx
[u · v] = u

dv

dx
+ v

du

dx
.

Others like to say, "First D-Last plus Last D-First." Alternatively, I personally
use a tactile approach where I touch each factor one at a time and write down
a new product where I replace the factor I am touching with its derivative and
leave all other factors alone, adding the results. For a product of u and v, I
would write

d

dx
[u · v] = du

dx
· v + u · dv

dx
,

and for a product of three terms, u, v, w, I would write
d

dx
[u · v · w] = du

dx
· v · w + u · dv

dx
· w + u · v · dw

dx
.

Example 9.2.3 Compute the following derivatives:

1. d

dx
[(2x+ 5)(3x− 7)]

2. d

dx
[x2(x3 + 5)]

3. d

dx
[4x2(3x− 1)(4x+ 5)]

Solution. For each problem, continue to watch how the differentiation oper-
ator is applied, starting from the entire formula to individual components until
the ultimate answer is found.

1.

d

dx
[(2x+ 5)(3x− 7)] = d

dx
[2x+ 5] · (3x− 7) + (2x+ 5) · [3x− 7]

= 2(3x− 7) + (2x+ 5)(3)
= 6x− 14 + 6x+ 15
= 12x+ 1

2.

d

dx
[x2(x3 + 5)] = d

dx
[x2] · (x3 + 5) + x2 · d

dx
[x3 + 5]

= (2x)(x3 + 5) + x2(3x2 + 0)
= 2x4 + 10x+ 3x4

= 5x4 + 10x

3.

d

dx
[4x2(3x− 1)(4x+ 5)] = d

dx
[4x2](3x− 1)(4x+ 5)

+ (4x2) d
dx

[3x− 1](4x+ 5)

+ (4x2)(3x− 1) d
dx

[4x+ 5]
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= (8x)(3x− 1)(4x+ 5) + (4x2)(3)(4x+ 5) + (4x2)(3x− 1)(4)
= 8x(12x2 + 15x− 4x− 5) + 12x2(4x+ 5) + 16x2(3x− 1)
= 96x3 + 88x2 − 40x+ 48x3 + 60x2 + 48x3 − 16x2

= 192x3 + 132x2 − 40x

In each of these examples, it would also be possible to multiply out the
formulas before taking a derivative. This is often easier because then you only
need to use the sum rule rather than the product rule.

1.

d

dx
[(2x+ 5)(3x− 7)] = d

dx
[6x2 − 14x+ 15x− 35]

= d

dx
[6x2 + x− 35]

= 12x+ 1

2.

d

dx
[x2(x3 + 5)] = d

dx
[x5 + 5x2]

= 5x4 + 10x

3.

d

dx
[4x2(3x− 1)(4x+ 5)] = d

dx
[4x2(12x2 + 15x− 4x− 5)]

= d

dx
[48x4 + 44x3 − 20x2]

= 48(4x3) + 44(3x2)− 20(2x)
= 192x3 + 132x2 − 40x

However, it is good to practice the product rule for those cases later where it is
not possible to expand a formula so that the product rule isn’t necessary. �

After the product rule, you should master the quotient rule,

d

dx
[f(x)
g(x) ] = g(x)f ′(x)− f(x)g′(x)

(g(x))2 .

I like to sing it as a song. In symbols, this rhyme would be written

d

dx
[HiLo ] =

Lo d
dx [Hi]−Hi ddx [Lo]

LoLo .

YouTube: https://www.youtube.com/watch?v=P7sKe46F8kY

Figure 9.2.4 Lo D Hi minus Hi D Lo over Lo Lo.

https://www.youtube.com/watch?v=P7sKe46F8kY
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Example 9.2.5 Compute the following derivatives:

1. d

dx

[
2x+ 5
3x− 7

]

2. d

dx

[
x2

x3 + 5

]
Solution. Applying the quotient rule for derivatives leads to each answer.
You do not need to expand the square of the denominator, but you should
simplify the numerator.

1.

d

dx

[
2x+ 5
3x− 7

]
=

(3x− 7) d
dx [2x+ 5]− (2x+ 5) d

dx [3x− 7]
(3x− 7)2

= (3x− 7)(2)− (2x+ 5)(3)
(3x− 7)2

= 6x− 14− 6x− 15
(3x− 7)2

= −29
(3x− 7)2

2.

d

dx

[
x2

x3 + 5

]
=

(x3 + 5) d
dx [x2]− x2 d

dx [x3 + 5]
(x3 + 5)2

= (x3 + 5)(2x)− x2(3x2)
(x3 + 5)2

= 2x4 + 10x− 3x4

(x3 + 5)2

= −x
4 + 10x

(x3 + 5)2

�

9.2.2 Related Rates
We often fall into a trap thinking that the rules of differentiation apply only
to formulas. Some times, two or more quantities are added together to form
a new quantity representing their sum. Other times, a quantity of interest
is determined by multiplying the values of two measurements. The rules of
differentiation apply to any setting where we are interested in how the rate
of change a quantity relates to the rates of change of quantities with which it
is related. If we know the instantaneous values and rates of change of these
quantities, we can find the instantaneous rate of change of the new variable
even when we do not know any formulas for our underlying variables.

Example 9.2.6 Suppose y = t2f(t) − 3g(t) and z = 2f(t)
g(t) + 1 , where the

functions f and g are not known explicitly. However, we do know the following
values at specific times, as shown in a table. Find dy

dt

∣∣∣
2
and dz

dt

∣∣∣
4
.
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Table 9.2.7 Values of the functions f and g and their derivatives at
specified points.

t 0 1 2 3 4 5
f(t) 3 1 5 2 −1 −3
f ′(t) −2 4 −3 −3 2 6
g(t) 1 3 5 6 4 2
g′(t) 2 3 1 −1 −4 −2

Solution. We start with what we know, the equation y = t2f(t) − 3g(t).
We may not know the explicit formulas for f(t) or g(t), but we do know the
algebraic operations that put the formulas together. In this problem, t is the
independent variable. The differentiation operator will therefore be d

dt .
The last operation used to form y is addition (i.e. subtraction) of t2f(t)

and −3g(t). The sum rule of derivatives 9.1.10 then allows us to write
d

dt
[y] = d

dt
[t2f(t)] + d

dt
[−3g(t)].

The expression t2f(t) is a product of t2 and f(t), so the product rule 9.1.11
tells us

d

dt
[t2f(t)] = d

dt
[t2] · f(t) + t2 · d

dt
[f(t)]

= 2tf(t) + t2f ′(t).

Meanwhile, −3g(t) is a constant multiple 9.1.7 of g(t) so that
d

dt
[−3g(t)] = −3 d

dt
[g(t)] = −3g′(t).

Putting all of these together in a single statement, we obtain
dy

dt
= 2tf(t) + t2f ′(t)− 3g′(t).

Now that we have the equation relating the different rates expressed as
derivatives, we can use our data from the table to find actual instantaneous
rates of change. When t = 2, we find

dy

dt

∣∣∣
2

= 2(2)f(2) + 22f ′(2)− 3g′(2)

= 4(5) + 4(−3)− 3(1) = 5.

In a similar way, we know z = 2f(t)
g(t) + 1 is a quotient. The quotient rule

tells us
dz

dt
=

(g(t) + 1) ddt [2f(t)]− (2f(t)) ddt [g(t) + 1]
(g(t) + 1)2

= 2(g(t) + 1)f ′(t)− 2f(t)g′(t)
(g(t) + 1)2 .

When t = 4, we find
dz

dt

∣∣∣
4

= 2(g(4) + 1)f ′(4)− 2f(4)g′(4)
(g(4) + 1)2

= 2(4 + 1)(−1)− 2(−1)(−4))
(4 + 1)2

= −10− 8)
25 = −18)

25 .

�

We now consider examples of using related rates of change to find the
instantaneous rate of change of a quantity that depends on other related vari-
ables. In each example, we will first recognize how related dependent variables
are algebraically combined. Then we can use rules of differentiation to identify
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a new equation that relates their rates of change. This equation, in turn, allows
us to solve for the unknown rate.

9.2.2.1 A Physical Example of the Sum Rule

The sum rule for derivatives tells us that the derivative of a sum of two functions
equals the sum of the individual derivatives. In the context of rates of change,
this means that when a dependent variable is equal to the sum of two other
dependent variables, then the rate of change of the new variable must equal
the sum of the rates of change of the dependent variables being added.

Example 9.2.8 A tank is being filled with water two supply hoses. At a
particular instant, if the first hose is pumping water at a rate of 20 gal/min
and the second hose is pumping water at a rate of 30 gal/min, at what rate is
volume of water in the tank changing?
Solution. We know the intuitive solution to the problem is 50 gal/min. This
is actually a consequence of the sum rule of derivatives. We can think of the
water in the tank as having two components: W1, the volume of water (gal)
that was pumped by hose 1, and W2, the volume of water (gal) that was
pumped by hose 2. These two variables are functions of time t (min), although
we do not know any formulas for these functions (and don’t need to).

The rates of water flowing from the hoses correspond to derivatives:

dW1
dt

= 20, dW2
dt

= 30.

The total volume of water in the tank at a given time t is the sum W (t) =
W1(t) +W2(t). By the sum rule of derivatives,

dW

dt
= dW1

dt
+ dW2

dt
= 20 + 30 = 50.

Technically, we should have a constant added to W that represents the initial
amount of water in the tank and didn’t come from either hose. Because the
derivative of a constant is zero, this will not change the result. �

9.2.2.2 A Physical Example of the Product Rule

The sum rule for derivatives feels very intuitive. If a quantity is the sum of
parts, then the total rate of change for the quantity is the sum of the rates of
change for each of the parts. The product rule is less intuitive because we don’t
get to multiply rates of change when a quantity is a product. To illustrate this
example, we focus on a geometric example on the area of a rectangle when the
lengths of the sides are changing.

Example 9.2.9 A city is in the shape of a rectangle with sides aligned with
North-South and East-West lines. Suppose that the city is currently 5 miles
east-to-west and 3 miles north-to-south and plans to expand to a size 8 miles
east-to-west by 5 miles north-to-south over the next 10 years. What is the
average rate of change of the total area in the city over the 10 years? If
the borders were to move at a constant rate over those 10 years, what is the
instantaneous rate of change of the total area of the city at the beginning and
at the end of the 10 years?
Solution. The average rate of change of total area is calculated according to
the usual formula. It does not follow the differentiation rules, which are about
instantaneous rates of change. We let A represent the area of the city and t
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the time in years from now. The city currently has a total area of

A(0) = 5× 3 = 15 mi2.

After 10 years, the city will have a total area of

A(10) = 8× 5 = 40 mi2.

The change in area is ∆A = A(10)− A(0) = 25 mi2 and the change in time is
∆t = 10 years. Consequently, the average rate of change of area is

∆A
∆t

∣∣∣
0,10

= 25
10 = 2.5 mi2/yr.

W (0) = 5
W (10) = 8

H(0) = 3
H(10) = 5

To connect our intuition with functions and to prepare for the next calcu-
lations, let us introduce variables in addition to time t and total area A. The
state of the city can be characterized more precisely with two more variables:
the distance east-to-west, which we’ll call the width W (mi), and the distance
north-to-south, which we’ll call the height H (mi). We think of W , H and A
as being dependent variables as they are each a function of time t. They are
related variables because the area always equals the product of W and H:

A(t) = W (t) ·H(t).

To find the instantaneous rates of change, we need to know how fast the
width and height measurements are changing in time. Because the problem
stated that these changed at a constant rate, we can use the average rates of
change to compute the instantaneous rates:

dW

dt
= ∆W

∆t

∣∣∣∣
[0,10]

= W (10)−W (0)
10− 0 = 8− 5

10 = 0.3,

dH

dt
= ∆H

∆t

∣∣∣∣
[0,10]

= H(10)−H(0)
10− 0 = 5− 3

10 = 0.2.

Since the area A is the product of W and H, the product rule for derivatives
will provide the instantaneous rate of change for area:

dA

dt
= d

dt
[W ·H] = dW

dt
·H +W · dH

dt
.

This equation is the related rates equation.
When t = 0 we have W (0) = 5 and H(0) = 3 so that

dA

dt

∣∣∣∣
0

= dW

dt

∣∣∣∣
0
·H(0) +W (0) · dH

dt

∣∣∣∣
0
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= 0.3(3) + 5(0.2) = 1.9.

That is, at the beginning, the city is expanding at a rate of 1.9 mi2/yr. After
10 years, t = 10, we have W (10) = 8 and H(10) = 5 so that

dA

dt

∣∣∣∣
10

= dW

dt

∣∣∣∣
10
·H(10) +W (10) · dH

dt

∣∣∣∣
10

= 0.3(5) + 8(0.2) = 3.1.

At the end of the 10 years, the city is expanding at a rate of 3.1 mi2/yr.
The picture of expanding area helps provide some intuition for why the

product rule is the appropriate technique. If we consider the city after 6 months
(t = 0.5), both the width and the height have changed by a small amount, as
shown in the figure below. The total change in area has two primary contri-
butions, corresponding to long, skinny rectangles with areas W (0) · ∆H and
∆W · H(0), and a very small rectangle with area ∆W · ∆H. The product
rule corresponds to the rate of change coming from the two primary contribu-
tions while the small rectangle leads to a term that has a limit of zero in the
calculation of the derivative.

W (0) = 5

H(0) = 3

∆H

∆W
�

9.2.2.3 A Physical Example of the Quotient Rule

Quotients often appear when working with densities, concentrations, or other
ratios.
Example 9.2.10 A salt-water solution is being formulated. At a particular
instant, the solution consists of 10 L of water with 5 kg of salt. At that instant,
water is being added at a rate of 0.5 L/s while salt is being added at a rate of
0.2 kg/s. What is the instantaneous rate of change of the concentration?
Solution. We start by identifying the variables that define the state of our
system. The variables include the time t, measured in seconds (s), the total
volume of water V , measured in liters (L), the total amount of salt in the
water S, measured in kilograms (kg), and the concentration of salt water C,
measured in kilograms per liter (kg/L). The variables V , S and C are functions
of time t with an equation relating them by

C(t) = S(t)
V (t) ⇔ C = S

V
.
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The instantaneous rate of change is computed using the quotient rule for
derivatives, giving us a related rates equation

dC

dt
=
V dS
dt − S

dV
dt

V 2 .

The values at the instant in question are given by

V = 10, dV

dt
= 0.5,

S = 5, dS

dt
= 0.2.

Using these values in the quotient rule for derivatives, we have

dC

dt
= 10(0.2)− 5(0.5)

102 = 2− 2.5
100 = −0.005.

That is, the concentration is changing at a rate of -0.005 kg salt per liter water
per second. Alternatively, we could say that the concentration is decreasing at
a rate of 0.005 kg/L/s. �

9.2.3 Summary
1. When differentiating a formula, we must identify the last operation that

acts on an expression. Last is determined according to the order of
operations.

2. The linear rules of differentiation include the constant multiple and sum
rules. These feel more intuitive because differentiation occurs in place.

3. The nonlinear rules of differentiation include the product and quotient
rules. The derivative of a product consists of the sum of two terms, not
just the product of the derivatives. THe derivative of a quotient involves
subtraction of two terms and a denominator that is squared.

4. Practice applying the rules until they are mastered. For example, try
Derivative Practice on Algebraic Formulas.

5. Rules of differentiation apply to any instantaneous rate of change, whether
expressed as a function or not. Related rates are calculated by first ex-
pressing an equation that defines the relation between quantities. The
rules of differentiation produce an equation relating the rates of those
quantities.

9.2.4 Exercises

Use the values of f(x) and g(x) and their derivatives from the following table
to calculate the indicated derivative.

x 0 1 2 3
f(x) 2 5 -3 4
g(x) -2 1 6 5
f ′(x) 3 1 2 -4
g′(x) 4 7 -1 2

1. If h(x) = 3f(x) + 2g(x), find h′(0).
2. If H(x) = x2f(x) + 4, find H ′(3).

http://educ.jmu.edu/~waltondb/webapp/derivs_algebraic.html
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3. If p(x) = 3
g(x) , find p

′(1).

4. If Q(x) = f(x)
2g(x) , find Q

′(2).

Related Rates As you solve these related rates problems, practice clearly
identifying the dependent variables and the independent variable. State the
equation that relates these variables. Use the rules of differentiation to create
an equation that relates the rates of change.

5. A candle is lit at both ends. One end is burning at a rate of 1 cm/
hour. The other end is burning at a rate of 2 cm/hour. What is the
rate of change of the length of the candle?

6. A population of birds on an island changes due to births, deaths,
and migration of individuals. If the population has births occuring
at a rate of 800 per year, deaths occuring at a rate of 720 per year,
immigration of 100 per year and emigration of 150 per year, what is
the overall rate of change of the population?

7. A movie company’s income is based on two money streams: direct
online rental and DVD sales. Suppose that the company receives $2.50
for each online rental and $6.00 for each sold DVD. If the company
rents movies at a rate of 2000 movies per month and sells DVDs at a
rate of 1500 DVDs per month, what is the rate of income?

8. The concentration of an antibiotic drug in the bloodstream is affected
by the rate of administration and by the rate of metabolism. Sup-
pose that an individual has 5 liters of blood and the drug is being
administered by injection at a constant rate of 0.3 grams per hour. In
addition, the body removes the drug by metabolism at an instanta-
neous rate (grams per hour) that is proportional to the total amount
(mass in grams) of the drug in the body at that instant, where the
proportionality constant is 0.8.

Let M represent the total mass (grams) of the drug in the body,
and let C represent the concentration (grams per liter) of the drug.
Let t measure the time (hours) since the treatment began.

• State an equation relating dM
dt and M based on the description

of injection and metabolism.

• State an equation relatingM and C. What is the corresponding
related rates equation?

• What is dC
dt at a particular moment when C = 0.04 grams per

liter?

• An equilibrium has been reached if dC
dt = 0. What is the equi-

librium concentration? That is, find C so that dC
dt = 0.

9. A city has a population of 40,000 and a total debt of $54 million.
If the city’s population is growing at a rate of 1,000 per year and is
borrowing additional money at a rate of $2 million per year, what
is the rate of change of the per capita debt (total debt divided by
population)?

10. A company has 300 employees that earn an average annual salary of
$40,000 per employee. If the company’s workforce is growing at a rate
of 20 employees per year and the average annual salary is increases at
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a rate of $500 per employee per year. What is the rate of change of
total salary costs for the company?

11. Potential energy P of an object raised above the ground is defined as
the product of the mass m of the object times the height h above the
ground times the gravitational constant g = 9.8 m

s2 . A bag of sand
weighing 4 kilograms is at a height of 2 meters. If the bag is losing
0.05 kg of sand per second and is being lifted at a rate of 2 cm per
second, what is the rate of change of the potential energy? Note: 1
joule of energy is the same as 1 kg ·m · s2.

12. A city has a population of 40,000 and a total debt of $54 million.
If the city’s population is growing at a rate of 1,000 per year and is
borrowing additional money at a rate of $2 million per year, what
is the rate of change of the per capita debt (total debt divided by
population)?
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9.3 The Chain Rule
The derivative rules we have learned this far focus on the arithmetic operations
that combine expressions into more complex operations—addition, subtraction,
multiplication, and division. Another operation that combines expressions is
composition. A function f represents a map from an independent variable to a
dependent variable, say f : x 7→ y. Composition occurs when the output from
another function becomes the input. The chain rule provides the differentiation
rule for composition.

In this section, we develop the chain rule. We begin by reviewing the idea of
a chain of variables and the relation this has to function composition. The chain
rule is based on the derivative being the limiting rate of change. By considering
how an increment of change in the independent variable propogates through
the chain, we will see that the rates of change at each step in the chain are
multiplied together. After a few examples of using the chain rule for formulas,
we then explore a few examples of the chain rule for related rates.

9.3.1 Review: Rate of Change and Composition
We start by reminding ourselves that a rate of change is a ratio of changes for
two variables. If y is a function of x, say x 7→ y = f(x), then the rate of change
dy
dx

∣∣∣
a

= f ′(a) is the rate of change of y with respect to x at the value x = a.
This measures the instantaneous ratio of changes in y from f(a) to changes in
x from a. At any value x close to a, this means that

y − f(a) ≈ dy

dx

∣∣∣∣
a

· (x− a).

Changes in the value of y are approximately proportional to changes in x from
a and the derivative f ′(a) is the proportionality constant.

Second, we remind ourselves that compositions correspond to chains of
dependent variables. Suppose that u is a function of x, say u = g(x), and y is
subsequently a function of u, say y = f(u). We would write this chain as{

u = g(x)
y = f(u) .

Using substitution, we could also just write that y is a function of x using
composition.

y = f(g(x)) = f ◦ g(x).

Now, let us consider a particular value for x and ask how would we deter-
mine the rate of change of y with respect to x when it is defined with such a
composition? A change in x from a, ∆x = x− a, would lead to a change in u
from g(a) using the rate of change

∆u = u− g(a) ≈ du

dx

∣∣∣∣
a

· (x− a) = g′(a) ·∆x.

In a similar way, a change in u from its starting value g(a) would lead to a
change in y from f(g(a)) using the rate of change

∆y = y − f(g(a)) ≈ dy

du

∣∣∣∣
g(a)
· (u− g(a)) = f ′(g(a)) ·∆u.



CHAPTER 9. RULES OF DIFFERENTIATION 418

Putting these two results of the chain together, we find that

∆y ≈ dy

du

∣∣∣∣
g(a)
· du
dx

∣∣∣∣
a

·∆x = f ′(g(a)) · g′(a) ·∆x.

Graphically, this is illustrated in the figure below. The inputs and outputs
of the functions for g and f are illustrated as maps between number lines. The
input x = a to the function g : x 7→ u is mapped to the output u = g(a). A
nearby input x is mapped to an output g(x) that is not too far from g(a). The
differences are the values ∆x = x− a and ∆u = g(x)− g(a). In composition,
the outputs g(a) and g(x) act as inputs to f .

x
a x

∆x

g g

u
g(a)

∆u

g(x)

f f

y

f(g(a)) f(g(x))

∆y

∆u ≈ g′(a) ·∆x

∆y ≈ f ′(g(a)) ·∆u

The derivative provides an approximate ratio in the changes of output
values to the changes of input values. The smaller the input, the closer the
approximation. This is why the derivative must be defined as a limit of the
average rate of change. When functions are in composition, each function
effectively amplifies the difference in output by the factor of the derivative. So
the overall change in the output is a result of the product of the derivatives.

9.3.2 The Chain Rule for Derivatives
The chain rule formalizes the ideas in the previous paragraphs. It states that
the derivative of a composition f(g(x)) has a derivative given by

d

dx
[f(g(x))] = f ′(g(x)) · g′(x).

Pay close attention to the inputs of f ′ and g′. Compare those values to what
we had to do in the previous paragraphs. The inputs are different because the
functions f : u 7→ y and g : x 7→ u have different inputs in the composition.

Theorem 9.3.1 If we have an explicit chain representation,{
u = g(x)
y = f(u) ,

then the chain rule can be rewritten:

dy

dx
= d

dx
[f(g(x))]

= f ′(g(x)) · g′(x)

= f ′(u) · du
dx

= dy

du

∣∣∣∣
u=g(x)

· du
dx

∣∣∣∣
x

.



CHAPTER 9. RULES OF DIFFERENTIATION 419

The chain rule is often abbreviated as
dy

dx
= dy

du
· du
dx
.

Notice that this form almost looks like algebra would cancel the symbol du on
the right to give the formula dy

dx on the left.

Example 9.3.2 Find the derivative of f(x) = (2x+1)2 using the chain rule and
compare the result to what you get if you expand f(x) before differentiation.
Solution. To use the chain rule, we must identify the chain or composition
that is involved. The last operation in this formula is the act of squaring. What
do we square? This will be the way that we identify u = 2x+1. Then the final
output is y = u2. We can find the derivatives of each step in the chain:{

u = 2x+ 1
y = u2 ⇒

{
du
dx = 2
dy
du = 2u .

Consequently, we have
dy

dx
= dy

du

∣∣∣∣
u=2x+1

· du
dx
.

The notation u = 2x+ 1 is simply a reminder that when writing the derivative
dy
du = 2u we will ultimately replace u = 2x+ 1.

f ′(x) = dy

dx
= (2u) · (2) = 2(2x+ 1) · 2 = 4(2x+ 1)

The other approach is to expand f(x) to a form that is easier to differentiate.

f(x) = (2x+ 1)2 = (2x+ 1)(2x+ 1) = 4x2 + 4x+ 1

This is a simple polynomial form that has a simple derivative:

f ′(x) = 8x+ 4.

We can see that this is actually the same as our earlier derivative if we factor
out the common factor of 4. �

We could avoid the chain rule in the previous example because expanding
the square of our expression could be calculated fairly simply. When this is
not possible, the chain rule must be used.

Example 9.3.3 Find the derivative of f(x) = 3(x2 + 3x)7.
Solution. Our function has an intermediate formula u = x2 +3x that is then
raised to the 7th power and multiplied by 3. That is, if y = f(x) then y = 3u7.
We would write this as a chain, along with their derivatives:{

u = x2 + 3x
y = 3u7 ⇒

{
du
dx = 2x+ 3
dy
du = 21u6 .

The chain rule implies

f ′(x) = dy

dx
= dy

du

du

dx

= 21u6 · (2x+ 3)
= 21(x2 + 3x)6(2x+ 3).

Note that we had to substitute the formula for u to find our final result.
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In the language of function composition, we could instead do this by writing
f(x) as a composition f(x) = g(h(x)):

h : x 7→ u = x2 + 3x h(x) = x2 + 3x h′(x) = 2x+ 3
g : u 7→ y = 3u7 g(u) = 3u7 g′(u) = 21u6

The chain rule would be written:

f ′(x) = g′(h(x)) · h′(x)
= g′(x2 + 3x) · (2x+ 3)
= 21(x2 + 3x)6(2x+ 3)

�
Negative and rational powers are much simpler with the chain rule. Using

negative powers in composition often helps us avoid needing the quotient rule.

Example 9.3.4 Find f ′′(x) where f(x) = 3
x2+1 .

Solution. The first derivative can be found using the quotient or reciprocal
rule.

f ′(x) = 3 d

dx

[ 1
x2 + 1

]
= 3 · −2x

(x2 + 1)2

= −6x
(x2 + 1)2

We could also have done this using a chain rule. The relevant chain and
associated derivatives are given:{

y = 3u−1

u = x2 + 1
⇒

{
dy
du = −3u−2

du
dx = 2x

Consequently, we know f ′(x) = dy
dx = dy

du
du
dx and

f ′(x) = −3(x2 + 1)−2 · (2x) = −6x(x2 + 1)−2.

To calculate the second derivative, we differentiate f ′(x). We could use
either the quotient rule or the product rule with negative powers. In the first
case, we find

f ′′(x) = d

dx

[ −6x
(x2 + 1)2

]
=

(x2 + 1)2 d
dx [−6x]− (−6x) d

dx [(x2 + 1)2]
(x2 + 1)4

= (x2 + 1)2(−6) + (6x) · 2(x2 + 1)(2x)
(x2 + 1)4 ,

where we have used the chain rule on u2 with u = x2 + 1 to obtain

d

dx
[(x2 + 1)2] = 2(x2 + 1)(2x).

Notice that the numerator of f ′′(x) has x2 + 1 as a common factor, which
cancels with one of the corresponding factors in the denominator. A simplified
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version of f ′′(x) is therefore given by

f ′′(x) = −6(x2 + 1) + (6x) · 2(2x)
(x2 + 1)3

= −6x2 − 6 + 24x2

(x2 + 1)3

= 18x2 − 6
(x2 + 1)3 .

The other approach to finding the second derivative is to start with the
product representation of f ′(x) and differentiate using the product rule. In
order to differentiation (x2+1)−2, we use the chain rule on u−2 with u = x2+1:

d

dx

[
u−2

]
= −2u−3 · du

dx
= −2(x2 + 1)−3 · (2x).

This will give us

f ′′(x) = d

dx

[
(−6x) · (x2 + 1)−2

]
= d

dx

[
− 6x] · (x2 + 1)−2 +−6x d

dx

[
(x2 + 1)−2

]
= −6 · (x2 + 1)−2 +−6x · −2(x2 + 1)−3(2x)
= −6 · (x2 + 1)−2 + 24x2(x2 + 1)−3

Remembering that negative exponents correspond to powers in the denomi-
nator, we can see this formula requires a common denominator (x2 + 1)3 to
simplify

f ′′(x) = −6
(x2 + 1)2 + 24x2

(x2 + 1)3

= −6(x2 + 1) + 24x2

(x2 + 1)3

= 18x2 − 6
(x2 + 1)3

We found the same answer both ways. Derivative rules are self-consistent. �
There may be times where the chain rule must be used more than once. Any

time the last operation on an expression is a function acting on an expression,
such as a power as opposed to arithmetic operations like sums or products
joining two expressions, we need to use the chain rule.

Example 9.3.5 If f(x) = (
√

3x+ 2)4, compute f ′(x).
Solution. The last operation in f(x) is raising an expression to the power 4.
The derivative will require a chain rule. The first step is to differentiate this
last operation.

f ′(x) = d

dx

[
(
√

3x+ 2)4
]

=
u=
√

3x+2

d

du

[
u4] d

dx

[√
3x+ 2

]
=

u=
√

3x+2
4u3 · d

dx

[
(3x)1/2 + 2

]
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= 4(
√

3x+ 2)3 · d
dx

[
(3x)1/2 + 2

]
We need to continue by finding the derivative of the inner expression u =√

3x + 2. This is a sum, and the second term in a sum is a constant. The
derivative of a constant is zero. We need to compute the derivative of (3x)1/2,
which is another composition. The expression 3x is raised to a power 1

2 . We
need the chain rule one more time.

d

dx

[
(3x)1/2 + 2

]
= d

dx

[
(3x)1/2

]
+ 0

=
u=3x

d

du

[
u1/2

] d
dx

[
3x
]

=
u=3x

1
2u
−1/2 · 3

= 3
2(3x)−1/2 = 3

2
√

3x

Substituting this into our original formula for f ′(x), we find

f ′(x) = 4(
√

3x+ 2)3 · 3
2
√

3x

= 6√
3x

(
√

3x+ 2)3.

�

9.3.3 Related Rates and the Chain Rule
Derivative rules are fundamentally about relationships between instantaneous
rates. The chain rule is no exception. The biggest difference in the rates that
are related by the chain rule and other related rates problems is that the chain
rule involves different independent variables for different steps in the chain.

Example 9.3.6 Consider a temperature dependent chemical reaction. At 20
degrees Celsius, the reaction generates a product at a rate of 30 grams per
minute. For small changes in temperature, the reaction can generate an addi-
tion 5 grams per minute per degree increase in temperature. If the temperature
is cooling at a rate of 0.05 degrees per minute, what is happening to the reac-
tion?

Conceptually, we recognize some variables in this problem: the tempera-
ture T (in degrees Celsius), the time t (in minutes), and the reaction rate R
(in grams per minute). Because temperature is changing in time, we know
there is a map t 7→ T . Similarly, we know that the reaction rate depends on
temperature, there is another map T 7→ R. In combination, we have a chain
t 7→ T 7→ R.

We identify the values at the instant t in question. We know T = 20 and
dT
dt = −0.05. (Why?) Similarly, we know R = 30 and dR

dT = 5. The chain rule
tells us the rate of change of the final variable in the chain with respect to the
original independent variable in the chain:

dR

dt
= dR

dT
· dT
dt

= 5 · −0.05 = −0.25.

That is, the reaction rate is decreasing at a rate of 0.25 grams per minute per
minute. (R has units of grams per minute so dR

dt has units of grams per minute
per minute.) �
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Example 9.3.7 As an ice cube melts, it maintains the shape of a cube. At
one particular instant, each side of the cube is 30 mm and the volume of the
cube is melting at a rate of 500 mm3

s . What is the rate of change of the length
of the sides at that instant?
Solution. Start by identifying the variables in the problem. The state of the
ice cube is characterized by the time, the length of the sides, and the total
volume. Let t be the time (in seconds), s the length of a side (in millimeters),
and V the volume (in cubic millimeters).

Next identify the functions defining relations between the variables. We
know that the length and volume are both functions of time, so we know there
are maps t 7→ s and t 7→ V . This is not a chain because t is the independent
variable for both maps. We also know that the volume is a function of the
length of a side, s 7→ V = s3. From this, we can identify a chain, t 7→ s 7→ V .

We finish by creating an equation relating our rates. Because our variables
are related by a chain, the chain rule establishes this relationship:

dV

dt
= dV

ds

ds

dt
.

The problem gives us dV
dt = −500 mm3

s . The equation V = s3 is an explicit
formula from which we can compute a derivative

dV

ds
= 3s2.

At the instant in question, s = 30 mm so that dV
ds = 3(30)2 = 2700 mm3

mm . The
related rates equation involved three rates, two of which we now know. Solving
for ds

dt , we find
ds

dt
=

dV
dt
dV
ds

= −500
2700 = − 5

27 .

That is, the lengths of the sides are decreasing at a rate of − 5
27

mm
s . �

In some examples, there are multiple equations relating the variables. In
that case, there will also be multiple equations relating their rates.

Example 9.3.8 Many water coolers have cups in the shape of a circular cone.
The volume V of a cone can be calculated in terms of the radius r of the
circular base and the height of the cone h by

V = 1
3πr

2h.

As water fills the cup, the volume of water creates a smaller cone than the cup
but one with similar dimensions.

Suppose a cup has a height of 12 cm and a radius at the top of 5 cm. Water
is filling the cup at a rate of 80 cm3

s . When the cup is filled to a depth of 6 cm,
how fast is the depth changing?
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Figure 9.3.9 Illustration of partially filled cup of water in the shape of a cone.

Solution. We will work through two different approaches to solving this prob-
lem. The first method will be to consider two equations that relate our variables
and create two equations for the related rates. The second method will use
the two equations relating the variables to create a single function to create a
related rates equation.

There are three basic dependent variables: the height of water in the cup,
the radius of the circle at the top of the water level, and the volume of water in
the cup. All of these change with respect to the independent variable of time.
Let t measure time in seconds, let h measure the height of water, let r measure
the radius at the top of the water level, and let V measure the volume of water
in the cup. Interpreting the given information, we should note the values of
variables at the instant in question. The units of how fast water is filling is a
volume per unit time, which we interpret as saying dV

dt = 80. The depth of the
water informs us that h = 6. The question asks us to determine dh

dt .
The volume of water is related to the radius and height by the equation

V = 1
3πr

2h.

In addition, we know that the radius and height must be similar dimensions
to the radius and height of the cup itself. This means that the ratios of corre-
sponding sides must be equal, giving a second equation

r

5 = h

12 .

If we solve for r, we find r = 5
12h.

From the equations relating the dependent variables, we can differentiate
to develop equations relating their rates of change. The volume is defined as a
constant multiple of 1

3π with the product r2h, and the derivative of r2 requires
the chain rule:

dV

dt
= 1

3π
d

dt

[
r2h
]

= 1
3π
( d
dt

[
r2
]
· h+ r2 · dh

dt

)
= 1

3π(2r dr
dt

) · h+ 1
3πr

2 · dh
dt

= 2
3πrh

dr

dt
+ 1

3πr
2 dh

dt
.
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We can also differentiate the equation defining r to relate the rates for r and
h:

dr

dt
= d

dt

[ 5
12h

]
= 5

12
dh

dt
.

With these equations and the data, we can solve for dh
dt . Our related rates

equation involves the variable r, for which we do not have a value. We can use
the similar dimensions equation to solve for r,

r = 5
12h = 5

12(6) = 5
2 .

Substituting the values of variables and rates into the related rates equation
for dV

dt , we find

80 = 2
3π(5

2)(6)dr
dt

+ 1
3π(5

2)2 dh

dt
.

As this equation has both rates dr
dt and dh

dt , we substitute into the equation our
relation dr

dt = 5
12
dh
dt :

80 = 2
3π(5

2)(6)( 5
12)dh

dt
+ 1

3π(5
2)2 dh

dt

80 = 25
6 π

dh

dt
+ 25

12π
dh

dt

80 = 75
12π

dh

dt
80(12)

75π = dh

dt
dh

dt
= 64

5π ≈ 4.074.

Consequently, we conclude the height of water is rising at a rate just higher
than 4 cm

s .
The second method uses substitution earlier in the process. Instead of

substituting the rate of change from related rates, this approach seeks to write
an equation so that V is only a function of h. (We choose h because it is that
variable’s rate of change that is desired.) Because r = 5

12h, we can create a
single equation relating V and h:

V = 1
3πr

2h

= 1
3π( 5

12h)2(h)

= 1
3π( 25

144)h3

= 25
432πh

3.

Once we have the equation relating volume and height of the water, we can
differentiate to find a single related rates equation using the constant multiple
rule and the chain rule for the power h3:

dV

dt
= 25

432π
d

dt

[
h3
]

= 25
432π3h2 dh

dt

= 25
144πh

2 dh

dt
.
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At this point, we can substitute our known values and solve for dh
dt :

dV

dt
= 25

144πh
2 dh

dt

80 = 25
144π(6)2 dh

dt

80 = 25
4 π

dh

dt
80(4)
25π = dh

dt
dh

dt
= 64

5π .

�

9.3.4 Summary
• A composition or chain occurs when the output of one function acts as

the input to another function.

• The derivative measures the limiting ratio of changes in the output to the
input for small changes in the input. Consequently, in a composition or
chain of functions, the overall rate of change is the product of the rates
of change for each step.

• The chain rule states that

d

dx

[
f
(
g(x)

)]
= f ′(g(x)) · g′(x).

Represented as a chain u = g(x) and y = f(u) so that y = f(g(x)), the
chain rule would be written

dy

dx
= dy

du
· du
dx
.

This is the derivative of the outer operation times the derivative of the
inner expression.

9.3.5 Exercises

Use the given rates to find the unknown rate.

1. Given dy
du = 4 and du

dx = −3, find dy
dx .

Hint: Imagine a chain x 7→ u 7→ y and apply the chain rule.
2. Given dF

dP = 1.2 and dP
dt = 40, find dF

dt .
Hint: t 7→ P 7→ F .

3. Given dR
dt = 50000 and dp

dt = −2, find dR
dp .

Hint: t 7→ p 7→ R.
4. Given dR

dt = 50000 and dp
dt = −2, find dR

dp .
Hint: t 7→ p 7→ R.

Compute the derivatives.

5. d

dx
[(3x+ 2)3]
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6. d

dx
[(x2 + 1)5]

7. d

dx
[(2x− 5)−2]

8. d

dx
[
√

4x+ 1]

9. d

dx
[ 3√
x2 + 4

]

10. d

dx
[(x3 + 2x)−2/3]

11. d

dx
[x4(x2 + 1)3]

12. d

dx
[x
√

2x+ 1]

13. d

dx
[(3x+ 1)4(2x− 5)3]

14. d

dx
[ 3x
(2x+ 1)2 ]

15. For f(x) = x3(2x+ 1)5, find f ′′(x).
16. For g(x) = 3

x2+1 , find g
′′(x).

17. For h(x) =
√
x3 − 1, find h′′(x).

Use the values of f(x) and g(x) and their derivatives from the following table
to calculate the indicated values.

x 0 1 2 3 4 5
f(x) 5 3 1 0 2 4
g(x) 1 4 5 3 2 0
f ′(x) -3 -2 -1 0 3 5
g′(x) 4 2 -1 -2 -4 -3

18. For h(x) = f(g(x)), find h(2) and h′(2).
19. For h(x) = g(f(x)), find h(2) and h′(2).
20. For h(x) = g(2x− 3), find h(3) and h′(3).
21. For h(x) = f(x2), find h(2) and h′(2).
22. For h(x) = f2(x) = (f(x))2, find h(1) and h′(1).
23. For h(x) = f(2g(x)), find h(0) and h′(0).

Related Rates
24. A ripple in a pond spreads as a circle whose radius grows at a speed

of 30 cm
s . At what rate is the area enclosed by the ripple increasing?

25. An oil spill in the ocean is spreading as a circle such that the total
area is increasing at a constant rate. After 10 hours, the circle has
a radius of 0.1 km. What is the instantaneous rate of change of the
radius at this time?

26. A bacteria colony grows on its substrate in the shape of a circle. Your
colleague suggests that the colony only grows along the outer edge
such that the rate of change of the area should be proportional to the
circumference. Show that this predicts a constant rate of change for
the radius.
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27. A spherical balloon is being filled with air at a rate of 0.5 cubic meters
per minute. How fast is the radius increasing when the balloon has a
radius of 20 cm?

28. A spherical balloon is being filled with air at a rate of 0.5 cubic meters
per minute. At what radius will the balloon have its radius growing
at a rate of 1 centimeter per second?

29. A pile of sand takes the form of a circular cone. As the sand falls, the
pile always maintains the same slope so that the height and diameter
have the same proportions. When the pile is 2 meters high, the diam-
eter is 4 meters. If the sand pile at that instant is getting taller at a
rate of 0.2 meters per minute, at what rate (cubic meters per minute)
is sand being added to the pile?
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9.4 The Derivative of Exponential Functions
We learned that the elementary exponential functions are of the form

expb(x) = bx

for positive real numbers b. Because exponential functions involve powers, a
common mistake students make is to use the power rule of derivatives. That
rule only applies to power functions, where the independent variable is the
base and the exponent is a constant. We will need a new rule for exponential
functions.

In this section, we explore the derivative rule associate with exponential
functions. As this is a new rule, we return to the definition of the derivative.
We will learn that the derivative of an exponential function is proportional to
the value of the function itself. The constant of proportionality is found using
the base of the exponential.

9.4.1 Elementary Exponential Functions
The definition of the derivative allows us to develop a new differentiation rule.
The key property necessary for the exponential function is a consequence of
the properties of exponents,

expb(x+ y) = bx+y = bx · by = expb(x) · expb(y).

Using these properties

exp′b(x) = lim
h→0

expb(x+ h)− expb(x)
h

= lim
h→0

bx+h − bx

h

= lim
h→0

bxbh − bx

h

= lim
h→0

expb(x) · b
h − 1
h

= expb(x) · lim
h→0

bh − 1
h

.

This means that the derivative of bx is just bx times some number L(b) that
depends on b,

d

dx
[bx] = bx · L(b),

where L(b) is calculated as the limit

L(b) = lim
h→0

bh − 1
h

.

Unfortunately, this is not a limit that we know as of yet. The following table
illustrates some approximations for the value of this limit for a variety of bases.

h
2h − 1
h

3h − 1
h

5h − 1
h

10h − 1
h

h = 0.1 0.71773 1.16123 1.74619 2.58925
h = 0.01 0.69555 1.10467 1.62246 2.32930
h = 0.001 0.69339 1.09922 1.61073 2.30524
h = 0.0001 0.69317 1.09867 1.60957 2.30285
h→ 0 0.69315 1.09861 1.60944 2.30259
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Every positive real number b has such a limit, L(b). This limit corresponds
to the slope of the elementary exponential function y = bx at the point x = 0,

L(b) = exp′b(0) = lim
h→0

b0+h − b0

h
= lim
h→0

bh − 1
h

.

For the four bases used above, this corresponds to the following derivatives:

d

dx
[2x] = L(2) · 2x ≈ 0.69315 · 2x

d

dx
[3x] = L(3) · 3x ≈ 1.09861 · 3x

d

dx
[5x] = L(5) · 5x ≈ 1.60944 · 5x

d

dx
[10x] = L(10) · 10x ≈ 2.30259 · 10x

We can see from the table that L(2) ≈ 0.69315 and L(3) ≈ 1.09861. This
suggests that there is a particular base b between 2 and 3 such that L(b) = 1.
Such a value does exist, using b ≈ 2.71828183. This value has the property
that the elementary exponential function and its derivative are exactly equal.
The base is called the natural base and is given the special symbol e. Con-
sequently,

d

dx
[ex] = ex.

Definition 9.4.1 The number e is that positive value such that

lim
h→0

eh − 1
h

= 1.

♦

Theorem 9.4.2
d

dx
[ex] = ex

Every exponential function is proportional to its derivative. This means
that at every point on the graph y = bx, the ratio of the slope to the y-value
is always the same constant. The interactive graph in Figure 9.4.3 illustrates
this principle. The proportionality constant, L(b), has been defined by a limit.
We will soon discover another way to find L(b) for these other bases.

Specify static image with @preview attribute,
Or create and provide automatic screenshot as
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Figure 9.4.3 A graph of y = bx that illustrates the proportionality relation
between the slope and the y-value.

9.4.2 The Chain Rule with Exponentials
Because the exponential function exp(x) = ex is defined with the natural base,
exp′(x) = ex is the same as the original function, exp′ = exp. Combining

/interactive-exponential-proportional.html
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this with the chain rule, we get a generalized derivative of compositions with
exponentials,

d

dx
[eu(x)] = eu(x) · u′(x) = eu · du

dx
.

Example 9.4.4 Find the derivatives of the following functions.
1. f(x) = e5x

2. g(x) = ex
3

3. h(x) = ex
2−4x

Solution. In each case, we will identify the formula u(x) and then apply the
chain rule.

1. For f(x) = e5x, we have u(x) = 5x so that f(x) = eu. We will use
u′(x) = 5. The chain rule gives:

f ′(x) = d

dx
[e5x]

=
(u=5x)

d

dx
[eu] =

(u=5x)
eu
du

dx

= e5x · 5 = 5e5x

So f ′(x) = 5e5x.

2. The function g(x) = ex
3 involves a composition with u(x) = x3 such that

u′(x) = 3x2.

g′(x) = d

dx
[ex

3
]

=
(u=x3)

d

dx
[eu] =

(u=x3)
eu
du

dx

= ex
3
· (3x2) = 3x2ex

3

Thus g′(x) = 3x2ex
3 .

3. The function h(x) = ex
2−4x involves a composition with u(x) = x2 − 4x

such that u′(x) = 2x− 4.

h′(x) = d

dx
[ex

2−4x]

=
(u=x2−4x)

d

dx
[eu] =

(u=x2−4x)
eu
du

dx

= ex
2−4x · (2x− 4) = (2x− 4)ex

2−4x

Thus h′(x) = (2x− 4)ex2−4x.

�

9.4.3 Other Exponential Bases
Every function involving a positive base raised to an exponent can be rewritten
using the natural exponential function exp(x) = ex. Recall that the exponen-
tial and the logarithm are inverse functions so that for every number u > 0 we
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have
exp(ln(u)) = eln(u) = u.

This identity and the rules for logarithms show that any power uw with u > 0
can be rewritten as

uw = exp(ln(uw)) = eln(uw) = ew·ln(u).

Example 9.4.5 Rewrite each of the following in terms of the natural expo-
nential function.

1. f(x) = 2x

2. g(x) = 5x

3. p(x) = x3/4

4. r(x) = xx

Solution.

1. f(x) = 2x = exp(ln(2x)) = eln(2x) = ex ln(2)

2. g(x) = 5x = exp(ln(5x)) = eln(5x) = ex ln(5)

3. p(x) = x3/4 = exp(ln(x3/4)) = eln(x3/4) = e
3
4 ln(x)

4. r(x) = xx = exp(ln(xx)) = eln(xx) = ex ln(x)

�
Because every exponential can be rewritten in terms of the natural expo-

nential, we have a special result for all other exponential functions,

bx = ex·ln(b).

Using the chain rule with u = x · ln(b) and du
dx = ln(b), we discover

d

dx
[bx] = d

dx
[ex ln(b)] = ex ln(b) · ln(b) = bx · ln(b).

Because we already had a formula d
dx [bx] = L(b) · bx, we now have an exact

expression for the limit L(b):

L(b) = lim
h→0

bh − 1
h

= ln(b).

Theorem 9.4.6
d

dx
[bx] = bx · ln(b)

9.4.4 Power Function or Exponential Function
One of the challenges for a calculus novice is identifying which rule applies.
It is essential that you can distinguish between an exponential function and a
power function.

Recall that a power function has a constant power while an exponential
function has a constant as the base. Furthermore, don’t be fooled by numbers
that look like other symbols. For example, xe is a power function since the
power is the constant value e (the natural exponential base):

d

dx
[xe] = exe−1.
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Similarly, x
√

2 is a power function because the power
√

2 is a number (even
though it is represented as a formula, it does not have any variables):

d

dx
[x
√

2] =
√

2x
√

2−1.

Furthermore, you must look at a formula and determine which operation
determines the differentiation rule that is required (constant multiple, sum,
product, quotient or chain). This is always based on the last operation to be
applied under the rules of order of operations. When the number of steps is
small, you should be able to write the derivative down directly. When the
number of steps is large, you might need to use the differentiation operator to
allow yourself the chance to work part of the way and indicate that there are
still steps remaining.

Example 9.4.7 Find the derivative d

dx
[(x2 + 4)5e5x3

].

Solution. Start by identifying the final operation. In this problem, the func-
tion f(x) = (x2 + 4)5e5x3 is a product of (x2 + 4)5 and e5x3 . So we begin by
using the product rule. If you want to emphasize this without having to write
down the derivatives of the factors, then we use the differentiation operator:

f ′(x) = d

dx
[(x2 + 4)5] · e5x3

+ (x2 + 4)5 · d
dx

[e5x3
].

Notice that the differentiation operator is pointing out where we still need to
find derivatives in order to complete the problem.

The first term (x2 +4)5 should be recognized as a composition with a power
function u5 where u = x2 + 4. We will use the chain rule:

d

dx
[(x2 + 4)5] =

(u=x2+4)

d

du
[u5] · du

dx
= 5(x2 + 4)4 · (2x).

The second term e5x3 should be recognized as a composition with the expo-
nential function eu where u = 5x3. Again, the chain rule guides us:

d

dx
[e5x3

] =
(u=5x3)

d

du
[eu] · du

dx
= e5x3

· (15x2).

The previous paragraph represents work that you either think through men-
tally or write out as scratch work. Putting the pieces together gives us the
overall answer.

f ′(x) = d

dx
[(x2 + 4)5e5x3

] = d

dx
[(x2 + 4)5] · e5x3

+ (x2 + 4)5 · d
dx

[e5x3
]

= 5(x2 + 4)4(2x) · e5x3
+ (x2 + 4)5 · e5x3

· (15x2)

= 10x(x2 + 4)4e5x3
+ 15x2(x2 + 4)5e5x3

As we start to use our derivatives in applications, we will often need to
factor our formulas. To illustrate this principle, we identify all of the common
factors of the terms.

f ′(x) = 5x(x2 + 4)4e5x3
· (2 + 3x(x2 + 4))

= 5x(x2 + 4)4e5x3
(2 + 12x+ 3x2)

�
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9.4.5 Another Limit Defining e

When we defined the number e, it was done so that d
dx

[
ex
]

= ex. The natural
base was then chosen so that

lim
x→0

ex − 1
x

= 1.

Suppose that we instead looked for a function f(x) so that f(0) = 1 and
f ′(x) = f(x). An equation for an unknown function involving derivatives is
called a differential equation. We already know that f(x) = ex is the solution
to this differential equation. However, we will use the differential equation to
gain some additional insights into the function.

We begin by considering how we might approximate our function using only
the differential equation. Consider the interval [0, x] and create a partition with
n subintervals,

xk = kx

n
.

We will recursively calculate a sequence of values yk ≈ f(xk). From the defi-
nition of an accumulation function, we know

f(xk+1) = f(xk) +
∫ xk+1

xk

f ′(z) dz.

We further know f ′(z) = f(z) by our differential equation. So if ∆x = x
n

is sufficiently small, we can approximate f ′(z) on the interval [xk, xk+1] by a
constant value f ′(z) ≈ f ′(xk). This method for approximating the next value
of the function defined by a differential equation,

f(xk+1) ≈ f(xk) + f ′(xk)(xk+1 − xk) = f(xk) + f ′(xk)∆x,

is called the Euler method.
Our differential equation f ′(x) = f(x) allows us to find a value for f ′(xk) =

f(xk). For our differential equation, the Euler method approximation gives us

f(xk+1) ≈ f(xk) + f(xk)(xk+1 − xk) = f(xk) · (1 + ∆x).

The approximation is then characterized by the recursive sequence,

y0 = 1,
yk+1 = yk(1 + ∆x),

which we identify as a geometric sequence with explicit formula

yk = (1 + ∆x)k.

We also know that f(x) = ex is the solution. Since xn = x, the Euler
method approximation shows that f(xn) = ex will be approximated by yn =
(1 + ∆x)n. Because ∆x = x

n , we can write n = x
∆x to obtain

f(x) = ex ≈ (1 + ∆x)x/∆x =
(

(1 + ∆x)1/∆x
)x
.

It would appear that e can be approximated by

e ≈ (1 + ∆x)1/∆x

when ∆x is sufficiently small. We state this heuristic result as the following
unproved theorem.
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Theorem 9.4.8
e = lim

h→0
(1 + h)1/h = lim

n→∞
(1 + 1

n )n.

We don’t have a proof at this point because without first knowing the
function ex, we do not have a clear definition for nonrational powers to justify
the following limit steps:

f(x) = lim
∆x→0

[ (
(1 + ∆x)1/∆x

)x ]
=
(

lim
∆x→0

[
(1 + ∆x)1/∆x

] )x
= ex.

Mathematically, the best way to prove that these limits are valid is actually to
work with the inverse function, the natural logarithm.
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9.5 Summary
• Given any positive base b > 0, we know

d

dx
[bx] = bx · L(b)

where L(b) is defined by a limit

L(b) = lim
x→0

bx − 1
x

.

• The number e is the natural base such that L(e) = 1,

lim
x→0

ex − 1
x

= 1.

Consequently,
d

dx

[
ex
]

= ex.

• The general derivative rule for exponentials applies the chain rule,

d

dx

[
eu
]

= eu · du
dx
.

• Expressing other formulas involving powers in terms of e,

uv = ev·ln(u),

we can show

d

dx

[
bx
]

= d

dx

[
ex ln(b)

]
= ex ln(b) · ln(b).

This also shows that
lim
x→0

bx − 1
x

= ln(b).

• The function f(x) = ex is the solution to a differential equation f ′(x) =
f(x) with f(0) = 1.

• lim
h→0

(1 + h)1/h = e and lim
n→∞

(1 + 1
n

)n = e.

9.5.1 Exercises

Foundations
1. Use the definition to find L( 1

2 ) using a table to approximate the limit.
Compare the result to ln( 1

2 ).
2. Use the definition to find L(4) using a table to approximate the limit.

Compare the result to 2 ln(2).
3. Find the tangent line of y = 3x at x = 0, using an exact expression.

Find the indicated derivatives.

4. d

dx

[
e4x
]
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5. d

dx

[
32x
]

6. d

dt

[
5e−3t

]
7. d

dx

[ 3
e

1
2x

]
8. d

ds

[ 1
3e−5s

]
9. d

dx

[
x · 2−x

]
10. d

dx

[
ex

2
]

11. d

dx

[
e
√
x
]

12. d

dx

[
ee

x
]

13. d

dx

[
e(2x+1)4

]
14. d

dx

[
(e3x − 1)5

]
15. d

dt

[ 2
e−t + 1

]
16. d2

dx2

[
4xe−2x

]
17. d2

dx2

[
x2e5x

]
18. d2

dx2

[
e−x

2+3x
]

Differential Equations
19. Show that y(t) = Aekt, where A and k are constants, is a solution to

the differential equation dy
dt = ky for any value of A. That is, using

the proposed formula for y(t), compute dy
dt and k · y and show that

they are equal.
20. Find a solution for the differential equation dy

dt = 2y with an initial
value y(0) = 200. Use the proposed formula from Exercise 9.4.7.19
and solve for the value A which also satisfies the initial value.

21. A population grows at a rate that is proportional to the current pop-
ulation size,

dP

dt
= k · P.

If the population P is currently 2000 individuals and is growing at
an instantaneous rate of 40 individuals per day, find the value k and
solve the differential equation. Use the proposed formula from Exer-
cise 9.4.7.19. What will be the population size in one week?

22. A radioactive substance decays at a rate that is proportional to the
current mass of the substance,

dM

dt
= −k ·M.
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If the mass M is currently 50 milligrams and is decaying at an in-
stantaneous rate of 2 micrograms per second, find the value k and
solve the differential equation. Use the proposed formula from Exer-
cise 9.4.7.19. What will be the mass of the radioactive substance after
one day?
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9.6 Implicit Differentiation and Derivatives of In-
verse Functions

When we developed the power rule for derivatives, we were able to prove the
rule was true for positive integers as well as for the special case of integer
multiples of 1

2 . Other reciprocal powers like 1
3 ,

1
4 , or

1
5 are the inverses of the

corresponding integer powers 3, 4, or 5, respectively. Having established the
differentiation rule for exponential functions, we want to find the rule for their
inverses, the logarithm functions.

In preparation for differentiation rules of inverse functions, this section
introduces the concept of an implicit function. Implicit functions and the chain
rule result in the process of implicit differentiation, which creates an equation
involving the derivative of the implicit function. We then use this process to
complete the rules of differentiation.

9.6.1 Implicit Functions
A function is defined explicitly when a formula for the output is given in terms
of the input. If we define a dependent variable using such a function, say
y = f(x), then we say y is defined explicitly as a function of x.

On the other hand, we also encounter situations where two variables are
related through an equation but not in a way that is an explicit formula. When
the graph of the equation defines a curve, say in the (x, y) plane, we say that
the equation defines y as an implicit function of x. (It also defines x as an
implicit function of y, depending on which variable we wish to consider as the
dependent variable.)

Example 9.6.1 The equation 2x − 3y = 6 has a graph that is a line. This
equation defines y as an implicit function of x. If we solve for y to find

y = 2x− 6
3 ,

then we have now defined y as an explicit function of x. �
A graph does not represent a function when it fails the vertical line test.

In spite of this, connected segments of the graph that individually pass the
vertical line test can still be treated as functions for which we seek to find the
derivative. It is in this context that we are interested in implicit functions.

Example 9.6.2 The equation x2 +y2 = 4 has a graph that is a circle centered
at (0, 0) and with radius 2. The graph fails the vertical line test which means
that the relation fails to define y as a function of x. However, the top half of
the circle considered separately is a function, as is the bottom half of the circle.
We see this when we attempt to solve the equation for y and obtain

y2 = 4− x2,

y = ±
√

4− x2.

Each of the branches of the graph, y =
√

4− x2 and y = −
√

4− x2, defines y
as an explicit function of x. The original equation x2 + y2 = 4 defines both of
these functions implicitly without requiring solving for y. �

When an equation involving two variables (like x and y) has a graph that
consists of curves, the connected components of those curves that individually
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pass the vertical line test define the dependent variable (e.g., y) as an implicit
function of the independent variable (e.g., x).

9.6.2 Implicit Differentiation
Once we recognize that an equation defines y as an implicit function of x, we
can compute the derivative y′ = dy

dx using a process called implicit differentia-
tion. Recall that when a dependent variable y is a function of x, computing a
derivative of a function of y requires an application of the chain rule. We also
must use any other differentiation rule as appropriate.

Example 9.6.3 Suppose that y is a function of x. Find the derivatives of the
following expressions in terms of x, y and y′.

1. d

dx
[y3]

2. d

dx
[x2y]

3. d

dx
[xex+y]

Solution. We find the derivative by recognizing how the expression is com-
puted and using the appropriate rules of differentiation.

1. The expression y3 is a composition (y(x))3 so that the chain rule along
with the power rule allow us to find the derivative:

d

dx
[y3] = 3y2 · y′.

2. The expression x2y is a product of x2 and y(x), so the derivative will
require using the product rule of derivatives.

d

dx
[x2y] = d

dx
[x2] · y + x2 · d

dx
[y] = 2xy + x2y′

3. The expression xex+y is a product of x and ex+y, so we start by using the
product rule. To differentiate ex+y, we need the chain rule for eu where
u = x+ y. Finally, when we differentiate y, we get the function y′.

d

dx
[xex+y] = d

dx
[x]ex+y + x

d

dx
[ex+y]

= ex+y + xex+y d

dx
[x+ y]

= ex+y + xex+y(1 + y′)
= ex+y(1 + x+ xy′)

�
Implicit differentiation builds on the idea that if f(x) = g(x) for all x in

an interval, then f ′(x) = g′(x) on the same interval. That is, if two functions
are equal then their derivatives must be equal. So consider an equation in x
and y that defines y as an implicit function of x. We can think of the left side
of the equation as defining one function (like the f(x) in the earlier sentence)
and the right side of the equation as defining a second function (like the g(x)).
Then the derivatives of the two sides of the equations must also be equal.
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Implicit differentiation uses the following steps.
1. Start with an equation involving your two variables, say x and y. It

may be desirable to find an equivalent equation for which derivatives are
easier to compute.

2. Create a new equation by differentiating each side of the equation. The
dependent variable must be treated as an implicit function so that the
new equation involves the variables x and y and the derivative y′ = dy

dx ).

3. Solve the new equation for y′ = dy
dx as a function of x and y. If the slope

at a particular point is desired, substitute the values of x and y to find
a value for y′.

Example 9.6.4 The equation x2 + 5y2 = 15 − 3xy defines an ellipse, shown
below. What is the slope of the curve at the point (2, 1)?

−6 −4 −2 0 2 4 6
−4

−2

0

2

4

x

y

Solution. We recognize y as an implicit function of x and differentiate the
two functions in the equation to create a new equation.

d

dx
[x2 + 5y2] = d

dx
[15− 3xy]

2x+ 10yy′ = 0− (3 · y + 3x · y′)
2x+ 10yy′ = −3y − 3xy′

From this new equation, we solve for y′ by moving all terms with y′ to the
same side of the equation.

2x+ 3y = −3xy′ − 10yy′

Next, factor out the common factor of y′ and the solve for y′ with division.

2x+ 3y = −(3x+ 10y)y′

− 2x+ 3y
3x+ 10y = y′
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This gives us the formula for the slope at any point in terms of x and y,

dy

dx
= y′ = − 2x+ 3y

3x+ 10y .

To find the actual slope at the point (x, y) = (2, 1), we use the values x = 2
and y = 1:

dy

dx

∣∣∣∣
(x,y)=(2,1)

= − 2(2) + 3(1)
3(2) + 10(1) = − 7

16 = − 7
16 .

We could also find the equation of the tangent line knowing this information,

y = −7
16 (x− 2) + 1.

−6 −4 −2 0 2 4 6
−4

−2

0

2

4

x

y

�

9.6.3 Derivatives of Inverse Functions
Suppose that we know a function f(x) and its derivative f ′(x). We are now
interested in knowing how this information might relate to its inverse. In
general, the function f does not necessarily have an inverse function unless it
happens to be one-to-one. So suppose that f has an inverse function f−1.

The equation for the graph of the inverse function is y = f−1(x). By virtue
of being an inverse function, this equation is equivalent to the inverse equation

f(y) = x.

We can use this equation and the ideas of implicit differentiation to find the
derivative of the inverse function,

d

dx
[f−1(x)] = dy

dx
= y′.
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Differentiating the left side of the inverse equation and the chain rule leads to
an implicit differentiation equation

f ′(y) · y′ = 1,

from which we can solve for y′ to get

y′ = dy

dx
= 1
f ′(y) .

This result is saying that the slope for the inverse function is related to the
slope of the original function. If the graph of f has a point (a, b) and a deriva-
tive f ′(a), then the graph of the inverse function includes the corresponding
point (b, a) and has the reciprocal rate of change df−1

dx

∣∣∣
b

= 1
f ′(a) . To find the

rate of change of an inverse function, we need to identify the corresponding
point for the original function, a = f−1(b). This is formally stated in the
following theorem, with x as a variable in place of b.

Theorem 9.6.5 Let f−1 be the inverse of a function f for which we know
d
dx [f(x)] = f ′(x). Then

d

dx
[f−1(x)] = 1

f ′(f−1(x)) .

This first example illustrates the principle for a specific point.

Example 9.6.6 A function f(x) = x3 + 3x has an inverse function because
it is one-to-one, but the formula for the inverse function f−1(x) is not easy to
find. Because f(1) = 4 we know f−1(4) = 1. Find the equation of the tangent
line to y = f−1(x) at x = 4.
Solution. This problem requires using the theorem for derivatives of inverse
functions. We know that the original function f(x) = x3 + 3x has a derivative
f ′(x) = 3x2 + 3. Consequently, the graph of f has a tangent line with slope
f ′(1) = 3(12)+3 = 6 at the point (1, 4). The inverse function y = f−1(x) must
then have a corresponding point (4, 1) and tangent line with slope 1

6 .
Formally, the theorem for derivatives of inverse functions states that for

y = f−1(x),
dy

dx

∣∣∣∣
x=4

= 1
f ′(f−1(4)) .

Because f−1(4) = 1 and f ′(1) = 6, we know,

dy

dx

∣∣∣∣
x=4

= 1
f ′(1) = 1

6 .

Knowing the slope and the point, we can find the equation for the tangent line,

y = 1 + 1
6(x− 4).

�
When finding the derivative of an inverse function with the goal of finding

a formula, we need to simplify the expression f ′(f−1(x)). In many cases, this
composition will simplify nicely.

Example 9.6.7 The functions f(x) = x2 for x ≥ 0 and f−1(x) =
√
x are

inverse functions. Use the derivative of an inverse function to find d
dx [
√
x].

Solution. The original equation for the square root is y =
√
x, which is
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equivalent to the inverse equation,

y2 = x.

Implicit differentiation leads to

2yy′ = 1 ⇒ y′ = 1
2y .

Using the original inverse y =
√
x, this simplifies to

d

dx
[
√
x] = y′ = 1

2
√
x
.

Alternatively, just using the theorem for derivatives of inverse functions
with f(x) = x2 and f−1(x) =

√
x, we have f ′(x) = 2x so that

d

dx
[
√
x] = 1

f ′(f−1(x)) = 1
2
√
x
.

�

Example 9.6.8 The functions f(x) = ex and f−1(x) = ln x are inverse func-
tions. Use the derivative of an inverse function to find d

dx [ln(x)].
Solution. The original equation for the logarithm is y = ln(x), defined for
x > 0, which is equivalent to the inverse equation,

ey = x.

Implicit differentiation leads to

eyy′ = 1 ⇒ y′ = 1
ey
.

Using the original inverse y = ln(x), this simplifies to

d

dx
[ln(x)] = y′ = 1

eln(x) = 1
x
.

The theorem for derivatives of inverse functions with f(x) = ex and f−1(x) =
ln(x), we have f ′(x) = ex so that

d

dx
[ln(x)] = 1

f ′(f−1(x)) = 1
eln(x) = 1

x
.

�
The previous example is important. We summarize the result as a theorem.

The implicit differentiation argument required x > 0. We can extend the result
by considering the logarithm of the absolute value of x.

Theorem 9.6.9 Derivative of Natural Logarithm.

d

dx
[ln(|x|)] = 1

x
Proof. For x > 0, we have |x| = x and ln(|x|) = ln(x). Implicit differentiation
showed d

dx
[ln(|x|)] = 1

x
. For x < 0, we have |x| = −x and ln(|x|) = ln(−x).
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Differentiation requires the chain rule,

d

dx
[ln(|x|)] = d

dx
[ln(−x)]

=
u=−x

1
u
· du
dx

= 1
−x
· (−1) = 1

x
.

Therefore, the differentiation rule is true for all x 6= 0 �
Using the chain rule gives us a more general differentiation rule,

d

dx
[ln(|u|)] = 1

u

du

dx
.

This is summarized as a theorem.
Theorem 9.6.10 General Derivative of Natural Logarithm.

d

dx
[ln(|f(x)|)] = f ′(x)

f(x)

9.6.4 Summary
• An equation in two variables generally defines a curve in the plane. When

the equation is solved for one of the variables, the equation defines that
dependent variable as an explicit function of the other.

• When an equation defines a curve but is not solved for one of the vari-
ables, we can still treat a dependent variable as an implicit function of
the other. The curve overall may not satisfy the vertical line test for a
function, but isolated segments of the curve could.

• Implicit differentiation treats a dependent variable as an implicit function
and creates an equation for the derivative by differentiating both sides
of the equation and applying the chain rule for any functions of the
dependent variable.

• The equation for the derivative coming from implicit differentiation will
typically depend on both variables.

• Finding the derivative of an inverse function y = f−1(x) is found by
writing the equivalent inverse equation x = f(y) and using implicit dif-
ferentiation. This gives

df−1

dx
= 1
f ′(y) = 1

f ′(f−1(x)) .

• If y = f(x) has a point (x, y) = (a, b) with df
dx (a) = m, then y = f−1(x)

has a corresponding point (x, y) = (b, a) with df−1

dx (b) = 1
m .

• Because the natural logarithm is the inverse function of the natural ex-
ponential, we have

d

dx
[ln(x)] = 1

x
,

defined only for x > 0. Using |x| = −x for x < 0, the chain rule gives us
an extension for all x 6= 0,

d

dx
[ln(|x|)] = 1

x
.
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The general application gives

d

dx
[ln(|f(x)|] = f ′(x)

f(x) .

9.6.5 Exercises
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9.7 Logarithmic Differentiation
Knowing the derivative of the logarithm, the chain rule, and the properties of
logarithms, we can use the logarithm to find derivatives of formulas involving
otherwise awkward products, quotients, or powers. If f(x) involves a product,
then ln(|f(x)|) involves a sum. If f(x) involves a quotient, then ln(|f(x)|)
involves a difference. And if f(x) involves a power, then ln(|f(x)|) involves a
product. Because the differentiation rules of sums and differences are simpler
than for products and quotients, introducing a logarithm on an equation can
often simplify the required work.

9.7.1 Logarithmic Differentiation
The product rule and quotient rules for derivatives can be considered to be
consequences of the logarithm’s derivative along with the chain rule. For ex-
ample, consider a product y = f(x)g(x). If we create an equivalent equation
by applying the logarithm of the absolute value to both sides, we obtain a
formula that can be expanded using the properties of the logarithm.

ln(|y|) = ln(|f(x)g(x)|) = ln(|f(x)|) + ln(|g(x)|).

This also used the property of absolute values |a · b| = |a| · |b|. Implicit differ-
entiation gives an equation that relates the derivatives:

y′

y
= f ′(x)

f(x) + g′(x)
g(x) .

Multiplying through by y = f(x)g(x), we obtain the product rule

y′ = f ′(x)g(x) + f(x)g′(x).

A similar argument can be used to derive the quotient rule.
The argument from the previous paragraph is typical of the process we call

logarithmic differentiation.

1. Introduce a dependent variable such as y equal to the expression to dif-
ferentiate.

2. Apply the logarithm of the absolute value to both sides of that equation.

3. Use the properties of logarithms and absolute values to expand the for-
mula until there are no more logarithms of products, quotients, or powers.

4. Use implicit differentiation and the general derivative of the logarithm
to solve for y′.

When an expression has more than two factors or complicated powers, using
logarithmic differentiation can often simplify the work of finding the derivative.

Example 9.7.1 Use logarithmic differentiation to compute
d

dx
[x3e3x(2x+ 1)5].

Solution. Start by creating an equation involving a dependent variable.
y = x3e3x(2x+ 1)5

Apply the logarithm of the absolute value to both sides:
ln(|y|) = ln(|x3e3x(2x+ 1)5|).
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Use the properties of logarithms to expand the right side:

ln(|y|) = 3 ln(|x|) + ln(|e3x|) + 5 ln(|2x+ 1|).

Now use implicit differentiation and simplify:

y′

y
= 3 · 1

x
+ 3e3x

e3x + 5 · 2
2x+ 1

y′

y
= 3
x

+ 3 + 10
2x+ 1

y′ = y ·
( 3
x

+ 3 + 10
2x+ 1

)
We finish by substituting the original expression for y:

y′ = x3e3x(2x+ 1)5 ·
( 3
x

+ 3 + 10
2x+ 1

)
.

�

9.7.2 Proving the Power Rule
Logarithmic differentiation allows us to differentiate additional functions for
which other rules may not apply. We start by proving the power rule for
arbitrary powers. Using the known differentiation rules and the definition
of the derivative, we were only able to prove the power rule in the case of
integer powers and the special case of rational powers that were multiples of
1
2 . Logarithmic differentiation gives us a tool that will prove it generally.

Theorem 9.7.2 For any power p, d
dx [xp] = pxp−1.

Proof. Start with the equation y = xp. Create an equivalent equation by
taking the logarithm of the absolute value of both sides,

ln(|y|) = ln(|xp|) = ln(|x|p).

Using the properties of logarithms, this can be rewritten

ln(|y|) = p ln(|x|).

We now use implicit differentiation and differentiate both sides of the equation:

d

dx
[ln(|y|)] = d

dx
[p ln(|x|)]

1
y
· dy
dx

= p · 1
x
.

Solving for the derivative, we have

dy

dx
= p · y

x
.

Substituting the original equation y = xp, we obtain the power rule

dy

dx
= pxp−1.

�
We can also use logarithmic differentiation to find derivatives of functions
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represented by powers that are neither power functions nor exponential func-
tions. Recall that a power function must have a constant exponent and an
exponential function must have a constant base. If the base and exponent
both involve variables, then we are dealing with a function for which we have
no differentiation rule.
Example 9.7.3 Find d

dx [xx].
Solution. The function y = xx is not an exponential or a power function.
Using logarithmic differentiation, we first rewrite the equation

ln(|y|) = ln(|xx|) = ln(|x|x) = x ln(|x|).

The new expression involves only operations for which we have valid differen-
tiation rules:

y′

y
= d

dx
[x ln(|x|)]

= 1 · ln(|x|) + x · 1
x

= ln(|x|) + 1.

Multiply by y and rewrite the formula gives

y′ = y · (ln(|x|) + 1) = xx(ln(|x|) + 1).

The original function y = xx is not continuous for x < 0. This is because
a power of a negative number is only defined at special rational powers. For
example, (− 1

2 )−1/2 is not a real number but (−2)−2 is. The function xx is
undefined almost everywhere for x < 0 and therefore y′ does not exist for
x < 0. Consequently, the absolute value is not actually necessary if we state

d

dx
[xx] = xx(ln(x) + 1), x > 0.

�

9.7.3 Summary
• To differentiate an expression f(x) using logarithmic differentiation:

1. Create an equation y = f(x).
2. Apply the logarithm of the absolute value to both sides of that

equation, ln(|y|) = ln(|f(x)|).
3. Use the properties of logarithms and absolute values to expand the

formula ln(|f(x)|).
4. Use implicit differentiation and solve for y′.

• Logarithmic differentiation is useful when working with a product or
quotient for which the direct rules will be cumbersome, as well as for any
power.

9.7.4 Exercises

Use logarithmic differentiation to compute the derivatives.

1. d

dx

[
4(x+ 1)3(2x− 1)4(x2 + 3)5

]
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2. d

dx

[2
√
x(x− 1)3

(x3 + 3x)5

]
3. d

dx

[
(x2 + 1)x

]
4. d

dx

[
(2x+ 1)ln(x)

]
5. d

dx

[
x(ex))

]
General consequences of logarithmic differentiation.

6. Use logarithmic differentiation to prove the quotient rule.
7. Use logarithmic differentiation to establish a product rule for three

factors. That is, find d
dx [f(x)g(x)h(x)].



Chapter 10

Derivatives and Integrals

451



CHAPTER 10. DERIVATIVES AND INTEGRALS 452

10.1 Antiderivatives
We have previously studied the differentiation operator. Given a function
relationship between two variables x f7→ Q, the derivative f ′ is the function
relating x to the rate of change dQ

dx . Differentiation is the operation that goes

maps f
d

dx7→ f ′. Because f ′ is itself a function, we can apply differentiation again

f ′
d

dx7→ f ′′. This process can repeat indefinitely.
Consider as an example f(x) = x4 + 2x2 − 3x. There is a sequence of

functions corresponding to the derivatives:

f(x) = x4 + 2x2 − 3x,
f ′(x) = 4x3 + 4x− 3,
f ′′(x) = 12x2 + 4,
f (3)(x) = 24x,
f (4)(x) = 24,
f (5)(x) = 0,
f (6)(x) = 0.

This pattern continues with f (n)(x) = 0 for n = 5, 6, 7, . . ..
As the example above illustrates, given a function we can find its derivative.

One of the major themes of mathematics is the idea of inverse operations. Is
there an inverse operation to differentiation? That is, given f(x), instead of

computing f ′(x), can we find a function F (x) so that F (x)
d

dx7→ f(x)? This
inverse operation, using f(x) to find F (x), is called antidifferentiation.

In this section, we define antiderivatives. We discuss why a function has
infinitely many different antiderivatives. Based on the First Part of the Fun-
damental Theorem of Calculus, we recognize that accumulation functions are
special examples of antiderivatives for continuous rates of accumulation. Mo-
tivated by this observation, we introduce the indefinite integral as the notation
for antidifferentiation. Examples will illustrate how we use our known differ-
entiation rules to develop corresponding antidifferentiation rules.

10.1.1 Terminology
Definition 10.1.1 Antiderivatives. Given a function f(x), we say that
F (x) is an antiderivative of f(x) if f(x) is the derivative of F (x). That is,
F ′(x) = f(x). ♦

The derivative of any constant is zero, so adding a constant to a function
creates a new function that has the same derivative as the original. This means
that differentiation is not one-to-one.
Example 10.1.2 Compare the following derivatives:

d

dx
[x2 + 3x] = 2x+ 3,

d

dx
[x2 + 3x− 1] = 2x+ 3,

d

dx
[x2 + 3x+ 4] = 2x+ 3.

Each of the functions have the same derivative. We say that x2+3x, x2+3x−1,
and x2 + 3x + 4 are all antiderivatives of 2x + 3. More generally, we know
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x2 + 3x+ C will be an antiderivative for any constant value C. �
If we know that a function F (x) is an antiderivative of f(x), then we know

that all functions of the form F (x) + C, where C is a constant, are also an-
tiderivatives. This shows that infinitely many different functions have the same
derivative. We call all such functions antiderivatives.

We will later prove the following theorem. It states that the only way that
two antiderivatives can be different is that they differ by a constant. The proof
of the theorem will use a Mean Value Theorem for derivatives.
Theorem 10.1.3 Suppose that F (x) and G(x) are both antiderivatives of f(x)
on an interval I. That is, for all x ∈ I we have

F ′(x) = G′(x) = f(x).

Then there is a constant C so that for all x ∈ I, G(x) = F (x) + C.
Consequently, knowing just one antiderivative allows us to determine all

possible antiderivatives by adding some constant. Suppose F (x) is an an-
tiderivative of f(x). Then any other antiderivative must be F (x) +C for some
constant C. If we leave the constant as an unspecified parameter, we call this
the general antiderivative. Graphically, different antiderivatives correspond
to a vertical translation of the graph. That is, all antiderivatives have the same
graph shifted up or down relative to one another.

In the case that f(x) is continuous on some interval I, we can define an
accumulation function starting at any convenient point a ∈ I,

A(x) =
∫ x

a

f(z) dz.

By the Part One of the Fundamental Theorem of Calculus, we know that
A′(x) = f(x). That is, A(x) is itself an antiderivative of f(x) and any other
antiderivative could be written F (x) =

∫ x
a
f(z) dz + C.

Owing to this close connection between antiderivatives and integrals, the
standard notation for finding antiderivatives is with the integral symbol using
an indefinite integral. An indefinite integral will not have any limits of inte-
gration, uses the same variable of integration as the independent variable, and
refers to antiderivatives rather than definite integrals.

Definition 10.1.4 Indefinite Integrals. Given a function f(x), the in-
definite integral of f(x) with respect to x, written

∫
f(x) dx, is the gen-

eral antiderivative of f(x). That is, if F (x) is any antiderivative such that
F ′(x) = f(x), then ∫

f(x) dx = F (x) + C.

♦
Using our earlier example, we can write the indefinite integral of 2x+ 3 as∫

2x+ 3 dx = x2 + 3x+ C.

The indefinite integral represents the infinite family of all antiderivatives of
2x+ 3.

10.1.2 Examples
For the most part, finding antiderivatives corresponds to recognizing how a
function might have been computed as a derivative. Every statement about
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differentiation has an equivalent statement about integrals. To check whether a
proposed function is an antiderivative, we calculate its derivative and compare
that with the function inside the integral.

Example 10.1.5 Find d

dx

[
(3x + 5)4

]
and then write down the equivalent

statement as an integral.
Solution. The last operation in the expression (3x+ 5)4 is the power acting
on the expression u = 3x+ 5. The derivative requires a chain rule:

d

dx

[
(3x+ 5)4

]
= 4u3 du

dx

= 4(3x+ 5)3(3)
= 12(3x+ 5)3.

Once we know the derivative, we can write the equivalent integral∫
12(3x+ 5)3 dx = (3x+ 5)4 + C.

This says that (3x + 5)4 is an antiderivative of 12(3x + 5)3, along with that
same formula plus any constant. �

We must learn to recognize which differentiation rules would result in a
particular formula for a given function. Because differentiation is a linear
operator, antidifferentiation is as well.

Theorem 10.1.6 If F (x) is an antiderivative of f(x) and G(x) is an an-
tiderivative of g(x), then for any constants c1 and c2, c1F (x) + c2G(x) is an
antiderivative of c1f(x) + c2g(x). We write∫

[c1f(x) + c2g(x)]dx = c1

∫
f(x) dx+ c2

∫
g(x) dx.

If the integrand f(x) is expressed as a sum of terms, we typically first try
to find antiderivatives of each term.

Example 10.1.7 Find
∫

4x3 − 2e2x dx.

Solution. We are looking for a function F (x) for which F ′(x) = 4x3 − 2e2x.
From experience computing derivatives, we know

d

dx
[x4] = 4x3,

d

dx
[e2x] = 2e2x.

This suggests we should use the difference F (x) = x4 − e2x. We verify by
differentiation:

F ′(x) = d

dx
[x4 − e2x] = 4x3 − 2e2x.

This verifies that F (x) is an antiderivative of 4x3 − 2e2x. The general an-
tiderivative is written as the indefinite integral,∫

4x3 − 2e2x dx = x4 − e2x + C.

�
Most derivative rules do not result in a product of expressions. The product
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rule for derivatives results in the sum of two products. The quotient rule
results in in difference of quotients. Only the chain rule creates a derivative by
multiplying two expresions together. Consequently, if we see an integrand with
expressions multiplied together, we should consider whether we would benefit
from expanding the product as a sum.

Example 10.1.8 Find
∫
x2(x2 − 3) dx.

Solution. The function f(x) = x2(x2−3) is a product that can be expanded
to a sum using the distributive property.

f(x) = x4 − 3x2.

Our experience with the power rule suggests that we should be able to integrate
this expression. We know

d

dx
[x5] = 5x4.

To eliminate the unwanted constant multiple of 5, we can multiply both sides
by 1

5 to get
d

dx

[1
5x

5
]

= x4.

This suggests an antiderivative

F (x) = 1
5x

5 − x3.

We verify using regular differentiation rules:

F ′(x) = d

dx
[ 15x

5 − x3]

= 1
5(5x4)− 3x2

= x4 − 3x2 = f(x).

We have found ∫
x2(x2 − 3) dx = 1

5x
5 − x3 + C.

�
Just as it is useful to collect and learn the basic building blocks for differ-

entiation, we can collect and learn basic building blocks for integration. Each
derivative rule has its equivalent statement about antiderivatives. If we incor-
porate the chain rule, we extend each of the elementary rules to generalized
rules.

1. Power Rule: For any power n 6= −1,∫
xn dx = 1

n+ 1x
n+1 + C.

2. Generalized Power Rule: For any power n 6= −1 and expression
u, ∫

un · du
dx

dx = 1
n+ 1u

n+1 + C.
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3. Logarithm Rule: ∫ 1
x
dx = ln(|x|) + C.

4. Generalized Logarithm Rule: For any expression u,∫
u′

u
dx = ln(|u|) + C.

5. Elementary Exponential Rule: For any real value k 6= 0,∫
ekx dx = 1

k
ekx + C.

6. Generalized Exponential Rule: For any expression u,∫
eu · du

dx
dx = eu + C.

Example 10.1.9
∫
x2ex

3
dx

Solution. Because the integrand has a product of expressions, we should
begin by looking to see if the problem involves the chain rule. The exponential
term ex

3 involves the expression u = x3 which has a derivative u′ = 3x2. Notice
that the other factor in the problem, x2, differs from u′ only by a constant
multiple. That is, we can recognize our problem as a generalized exponential∫

x2ex
3
dx =

∫ 1
3(3x2)ex

3
dx

=
u=x3

∫ 1
3e

u · du
dx

dx

=
u=x3

1
3e

u + C

= 1
3e

x3
+ C.

�

10.1.3 Finding a Particular Antiderivative
Adding a constant to a function represents a graphical transformation of a ver-
tical shift. Consequently, different antiderivatives have the same graph shifted
vertically from one another. Consider the function f(x) = x2−4x. Integration
gives us ∫

x2 − 4x dx = 1
3x

3 − 2x2 + C.

The function F (x) = 1
3x

3 − 2x2 has the derivative F ′(x) = x2 − 4x, as does
every function F (x) + C.

The following dynamic graph has a slider for the integration constant C.
Notice that changing the value of C shifts the graph up or down. See if you
can find a value so that the graph y = F (x) + C goes through (x, y) = (3, 2).
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A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 10.1.10 y = F (x) + C

We can solve for the integration constant to find a particular antiderivative
passing through a given point.

Example 10.1.11 Find the constant C so that F (x) = 1
3x

3−2x2 +C satisfies
F (3) = 2.
Solution. Substitute the value x = 3 into the equation for F (x).

F (3) = 1
3(33)− 2(32) + C

= 9− 18 + C

= −9 + C

Because we want F (3) = 2, we create the equation

−9 + C = 2

so that we can solve for C to get C = 11. �

Example 10.1.12 Find a function P (t) so that P ′(t) = 20e−2t + 3t and
P (0) = 50.
Solution. Start by finding the general antiderivative.∫

[20e−2t + 3t]dt = −10e−2t + 3
2 t

2 + C

We therefore see that P (t) = −10e−2t + 3
2 t

2 +C. Now we substitute t = 0 and
P (0) = 50 to solve for C.

P (0) = −10e0 + 3
2(02) + C

50 = −10 + C

60 = C

Having found C = 60, we can conclude

P (t) = −10e−2t + 3
2 t

2 + 60.

�
Because the derivative represents a rate of change, finding particular an-

tiderivatives is equivalent to finding a quantity as a function of an independent
variable when we know the rate of change as a function and we know an initial
value.
Example 10.1.13 A cup of coffee starts at a temperature of 160 degrees
Fahrenheit. The temperature changes at a rate of change (degrees per minute)
modeled by the formula −3.6e−0.04t where t is the time in minutes. Find the
temperature as a function of time.
Solution. Let T represent the temperature of the cup of coffee in degrees
Fahrenheit. Our given information shows that

dT

dt
= −3.6e−0.04t.
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The temperature T must be an antiderivative of this formula,

T =
∫
−3.6e−0.04t dt

= −3.6
−0.04e

−0.04t + C

= 90e−0.04t + C.

To find the value of C, substitute t = 0 and T = 160.

T = 90e−0.04t + C

160 = 90e0 + C

160 = 90 + C

70 = C

Consequently, we have T = 90e−0.04t + 70. �

10.1.4 Summary
1. An antiderivative of f(x) is any function F (x) so that d

dx [F (x)] = f(x).
If F (x) is an antiderivative of f(x), then so is F (x) +C for any value of
C.

2. The Fundamental Theorem of Calculus guarantees that every continuous
function has an antiderivative. In particular, if f(x) is continuous on an
interval I with a ∈ I, then the accumulation function

A(x) =
∫ x

a

f(z) dz

is an antiderivative on the interval I.

3. We use the indefinite integral as the operator for antidifferentiation.
For a function f(x) with antiderivative F (x), we write∫

[f(x)] dx = F (x) + C

where C (or any other chosen symbol) represents an arbitrary constant
of integration.

4. The constant of integration graphically represents an arbitrary vertical
shift of the graph of a function. Given any point representing an initial
value, we can solve for the constant of integration so that there is the
graph of an antiderivative which passes through the given point.

10.1.5 Exercises

Calculate the specified derivative and then write the equivalent indefinite in-
tegral.

1. d

dx

[
2x4
]

2. d

dx

[
(2x+ 3)5

]
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3. d

dx

[√
x2 + 3

]
4. d

dx

[
ln(|x2 − 4x|)

]
5. d

dx

[
e3x4

]
6. d

dx

[
x2e−3x

]
7. d

dx

[
x ln(|x|)

]
8. d

dx

[x− 1
x− 3

]
Compute the indefinite integral by finding the general antiderivative. Some
integrands need to be rewritten before integration.

9.
∫
−3x5 + 2x2 + 3 dx

10.
∫

2x− 4x−1 + 5x−3 dx

11.
∫
x3(3x2 − 4x+ 7) dx

12.
∫

(x+ 4)(x− 8) dx

13.
∫
x2 + 4x− 5

3x2 dx

14.
∫
e2x dx

15.
∫

4e−3x dx

16.
∫
xex

2
dx

17.
∫

2x3e−x
4
dx

18.
∫ 1
x+ 3 dx

19.
∫ 3

2x+ 1 dx

20.
∫

x

x2 + 4 dx

21.
∫

e2x

e2x + 1 dx

22.
∫
−xe−x + e−x dx

23.
∫ 2xe2x − e2x

x2 dx

Use the given information to find the particular function.
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24. Find f(x) if f ′(x) = 2x− 5 with f(1) = 4.
25. Find g(x) if g′(x) = 3e−3x with g(0) = 2.
26. The velocity of a vehicle on track that runs left to right is v(t) =

1
2 t

2− 8t+ 24. If the vehicle is at a position s = 0 when t = 1, find the
position s(t) as a function of time.

27. A population changes at a rate defined by R(t) = 0.24t2 − 24t+ 216,
where t is measured in years. If the population is P = 120000 when
t = 0, find the population as a function of time.

28. A radiation detector absorbs radiation at a rate of R(t) = 5e−0.1t

(grays per minute). Find the total amount of radiation absorbed by
the detector as a function of time t (minutes) since t = 0.



CHAPTER 10. DERIVATIVES AND INTEGRALS 461

10.2 Differentiable Functions
When we learned about the definite integral and defined accumulation func-
tions, we were able to characterize the behavior of those functions by consid-
ering the behavior of the rates of accumulation. In particular, we learned that
the monotonicity of a function depended on the sign of the rate of accumula-
tion, and the concavity of a function depended, in turn, on the monotonicity
of the rate. These concepts have a natural analogue for functions in terms
of their derivatives, even when a function is not defined as an accumulation
function.

In this section, we introduce the major theorems relating to differentiabil-
ity. Differentiability is a property of a function characterized by where the
derivative is defined. We first learn that local extremes can only occur at crit-
ical points, or points where the derivative equals zero or is not defined. We
then learn about Rolle’s theorem, which is a theorem guaranteeing a point
with zero derivative. Rolle’s theorem principal value is in proving the Mean
Value Theorem for Derivatives. The Mean Value Theorem plays a prominent
role in characterizing the behavior of functions. In particular, it will be used
to prove that antiderivatives can only differ by constants.

10.2.1 Differentiability of Functions
Recall that continuity and differentiability are properties of functions. To say
that a function is continuous at a point means that the function itself has a
value at that point and that the limits of the function from both the left and
the right converge to the same value. The property of continuity essentially
characterizes the idea that the graph of the function is connected at the given
point. In a similar way, differentiability is a property that the limit defining
the derivative at a point is defined. Differentiability guarantees that a function
has a linear tangent line approximation.

Now that we know how to compute derivatives with the rules of differenti-
ation, we can consider when these functions are differentiable. As an example,
consider power functions f(x) = xp. When p is an irrational number, this is
defined in terms of the exponential f(x) = ep ln(x), so that the domain is x > 0.
However, when p is a rational number p = k

n for integers k and n with n > 0,
then f(x) = xk/n is defined by the nth roots of x,

f(x) = xk/n = ( n
√
x)k.

For odd values n, the root n
√
x is defined for all values of x. However, f(0) is

only defined if k ≥ 0.
What about the derivative? We have

f ′(x) = k

n
x(k−n)/n.

If k ≥ n, then f ′(0) will exist. However, if k < n corresponding to 0 < p =
k
n < 1, then f ′(0) will not exist. This is an example of a nondifferentiable
function. Graphically, the tangent line at the point is vertical so that the slope
is undefined with infinite limits.
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Figure 10.2.1 Examples of power functions that are nondifferentiable at x = 0.
When we first introduced the concept of differentiability, we used piecewise

functions to provide examples of nondifferentiable functions. In those exam-
ples, we used the definition of the derivative. With the rules of differentiation,
we can determine differentiability more directly.

Theorem 10.2.2 Suppose that a function f(x) is defined piecewise around
x = a so that for some δ > 0,

f(x) =


f`(x), a− δ < x < a,

f(a), x = a,

fr(x), a < x < a+ δ.

If f`(x) and fr(x) in their natural domains are both continuous and differen-
tiable at x = a, then f is differentiable at x = a if and only if f`(a) = fr(a) =
f(a) and f ′`(a) = f ′r(a).
Proof. Because f` and fr are continuous, the requirements of continuity that

lim
x→a−

f(x) = f(a) and lim
x→a+

f(x) = f(a)

are replaced by f`(a) = f(a) and fr(a) = f(a). Similarly, the calculation of
the derivative using the definition reduces to the values of the derivatives of f`
and fr at x = a:

lim
h→0−

f(a+ h)− f(a)
h

= lim
h→0−

f`(a+ h)− f`(a)
h

= f ′`(a),

lim
h→0+

f(a+ h)− f(a)
h

= lim
h→0+

fr(a+ h)− fr(a)
h

= f ′r(a).

For the two sided limit to exist, and thus for the derivative itself to exist, the
left- and right-side limits must agree, f ′`(a) = f ′r(a). Then f ′(a) = f ′`(a) =
f ′r(a). �

Example 10.2.3 Determine the values of a and b so that the function

f(x) =
{
x2 − 2x, x ≤ 2,
−2x2 + ax+ b, x > 2,

is differentiable at x = 2.
Solution. The function used for x < 2 is f`(x) = x2 − 2x, and the function
used for x > 2 is fr(x = −2x2 + ax + b. The derivatives are found using
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differentiation rules:

f ′`(x) = 2x− 2,
f ′r(x) = −4x+ a.

The requirement for continuity will give us one equation, which we simplify:
which becomes

f`(2) = fr(2)
22 − 2(2) = −2(22) + a(2) + b

0 = 2a+ b− 8
2a+ b = 8.

This means that so long as b = 8− 2a, f(x) will be continuous at x = 2. How-
ever, it may or may not be differentiable, depending on whether the derivatives
match.

The requirement that the left- and right-sided derivatives are equal gives
us a second equation, which we also simplify:

f ′`(2) = f ′r(2)
2(2)− 2 = −4(2) + a

2 = −8 + a

a = 10.

Once we know a = 10, we can substitute that into the first equation to find b:

b = 8− 2a
b = 8− 2(10)
b = −12.

Consequently, f(x) will be differentiable at x = 2 if and only if a = 10 and
b = −12.

Specify static image with @preview attribute,
Or create and provide automatic screenshot as

images/interactive-piecewise-differentiable-preview.png
via the mbx script

Figure 10.2.4 A graph of f(x) where parameters a and b can be changed
dynamically.

�

10.2.2 Consequences of Differentiability
There are a number of important consequences of a function being differen-
tiable. These consequences are stated as mathematical theorems. The first
such theorem focuses on differentiability at local extreme values.

Theorem 10.2.5 Fermat’s Theorem. If f has a local extreme at x = a
and f ′(a) exists, then f ′(a) = 0.

/interactive-piecewise-differentiable.html
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Proof. Suppose that f has a local maximum at x = a. Then there is some
value δ > 0 so that if a − δ < x < a + δ, we must have f(x) ≤ f(a). For
−δ < h < 0, we therefore have f(a + h)− f(a) ≤ 0 so that dividing by h < 0
gives

f(a+ h)− f(a)
h

≥ 0.

This implies that
lim
h→0−

f(a+ h)− f(a)
h

≥ 0.

For 0 < h < δ, we also have f(a+h)−f(a) ≤ 0 so that dividing by h > 0 gives

f(a+ h)− f(a)
h

≤ 0.

Thus, we have
lim
h→0+

f(a+ h)− f(a)
h

≤ 0.

If f ′(a) exists, these limits must equal and f ′(a) = 0.
If f has a local minimum at x = a, the argument is similar. �
If we are looking for extreme values of a function, we can ignore all points

where f ′(x) exists but f ′(x) 6= 0. The only points in the domain of f that
might be considered are where f ′(x) does not exist or where f ′(x) = 0 and f
has a horizontal tangent line. We call such points the critical points of f .

Definition 10.2.6 The critical points of a function f are all values in the
domain of f such that f ′(x) does not exist or f ′(x) = 0. ♦

The second theorem combines the Extreme Value Theorem with Fermat’s
Theorem. If a function is continuous on a closed interval [a, b], then it must
achieve both a maximum and a minimum value. If that function has f(a) =
f(b), then one of the extreme values must occur inside the interval at some
point c ∈ (a, b). If the function is also differentiable, then we must have
f ′(c) = 0. This result is named Rolle’s theorem.

Theorem 10.2.7 Rolle’s Theorem. If f is continuous on [a, b] and differ-
entiable on (a, b) and f(a) = f(b), then there must be some value c ∈ (a, b) so
that f ′(c) = 0.
Proof. The argument is given in the paragraph preceding the theorem. The
hypothesis of continuity allows us to apply the Extreme Value Theorem. The
hypothesis of differentiability allows us to apply Fermat’s Theorem to the local
extreme that was guaranteed at the point between a and b. �

The consequence of Rolle’s theorem is that if a function starts and ends
at the same value over an interval, it must turn around somewhere with a
horizontal tangent.
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a c b

Figure 10.2.8 A graphical illustration of Rolle’s theorem. Note that extreme
values have horizontal tangents.

Rolle’s theorem is not usually applied on its own. It is most often referenced
in the context of proving more useful theorems. The third theorem about
differentiability applies Rolle’s theorem to create the Mean Value Theorem for
derivatives in relation to the average rate of change. Recall that the average
rate of change,

∆f
∆x

∣∣∣∣
[a,b]

= f(b)− f(a)
b− a

,

is the slope of the line, called a secant line, that joins the points (a, f(a))
and (b, f(b)). The Mean Value Theorem guarantees that a continuous and
differentiable function will have some point at which the tangent line has the
same slope as the secant line over the given interval.

a c b

Figure 10.2.9 A graphical illustration of the Mean Value theorem. Note that
at the point furthest from the secant line (dashed), the slope matches that of
the secant line.

Theorem 10.2.10 Mean Value Theorem. If f is continuous on [a, b] and
differentiable on (a, b), then there must be some value c ∈ (a, b) so that

f ′(c) = ∆f
∆x

∣∣∣
a,b

= f(b)− f(a)
b− a

.

Alternatively, we sometimes rewrite this as

f(b)− f(a) = f ′(c) · (b− a).
Proof. Let s(x) be the linear function corresponding to this secant line. That
is, s(a) = f(a) and s(b) = f(b) and s(x) has the constant slope

s′(x) = f(b)− f(a)
b− a

.

We now define g(x) = f(x)− s(x). Since s(a) = f(a) and s(b) = f(b), we have
g(a) = g(b) = 0. If f is continuous and differentiable, then so is g. Rolle’s
theorem guarantees that g′(c) = f ′(c) − s′(c) = 0 for some value c ∈ (a, b).
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Thus, f ′(c) = s′(c) = ∆f
∆x

∣∣∣∣
[a,b]

. �

10.2.3 Applications of the Mean Value Theorem
The Mean Value Theorem for derivatives allows us to know that the average
rate of change of a differentiable function between any two points will be equal
to the instantaneous rate of change at some point within the interval. Con-
sequently, if we know properties of the derivative on entire intervals, that can
provide information about how the function is changing on the interval. In
particular, we learn that the sign of a derivative can be used to determine
monotonicity of a function.

Theorem 10.2.11 Monotonicity of Differentiable Functions. Suppose
that f is a differentiable on an interval I (open or closed).

• If f ′(x) > 0 for all x ∈ I, then f(x) is increasing on I.

• If f ′(x) < 0 for all x ∈ I, then f(x) is decreasing on I.

• If f ′(x) = 0 for all x ∈ I, then f(x) is constant on I.

If the interval I is open but f is continuous up to and including the end-
points, then the conclusion can be extended to include the end-points as well.
Proof. Consider any two points a, b ∈ I with a < b. Because f is differentiable
on I, we know that f is continuous and differentiable on the subinterval [a, b].
The Mean Value Theorem guarantees the existence of a point c ∈ (a, b) such
that

f(b)− f(a) = f ′(c) · (b− a).

Now assume that f ′(x) > 0 for all x ∈ I. Then f ′(c) > 0 and b − a > 0,
guaranteeing that f(b)−f(a) > 0. That is, f(b) > f(a). This is what is needed
to show that f is increasing on I.

Next assume that f ′(x) < 0 for all x ∈ I. Then f ′(c) < 0 while b− a > 0,
guaranteeing that f(b) − f(a) < 0. That is, f(b) < f(a), which shows that f
is decreasing on I.

Finally assume that f ′(x) = 0 for all x ∈ I. Then f ′(c) = 0, implying that
f(b)−f(a) = 0. That is, f(b) = f(a), which shows that f is constant on I. �

We can now justify doing the same sign analysis work using a derivative as
we did for the rate of accumulation functions. What is different from then?
Our previous justification required that the function could be written as an
accumulation function with a known rate of accumulation. Now, we can do
the same type of sign analysis with any function for which we can determine
the derivative.

Because the second derivative gives the rate of change of the first derivative,
we can use sign analysis of f ′′(x) to describe concavity of f(x).

Theorem 10.2.12 Concavity of Twice-Differentiable Functions. Given
a function f for which f ′ and f ′′ are defined on an interval I.

• If f ′′(x) > 0 for all x ∈ I, then f(x) is concave up on I.

• If f ′′(x) < 0 for all x ∈ I, then f(x) is concave down on I.

• If f ′′(x) = 0 for all x ∈ I, then f(x) is linear on I.

If the interval I is open but f ′ is continuous up to and including the end-
points, then the conclusion can be extended to include the end-points as well.
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Proof. This is just an application of Theorem Theorem 10.2.11 applied to f ′.
Once we know that f ′ is increasing on I, the definition of concavity allows us
to say that f is concave up on I. Similarly, knowing that f ′ is decreasing is
equivalent to saying that f is concave down. If f ′ is constant on an interval I,
this is exactly what it means for f to be linear on I. �

Example 10.2.13 Describe the monotonicity and concavity of f(x) = xe−2x.
Solution. Start by computing the first and second derivatives. Note that we
must use the product rule:

f(x) = xe−2x,

f ′(x) = 1 · e−2x + x · −2e−2x

= (1− 2x)e−2x,

f ′′(x) = −2 · e−2x + (1− 2x) · −2e−2x

= (−2− 2 + 4x)e−2x

= (−4 + 4x)e−2x.

We can now do sign analysis for f ′(x) and f ′′(x). Because e−2x is a factor
for each of the functions, we will use the fact that e−2x > 0 for all values of x.
The only point where f ′(x) = 0 is where 1 − 2x = 0 or x = 1

2 . The resulting
sign analysis summary for f ′(x) is shown below.

f ′(x) = (1− 2x)e−2x

x1
2

0+ −

The only point where f ′′(x) = 0 is where −4 + 4x = 0 or x = 1. The
resulting sign analysis summary for f ′′(x) is shown below.

f ′′(x) = (−4 + 4x)e−2x

x1

0− +

We now interpret our results. Because f is continuous, we can extend open
intervals to include end-points. The function f(x) is increasing on (−∞, 1

2 ]
and decreasing on [ 1

2 ,∞). In addition, f(x) is concave down on (−∞, 1] and
concave up on [1,∞). A graph of y = f(x) is shown below, with the local
maximum at x = 1

2 and the point of inflection at x = 1.

−1 0 1 2 3

−0.2

−0.1

0

0.1

0.2

�
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10.2.4 Classifying Antiderivatives
The Mean Value Theorem results in another important consequence: all an-
tiderivatives of a particular function differ by constants. In particular, the
result applies to intervals where the derivative is defined.

Theorem 10.2.14 Suppose that F (x) and G(x) are any two differentiable
functions defined on some interval I such that for all x ∈ I, F ′(x) = G′(x).
Then there exists some constant C so that for all x ∈ I, G(x) = F (x) + C.

In particular, if F (x) and G(x) are antiderivatives of the same function
f(x), and F and G are differentiable on an interval I, then G(x) = F (x) + C
on that interval.
Proof. Define a function H(x) = G(x) − F (x). Because F and G are differ-
entiable at all x ∈ I, H(x) is both continuous and differentiable at all x ∈ I.
With F ′(x) = G′(x), we have H ′(x) = 0 for all x ∈ I. Consequently, by
Theorem 10.2.11, H(x) is constant on I, or H(x) = C for some constant C.
Therefore G(x)− F (x) = C or G(x) = F (x) + C. �

Be aware that the constant only applies to an interval where the antideriva-
tives are differentiable. The constant can be different over different intervals.
Example 10.2.15 We know that F (x) = ln(|x|) is an antiderivative of f(x) =
1
x
. Now, construct

G(x) =
{

ln(−2x), x < 0,
ln(3x), x > 0.

We can differentiate on each interval:

G′(x) =


d
dx

[
ln(−2x)

]
= −2
−2x = 1

x , x < 0,
d
dx

[
ln(3x)

]
= 3

3x = 1
x , x > 0.

This shows that F (x) and G(x) are each antiderivatives of f(x).
So what are the constants on the intervals? They can be found from the

properties of logarithms:

ln(−2x) = ln(2) + ln(−x),
ln(3x) = ln(3) + ln(x).

We see that on the interval (−∞, 0), G(x) = F (x) + ln(2), but on the interval
(0,∞), G(x) = F (x) + ln(3). �

10.2.5 Summary
1. Differentiability: We look for points in the domain of f(x) where f ′(x)

also exists. The function is nondifferentiable if f ′(x) does not exist.
Examples of causes for nondifferentiability: f(x) not being continuous,
left- and right-slopes differ, or the tangent line is vertical.

2. Theorem 10.2.5: Local extremes of f(x) can only occur at critical points,
which are values where f ′(x) = 0 or f ′(x) does not exist.

3. Theorem 10.2.7: For a continuous and differentiable function, it will have
a horizontal tangent between any two zeros.

4. Theorem 10.2.10: For a continuous and differentiable function, the av-
erage rate of change on an interval will be matched by the slope of the
tangent line at some intermediate point.
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5. The Mean Value Theorem provides the justification of using sign analysis
of f ′(x) and f ′′(x) to determine intervals of monotonicity and concavity,
respectively, for the function f(x).

6. The Mean Value Theorem also provides the justification that any two
antiderivatives of a function f(x) can differ at most by a constant value
over an interval on which they are differentiable.

10.2.6 Exercises
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10.3 Definite Integrals and Antiderivatives
An accumulation function with rate f(x) is a function A defined as the definite
integral of f(x) from a fixed lower limit c to the independent variable as the
upper limit,

A(x) =
∫ x

c

f(z) dz.

The motivation for such a function was that the definite integral computes the
total change of a quantity when the rate of change is given. By the splitting
property of integration, if A(x) is continuous then∫ b

a

f(x) dx = A(b)−A(a).

The Fundamental Theorem of Calculus showed that if f(x) is continuous,
then A(x) is differentiable and A′(x) = f(x). That is, A(x) is an antiderivative
of f(x). This motivates another method for computing definite integrals.

In this section, we apply the Fundamental Theorem of Calculus to evaluate
definite integrals using any convenient antiderivative. This application is called
the Second Part of the Fundamental Theorem of Calculus. We demonstrate
these calculations with several examples.

10.3.1 The Fundamental Theorem of Calculus
The Fundamental Theorem of Calculus shows that an accumulation function
is an antiderivative of the integrand. The Mean Value Theorem implies that
any other antiderivative will differ from the accumulation function as an an-
tiderivative by some constant. The Second Part of the Fundamental Theorem
of Calculus will then allow us to calculate definite integrals by calculating the
change in any antiderivative.

Theorem 10.3.1 The Fundamental Theorem of Calculus, Part Two
(FTC2). Given any function f(x) that is continuous on an interval I, let
F (x) be an antiderivative so that F ′(x) = f(x) for all x ∈ I. Then for values
a, b ∈ I, ∫ b

a

f(x) dx =
[
F (x)

]b
a

= F (b)− F (a).

Proof. Because f(x) is continuous, we can define an accumulation function

A(x) =
∫ x

a

f(z) dz.

Because A(x) and F (x) are both antiderivatives, with A′(x) = F ′(x) = f(x)
for all x ∈ I, there is some constant C so that A(x) = F (x) + C. Because
A(a) = 0, we have F (a)+C = 0 so that C = −F (a). By the splitting property
of integrals, we have∫ b

a

f(x) dx = A(b) = F (b) + C = F (b)− F (a).

�
When evaluating definite integrals using the Fundamental Theorem of Cal-

culus, we are substituting the evaluation of a definite integral, which is defined
as the limit of a Riemann sum, with the change in an antiderivative. To in-
dicate such a substitution, we should refer to the Fundamental Theorem of



CHAPTER 10. DERIVATIVES AND INTEGRALS 471

Calculus, perhaps using the abbreviation FTC. We can simultaneously make
the substitution and note the formula for the antiderivative by using bracket
evaluation notation.

Given any function F (x), the notation
[
F (x)

]b
a

means to evaluate the
change of the expression when x goes from a to b:[

F (x)
]b
a

= F (b)− F (a).

When the formula for F (x) is simple, the brackets can be dropped and replaced
by a vertical bar on the right,

F (x)
∣∣b
a

= F (b)− F (a).

Example 10.3.2 Evaluate
∫ 4

1
x2 dx.

Solution. Let us consider the two steps separately. Then we will see how to
represent this more compactly using evaluation notation.

First, we need an antiderivative, computed as an indefinite integral∫
x2 dx = 1

3x
3 + C.

This tells us that F (x) = 1
3x

3 is an antiderivative, as is F (x) = 1
3x

3 + 4 (or
any other constant). We’ll use the first, since it is simpler; we only need one
antiderivative, not all of them.

Second, the Fundamental Theorem of Calculus allows us to evaluate the
definite integral as the change in F (x).∫ 4

1
x2 dx = F (4)− F (1)

= 1
3(4)3 − 1

3(1)3

= 64
3 −

1
3

= 63
3 = 21

This can be written more compactly by writing the formula of the an-
tiderivative inside the evaluation notation while simultaneously indicating the
use of the Fundamental Theorem of Calculus:∫ 4

1
x2 dx

FTC=
[1
3x

3]4
1

= 1
3(4)3 − 1

3(1)3

= 64
3 −

1
3 = 21

Notice that we did not need the constant of integration because the Fundamen-
tal Theorem of Calculus only requires one antiderivative. We generally choose
the most convenient one with a zero constant. �

Evaluation of definite integrals involves recognizing antiderivatives and then
evaluating their change.
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Example 10.3.3 ∫ 2

1
e3x dx

FTC=
[1
3e

3x]2
1

= 1
3e

6 − 1
3e

3

= e6 − e3

3

�

Example 10.3.4 Find
∫ 3

1
x(3x2 + 1)4 dx.

Solution. The integrand has a product of x with u4 where u = 3x2 + 1. For
the chain rule to have been the source of this product, we would need du

dx = 6x
rather than x.∫ 3

1
x(3x2 + 1)4 dx =

∫ 3

1

1
6(6x)(3x2 + 1)4 dx

FTC=
[1

6 ·
1
5u

5
]x=3

x=1

=
[ 1

30(3x2 + 1)5
]3

1

= 1
30(3(32) + 1)5 − 1

30(3(12) + 1)5

= 285

30 −
45

30
= 17, 210, 368

30 − 1, 024
30 = 17, 209, 344

30 = 573, 644.8

�
We have to be careful about satisfying the hypotheses. For example, if f(x)

is not continuous over the interval of integration, we can not use antiderivatives
to calculate the definite integral.

Example 10.3.5 Find
∫ 1

2x− 1 dx. How can we use that result for the fol-
lowing definite integrals?

1.
∫ 2

0

1
2x− 1 dx

2.
∫ 3

1

1
2x− 1 dx

Solution. The integrand is of the form u−1 where u = 2x−1. The derivative
of u is u′ = 2. In order to antidifferentiate the chain rule, we rewrite∫ 1

2x− 1 dx =
∫ 1

2
2

2x− 1 dx = 1
2 ln(|2x− 1|) + C.

To see if the antiderivative can be used in a definite integral, we need
to see where f(x) = 1

2x−1 is continuous. A discontinuity occurs at x = 1
2 .

Consequently, a definite integral using the antiderivative can only be used for

intervals that do not include 1
2 . Thus,

∫ 2

0

1
2x− 1 dx can not be computed. On
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the other hand, ∫ 3

1

1
2x− 1 dx

FTC=
[

ln(|2x− 1|)
]3

1

= ln(|2(3)− 1|)− ln(|2(1)− 1|)
= ln(5)− ln(1) = ln(5).

�

10.3.2 Composition with Accumulation Functions
The First Part of the Fundamental Theorem of Calculus tells us the deriva-
tive of accumulation functions. Knowing the chain rule allows us to compute
derivatives of functions defined by integrals with expressions in the limits of
integration.

Example 10.3.6 Compute the following derivatives.

1. d

dx

∫ x

1
e−z

2
dz

2. d

dx

∫ x2

x

e−z
2
dz

3. d

dx

∫ √x
0

1√
z4 + 1

dz

Solution. When solving problems involving definite integrals, it is often help-
ful to explicitly remind yourself of the concept of accumulation functions and
the fundamental theorem of calculus’s conclusion.

1. Define A(x) =
∫ x

1
e−z

2
dz, which is the accumulation function with in-

tegrand f(z) = e−z
2 . The Fundamental Theorem of Calculus tells us

that A′(x) = f(x) = e−x
2 . The following work would communicate these

results:

A(x) =
∫ x

1
e−z

2
dz

A′(x) FTC= e−x
2

d

dx

∫ x

1
e−z

2
dz = A′(x) = e−x

2

2. To compute d

dx

∫ x2

x

e−z
2
dz, we first need the accumulation function

A(x) =
∫ x

1
e−z

2
dz with rate f(x) = e−x

2 . The integral that defines
our function involves a composition by the splitting property,∫ x2

x

e−z
2
dz = A(x2)−A(x).

When we differentiate this, we must use the chain rule knowing

d

dx

[
A(u)

]
= A′(u)du

dx

FTC= f(u)du
dx
.
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The following work would communicate these results:

A(x) =
∫ x

1
e−z

2
dz

d

dx

∫ x2

x

e−z
2
dz = d

dx

[
A(x2)−A(x)

]
FTC= f(x2) · d

dx
[x2]− f(x)

= e−(x2)2
· 2x− e−x

2

= 2xe−x
4
− e−x

2

3. To compute d

dx

[∫ √x
0

1√
z4 + 1

dz

]
, we will need to define an accumula-

tion function and then apply the Fundamental Theorem of Calculus to
find the derivative required.

A(x) =
∫ x

0

1√
z4 + 1

dz

A′(x) FTC= 1√
x4 + 1

d

dx

[∫ √x
0

1√
z4 + 1

dz

]
= d

dx
[A(
√
x)]

= A′(
√
x) d
dx

[
√
x]

= 1√
(
√
x)4 + 1

· (1
2x
−1/2)

= 1√
x2 + 1

· 1
2
√
x

= 1
2
√
x(x2 + 1)

�

10.3.3 Summary
1. The Fundamental Theorem of Calculus, Part 1, together with the Mean

Value Theorem, imply that for any continuous function f(x), an accu-
mulation function and any other antiderivative will differ by a constant
value.

2. The Fundamental Theorem of Calculus, Part 2, states that the definite
integral of a function that is continuous on the interval of integration can
be substituted for the change in any antiderivative of the rate. That is,
if F (x) is an antiderivative of f(x) and f(x) is continuous on the interval
containing a and b,∫ b

a

f(x) dx FTC=
[
F (x)

]b
a

= F (b)− F (a).

3. The Fundamental Theorem of Calculus, Part 1, together with the chain
rule, allows us to compute the derivative of functions where the limits
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of integration are expressions involving the independent variable. Let u
and w be expressions involving x and suppose that f(x) is a continuous
function.

d

dx

[ ∫ w

u

f(z) dz
]

FTC= f(w)dw
dx
− f(u)du

dx

10.3.4 Exercises
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10.4 L’Hôpital’s Rule
Limits involving combinations of continuous functions are generally computed
by evaluating the values of the functions. Arithmetic involving infinity will
follow elementary rules. Suppose L > 0 is a positive number. Then when
performing arithmetic, the following rules will hold.

∞± L =∞
∞+∞ =∞

−∞+−∞ = −∞
L · ∞ =∞
−L · ∞ = −∞
∞ ·∞ =∞
∞ · −∞ = −∞
−∞ · −∞ =∞

However, when calculations would result that attempt to cancel away an
infinite quantity (or zero), the limit has an indeterminate form. That is, cal-
culations involving any of the following arithmetic are in an indeterminate
form,

∞
∞

∞−∞ 0
0 0 · ∞.

The general strategy for evaluating indeterminate limits involves rewriting the
limit in a different form, or finding another limit that is known to be equivalent.

L’Hôpital’s rule is a theorem that allows us to rewrite a limit which has an
indeterminate form 0

0 or ∞∞ using derivatives.

Theorem 10.4.1 L’Hôpital’s Rule. Suppose f(x) and g(x) are functions
so that

lim
x→a

f(x)
g(x) →

0
0 or lim

x→a

f(x)
g(x) →

∞
∞
.

If lim
x→a

f ′(x)
g′(x) exists, then

lim
x→a

f(x)
g(x) = lim

x→a

f ′(x)
g′(x) .

Proof. Consider the case where f(x)→ 0 and g(x)→ 0 and g(x) 6= 0 as x→ a.
If f or g is not continuous at x = a, consider the continuous extensions so that
f(a) = 0 and g(a) = 0. Similar to the proof of the Mean Value Theorem, define
h(z) = f(z)− f(x)

g(x) ·g(z), treating x as constant. Note that h(z) is differentiable
and therefore continuous because f ′(x) and g′(x) must both exist for the limit
of the quotient to exist. In addition, h(a) = 0 and h(x) = 0.

Rolle’s theorem implies that h′(z) = 0 for some z between a and x,

h′(z) = f ′(z)− f(x)
g(x) g

′(z) = 0,

so that
f ′(z)
g′(z) = f(x)

g(x) .

Because z is between a and x, as x→ a we must have z → a.

lim
x→a

f(x)
g(x) = lim

z→a

f ′(z)
g′(z) .

�
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It is essential that you verify that the hypotheses of L’Hôpital’s rule apply
before replacing the expressions with their derivatives. Limits and derivatives
are not the same. Computing a limit does not always mean we are computing
a derivative.

In addition, make note that changing the limit using L’Hôpital’s rule is not
computing the derivative of a quotient. It is replacing the limit of a quotient
with the limit of a new quotient involving two derivatives.

Our first few examples will illustrate that L’Hôpital’s rule gives the same
result as methods we learned earlier involving factoring.

Example 10.4.2 Evaluate the limit lim
x→2

x2 − 3x+ 2
x2 + x− 6 using factoring and using

L’Hôpital’s rule.
Solution. If we try to use the value directly, we find an indeterminate form,

lim
x→2

x2 − 3x+ 2
x2 + x− 6 →

22 − 3(2) + 2
22 + 2− 6 = 0

0 .

We must find alternative representations of this limit to determine its value.
Using factoring, we rewrite the limit by canceling common factors.

lim
x→2

x2 − 3x+ 2
x2 + x− 6 = lim

x→2

(x− 2)(x− 1)
(x+ 3)(x− 2)

= lim
x→2

x− 1
x+ 3 = 2− 1

2 + 3 = 1
5

Because the original limit had indeterminate form 0
0 , L’Hôpital’s rule will

apply with f(x) = x2 − 3x+ 2 and g(x) = x2 + x− 6. We replace the limit of
f(x)/g(x) with the limit of f ′(x)/g′(x), assuming that limit exists.

lim
x→2

x2 − 3x+ 2
x2 + x− 6 = lim

x→2

2x− 3
2x+ 1 = 2(2)− 3

2(2) + 1 = 1
5

We see that both approaches give the same limit, exactly as predicted by
L’Hôpital’s rule. �

Sometimes, we need to apply L’Hôpital’s rule more than once when the
modified limit is still in indeterminate form.

Example 10.4.3 Evaluate the limit lim
x→∞

2x2 + x− 3
x2 − x− 5 using factoring and us-

ing L’Hôpital’s rule.
Solution. Limits at infinity generally require factoring out the fastest grow-
ing terms.

lim
x→∞

2x2 + x− 3
x2 − x− 5 = lim

x→∞

x2(2 + 1
x −

3
x2 )

x2(1− 1
x −

5
x2 )

In this form, we see that the limit has form ∞
∞ . By canceling the common

factor x2, we find

lim
x→∞

2x2 + x− 3
x2 − x− 5 = lim

x→∞

2 + 1
x −

3
x2

1− 1
x −

5
x2

= 2 + 0− 0
1− 0− 0 = 2.

Because the limit had form ∞
∞ , we can use L’Hôpital’s rule to rewrite the

limit in a new form,

lim
x→∞

2x2 + x− 3
x2 − x− 5 = lim

x→∞

4x+ 1
2x− 1 .



CHAPTER 10. DERIVATIVES AND INTEGRALS 478

This limit is still of form ∞
∞ , so we can use L’Hôpital’s rule again to get yet

another equivalent form,

lim
x→∞

2x2 + x− 3
x2 − x− 5 = lim

x→∞

4
2 = 2.

Again, either approach will give the same value. �
One of the advantages of L’Hôpital’s rule is that it allows us to evaluate

limits where factoring does not help.

Example 10.4.4 Compute lim
x→3

2x − 8
x2 + x− 12 .

Solution. The first step is always to try evaluating directly.

lim
x→3

2x − 8
x2 + x− 12 →

23 − 8
32 + 3− 12 = 0

0

The limit has indeterminate form 0
0 so that we can use L’Hôpital’s rule. In

this case, note that the numerator 2x − 8 does not factor. L’Hôpital’s rule is
the preferred approach.

A typical solution would be written as follows.

lim
x→3

2x − 8
x2 + x− 12 →

23 − 8
32 + 3− 12 = 0

0
L’H= lim

x→3

2x ln(2)
2x+ 1 = 23 ln(2)

2(3) + 1 = 8 ln(2)
7

The first line shows that the original limit is an indeterminate form. Writing
“L’H” over the equal sign shows that we are using L’Hôpital’s rule to replace
the original limit with the modified limit involving derivatives. Also, we used
the derivative of an exponential, d

dx [bx] = bx ln(b). �

Indeterminate limits that are not fractions of the form 0
0 or ∞∞ do not

directly apply L’Hôpital’s rule. You must first use algebra to rewrite them in
a way that they do have the appropriate form.

Example 10.4.5 Evaluate lim
x→0+

x ln(x).

Solution. When x → 0+, we have ln(x) → −∞. As written, the limit has
the indeterminate form lim

x→0+
x ln(x)→ 0 · −∞. This is indeterminate because

multiplying∞ by zero would be a form of trying to cancel the infinite. Instead,
we need to rewrite the formula so that it is a fraction.

There are two approaches:

x ln(x) = ln(x)
x−1 = x

(ln(x))−1 .

When choosing which approach will be better, you should ask yourself which
formula will lead to simpler derivatives. For this problem, we use the first
expression, knowing that x−1 → +∞ as x→ 0+.

lim
x→0+

x ln(x) = lim
x→0+

ln(x)
x−1 →

−∞
∞

L’H= lim
x→0+

x−1

−1x−2 = lim
x→0+

x−1x2

−x−2x2

= lim
x→0+

−x = 0.

�



CHAPTER 10. DERIVATIVES AND INTEGRALS 479

Example 10.4.6 Evaluate lim
x→∞

x2e−3x.

Solution. We know limit values for the exponential: e∞ =∞ and e−∞ = 0.
The given limit will be an indeterminate form∞·0. So we rewrite it in quotient
form and then use L’Hôpital’s rule.

lim
x→∞

x2e−3x = lim
x→∞

x2

e3x →
∞
∞

L’H= lim
x→∞

2x
3e3x →

∞
∞

L’H= lim
x→∞

2
9e3x →

2
∞

= 0

Notice that we used L’Hôpital’s rule twice when the first time resulted in
another indeterminate form. �

We end with an example involving powers. When both the base and the
exponent are variable, we must interpret a power in terms of composition with
the exponential function,

uv = exp(ln(uv)) = exp(v ln(u)) = ev ln(u).

Because the natural exponential function is continuous, we only need to eval-
uate the limit of v ln(u) and then evaluate the exponential function at the
corresponding limit. This is a consequence of Theorem Theorem 5.3.22.

Example 10.4.7 Evaluate lim
x→∞

(1 + r

x
)xt, where r and t are constant values.

Solution. The function for which we compute a limit can be rewritten as a
composition with the natural exponential function:

f(x) = (1 + r

x
)xt

= exp
(

ln
(
(1 + rx−1)xt

))
= exp

(
xt ln(1 + rx−1)

)
.

So we start by evaluating the limit of the expression inside the exponential.

lim
x→∞

xt ln(1 + rx−1)→∞ · ln(1 + 0) =∞ · 0

This limit has an indeterminate form.
We rewrite the indeterminate limit as a fraction so that we can use L’Hôpital’s

rule. From our earlier experience, we will leave the logarithm in the numerator.

lim
x→∞

xt ln(1 + rx−1) = lim
x→∞

t ln(1 + rx−1)
x−1 → t · ln(1)

0 = 0
0

L’H= lim
x→∞

t · 1
1+rx−1 · ddx [1 + rx−1]

−x−2

= lim
x→∞

t · 1
1+rx−1 · (−rx−2)
−x−2

= lim
x→∞

t · 1
1 + rx−1 · (r)→ t · 1

1 + 0 · r = rt

Using the Limit of a Continuous Composition, we conclude

lim
x→∞

exp
(
xt ln(1 + rx−1)

)
= exp

(
lim
x→∞

xt ln(1 + rx−1)
)

= exp(rt) = ert.

�
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11.1 The Derivatives of Trigonometric Functions

11.1.1 Essential Trigonometric Identities
When we found the derivative of elementary exponential functions, we found
that we needed to use a rule to rewrite bx+h = bx · bh. This type of rule is
called an identity. Identities provide rules to rewrite a formula in another form
without changing the value of the formula. Trigonometric functions are all
defined in terms of the elementary sine and cosine functions. Consequently, we
need the basic identities of sine and cosine.

We start with the sum identities.
Theorem 11.1.1 Sum Identities of Sine and Cosine. Given any α, β ∈ R,

sin(α+ β) = sin(α) cos(β) + cos(α) sin(β),
cos(α+ β) = cos(α) cos(β)− sin(α) sin(β).

Proof. The following geometric proof is valid for acute angles, 0 < α, β < π
2 .

Consider the location of the angle α and α+β on the unit circle, illustrated as
points A and B, respectively. The origin at (0, 0) will be the point O and the
point (1, 0) will be the point P . Construct a line segment from B to intersect
OA at a right angle; call the point of intersection C. Draw a vertical line from
C which intersects OP at a point Q. Finally draw a horizontal line through C
and a vertical line through B, which intersect at a point D.

O P

A

B

α

β

By construction, we know m∠POA = α and m∠AOB = β. Because
OB = 1, we know that OC = cos(β) and BC = sin(β). By geometry, we can
prove that triangle BDC is a right triangle with m∠DBC = α. Consequently,

BD = BC cos(α) = cos(α) sin(β),
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DC = BC sin(α) = sin(α) sin(β).

Similarly, triangle OQC is a right triangle with m∠COQ = α. Since OC =
cos(β), we know

OQ = OC cos(α) = cos(α) cos(β),
CQ = OC sin(α) = sin(α) cos(β).

The x-coordinate of B is cos(α+ β) so that

cos(α+ β) = OQ− CD = cos(α) cos(β)− sin(α) sin(β).

The y-coordinate of B is sin(α+ β) so that

sin(α+ β) = CQ+DB = sin(α) cos(β) + cos(α) sin(β).

�
Next, we state the symmetries of sine and cosine.

Theorem 11.1.2 Sum Identities of Sine and Cosine. Sine is an odd
function. Cosine is an even function. That is, for any α ∈ R,

sin(−α) = − sin(α),
cos(−α) = cos(α).

Proof. An angle−α goes in the opposite direction as the angle α. Consequently,
the points on the unit circle have the same horizontal coordinate,

cos(−α) = cos(α),

and opposite vertical coordinates,

sin(−α) = − sin(α).

�
Finally, because the sine and cosine are defined on a unit circle (with radius

1), we have a Pythagorean identity regarding the sum of the squared values.

Theorem 11.1.3 The Pythagorean Identity. For any α ∈ R,

sin2(α) + cos2(α) = 1,
tan2(α) + 1 = sec2(α),
1 + cot2(α) = csc2(α).

Proof. By definition, the point (x, y) = (cos(α), sin(α)) is on the unit circle
x2 + y2 = 1. By substitution, x = cos(α) and y = sin(α), we get the identity
cos2(α) + sin2(α) = 1. If we divide both sides of the equation by cos2(α), we
obtain

cos2(α)
cos2(α) + sin2(α)

cos2(α) = 1
cos2(α) ⇔ 1 + tan2(α) = sec2(α).

The last identity comes from dividing both sides of the equation by sin2(α).
�

11.1.2 Differentiation of Sine and Cosine
We start by computing the derivatives for sine and cosine at the origin, sin′(0)
and cos′(0). Once we know those values, we will be able to find the derivatives
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as functions.
Theorem 11.1.4

sin′(0) = lim
x→0

sin(x)
x

= 1
Proof. By definition,

sin′(0) = lim
h→0

sin(0 + h)− sin(0)
h

.

Since sin(0) = 0, we can rewrite

lim
h→0

sin(h)
h

= lim
x→0

sin(x)
x

,

since the variable name does not affect the value of the limit.
Consider the figure below with angle x > 0. The point A is on the unit

circle and has coordinates (cos(x), sin(x)). Consequently, triangle OBA has
area 1

2 sin(x) cos(x). The point Q has coordinates (1, tan(x)), so triangle OPQ
has area 1

2 tan(x). If we consider the sector of the circle OAP , it has an area
that is the corresponding fraction x

2π of the area of the unit circle, π, which
has the value x

2 .

O x

Q

P

A

B

Comparing the areas leads to the inequality,
1
2 sin(x) cos(x) < 1

2x <
1
2 tan(x).

Multiplying by 2 and dividing by sin(x), we have another inequality

cos(x) < x

sin(x) <
1

cos(x) .

Since cos(x) is continuous at x = 0, we know

lim
x→0

cos(x) = cos(0) = 1,
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lim
x→0

1
cos(x) = 1.

Using the Limit Squeeze Theorem and the Limit of a Reciprocal, we then know

lim
x→0

x

sin(x) = 1 ⇒ sin′(0) = lim
x→0

sin(x)
x

= 1.

�
It is important to note that getting the value for this limit to be the value 1

was a consequence of measuring angles in radians. For any other way that we
might measure angles, the fraction of the circles area would be a ratio of the
value x to the measurement of the angle to complete a full circle. For example,
if we measured angles in degrees, we would have instead found sin′deg(0) = 2π

360 .
Mathematically, one justification for measuring angles in radians is simply in
order to guarantee that this sin′(0) = 1.

Theorem 11.1.5
cos′(0) = lim

x→0

cos(x)− 1
x

= 0
Proof. By definition,

cos′(0) = lim
h→0

cos(0 + h)− cos(0)
h

.

Since cos(0) = 1, we can rewrite

cos′(0) = lim
h→0

cos(h)− 1
h

= lim
x→0

cos(x)− 1
x

.

Multiplying the numerator and denominator by cos(x) + 1, we find

cos′(0) = lim
x→0

(cos(x)− 1)(cos(x) + 1)
x(cos(x) + 1) = lim

x→0

cos2(x)− 1
x(cos(x) + 1) .

By the Pythagorean identity, we know cos2(x)− 1 = − sin2(x) so that we can
rewrite

cos′(0) = lim
x→0

sin(x)
x

− sin(x)
cos(x) + 1 .

Since lim
x→0

sin(x)
x

= sin′(0) = 1 and

lim
x→0

− sin(x)
cos(x) + 1 = − sin(0)

cos(0) + 1 = 0
2 = 0,

the limit rule for a product guarantees cos′(0) = 0. �

Knowing the instantaneous rates of change of sine and cosine at x = 0
allows us to compute the derivative at any input value. The proofs for these
differentiation rules rely on the sum identities for trigonometric functions.

Theorem 11.1.6
d

dx
[sin(x)] = sin′(x) = cos(x)

Proof. Using the definition of the derivative, we write

sin′(x) = lim
h→0

sin(x+ h)− sin(x)
h

.

The sum identity for sine allows us to rewrite sin(x + h) = sin(x) cos(h) +
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cos(x) sin(h), so that the derivative can be rewritten

sin′(x) = lim
h→0

sin(x) cos(h) + cos(x) sin(h)− sin(x)
h

= lim
h→0

sin(x) · (cos(h)− 1) + cos(x) · sin(h)
h

= lim
h→0

sin(x) · cos(h)− 1
h

+ cos(x) sin(h)
h

.

Because sin(x) and cos(x) do not depend on h, they play the role of a constant
multiple. By the rules for a limit of a sum and the limit of a constant multiple,
we can write

sin′(x) = sin(x) cos′(0) + cos(x) sin′(0) = 0 · sin(x) + 1 · cos(x) = cos(x).

�

Theorem 11.1.7
d

dx
[cos(x)] = cos′(x) = − sin(x)

Proof. Using the definition of the derivative, we write

cos′(x) = lim
h→0

cos(x+ h)− cos(x)
h

.

The sum identity for cosine allows us to rewrite cos(x + h) = cos(x) cos(h) −
sin(x) sin(h), so that the derivative can be rewritten

cos′(x) = lim
h→0

cos(x) cos(h)− sin(x) sin(h)− cos(x)
h

= lim
h→0

cos(x) · (cos(h)− 1)− sin(x) · sin(h)
h

= lim
h→0

cos(x) · cos(h)− 1
h

− sin(x) sin(h)
h

.

We can therefore write

cos′(x) = cos(x) cos′(0)− sin(x) sin′(0) = 0 · cos(x)− 1 · sin(x) = − sin(x).

�

11.1.3 Derivatives of Other Trigonometric Functions
All other trigonometric functions are defined in terms of the sine and cosine
functions. Knowing the derivatives of sine and cosine allow us to compute the
derivative rules for each of the other trigonometric functions.

Theorem 11.1.8

d

dx
[tan(x)] = tan′(x) = sec2(x)

d

dx
[sec(x)] = sec′(x) = sec(x) tan(x)

d

dx
[cot(x)] = cot′(x) = − csc2(x)

d

dx
[csc(x)] = csc′(x) = − csc(x) cot(x)
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Proof. The proofs for these rules are all based on the definitions of these
trigonometric functions in terms of sine and cosine.

tan(x) = sin(x)
cos(x) sec(x) = 1

cos(x)

cot(x) = cos(x)
sin(x) csc(x) = 1

sin(x)

We will look at the derivatives of tan(x) and sec(x) and leave the other two
proofs to the reader.

Because tan(x) is defined as a quotient, we compute its derivative using the
quotient rule.

d

dx
[tan(x)] = d

dx
[ sin(x)
cos(x) ]

= cos(x) sin′(x)− sin(x) cos′(x)
cos2(x)

= cos(x) · cos(x)− sin(x) · (− sin(x))
cos2(x)

= cos2(x) + sin2(x)
cos2(x)

= 1
cos2(x) = sec2(x)

Similarly, sec(x) is defined as a reciprocal, so we use the reciprocal rule of
derivatives.

d

dx
[sec(x)] = d

dx
[ 1
cos(x) ]

= − cos′(x)
cos2(x) = −(− sin(x))

cos2(x) = sin(x)
cos2(x)

= 1
cos(x) ·

sin(x)
cos(x) = sec(x) tan(x)

�

11.1.4 Practice with Derivatives
When we take into account the chain rule, we have the following general deriva-
tive rules for trigonometric functions. Notice that cosine, cotangent, and cose-
cant all have a negative sign. Also note the similarity in formulas between
the derivatives for sine and cosine, for tangent and cotangent, and for secant
and cosecant. There are really only three differentiation rules, each with a
complementary rule for the complementary functions.

General Derivative Rules for Trigonometric Functions.

Let u represent any expression that depends on x.
d

dx
[sin(u)] = cos(u)du

dx
d

dx
[cos(u)] = − sin(u)du

dx
d

dx
[tan(u)] = sec2(u)du

dx
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d

dx
[cot(u)] = − csc2(u)du

dx
d

dx
[sec(u)] = sec(u) tan(u)du

dx
d

dx
[csc(u)] = − csc(u) cot(u)du

dx

The following examples illustrate how these rules can be used with other
rules of differentiation.

Example 11.1.9 Find d

dx
[3 sin(x2)].

Solution.

d

dx
[3 sin(x2)] = 3 d

dx
[sin(x2)] Constant Multiple

= 3 sin′(x2) · d
dx

[x2] Chain Rule, u = x2

= 3 cos(x2) · d
dx

[x2] Derivative of Sine

= 3 cos(x2) · (2x) Derivative of Power
= 6x cos(x2)

�

Example 11.1.10 Find d

dx
[sec(e3x)].

Solution.

d

dx
[sec(e3x)] = sec′(e3x) · d

dx
[e3x] Chain Rule, u = e3x

= sec(e3x) tan(e3x) d
dx

[e3x] Derivative of Secant

= sec(e3x) tan(e3x) · e3x d

dx
[3x] Chain Rule, eu with u = 3x

= 3e3x sec(e3x) tan(e3x)

�

Example 11.1.11 Find d

dx
[e−3x sin(5x)].

Solution. The function is a product of e−3x and sin(5x). Using the chain
rule on these individual parts, we find

d

dx
[e−3x] = e−3x d

dx
[−3x]

= −3e−3x

d

dx
[sin(5x)] = sin′(5x) d

dx
[5x]

= 5 cos(5x)

Knowing those derivatives, we use the product rule to find the derivative of
the overall formula.

d

dx
[e−3x sin(5x)] = d

dx
[e−3x] · sin(5x) + e−3x d

dx
[sin(5x)] Product Rule
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= (−3e−3x) sin(5x) + e−3x · (5 cos(5x))
= −3e−3x sin(5x) + 5e−3x cos(5x)

�

11.1.5 The Squeeze Theorem for Limits
Theorem 11.1.12 Limit Squeeze Theorem. If f(x) is bounded between
two functions `(x) (lower bound) and u(x) (upper bound) and we know

lim
x→a

`(x) = lim
x→a

u(x) = L,

then this guarantees
lim
x→a

f(x) = L.

More formally, if there exists δ > 0 such that `(x) < f(x) < u(x) whenever
a < x < a+ δ and `(x)→ L and u(x)→ L as x→ a+, then

lim
x→a+

f(x) = L.

A similar statement holds for the lower limit and two-sided limit.
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11.2 Derivatives of Inverse Trigonometric Func-
tions

In the previous section, we used implicit differentiation to show that the deriva-
tive of an inverse function at a point is the reciprocal of the derivative of the
original function at the equivalent inverse point. That is, if f−1 (an inverse
function) has a point (x, y) on its graph, y = f−1(x), then f has a correspond-
ing point (y, x), x = f(y). The rate of change (derivative) of f−1 at (x, y) is
the reciprocal of the rate of change of f at (y, x) defined by f ′(y):

d

dx
[f−1(x)] = 1

f ′(y) = 1
f ′(f−1(x)) .

We will use this result repeatedly in this section to find the derivative of the
inverse trigonometric functions. The interesting thing about these derivatives
is that they will all be algebraic. This is a consequence of the Pythagorean
identities that relate trigonometric functions with their derivatives.

Theorem 11.2.1 Derivative of Arcsine.

arcsin′(x) = d

dx
[sin−1(x)] = 1√

1− x2

Proof. Starting with the relation y = arcsin(x) = sin−1(x), we have the inverse
relation x = sin(y). Because sin′(x) = cos(x), the derivative of the inverse is
given by

arcsin′(x) = 1
sin′(y) = 1

cos(y) .

The Pythagorean identity relates sin(y) and cos(y) by

sin2(y) + cos2(y) = 1

so that cos2(y) = 1− sin2(y) = 1− x2. Because the domain for the restricted
sine is in quadrants 1 and 4, cos(y) ≥ 0 and

arcsin′(x) = 1√
1− x2

.

�

Theorem 11.2.2 Derivative of Arccosine.

arccos′(x) = d

dx
[cos−1(x)] = −1√

1− x2

Proof. Starting with the relation y = arccos(x) = cos−1(x), we have the inverse
relation x = cos(y). Because cos′(x) = − sin(x), the derivative of the inverse
is given by

arccos′(x) = 1
cos′(y) = −1

sin(y) .

The Pythagorean identity and the domain of the restricted cosine (quadrants
1 and 2) implies sin(y) =

√
1− x2 such that

arccos′(x) = −1√
1− x2

.

�
Notice that the derivatives of the arcsine and arccosine only differ by the

change in sign. The arcsine has positive derivative, consistent with its graph
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being increasing. In contrast, the arccosine is decreasing and has negative
derivative.

However, it is more than just one function is positive and the other is
negative. The formulas are identical other than sign because the graphs
themselves are the same, except for a reflection and a shift. We know that
cos(x) = sin(π2 − x) which implies that

arccos(x) = π

2 − arcsin(x).

Differentiation of this equation shows

arccos′(x) = − arcsin′(x).

A similar argument applies to a relationship between the derivatives of the
arctangent and arccotangent and of the arcsecant and arccosecant. Conse-
quently, we only need to find the derivatives of the arctangent and arcsecant.

Theorem 11.2.3 Derivative of Arctangent.

arctan′(x) = d

dx
[tan−1(x)] = 1

x2 + 1
Proof. Starting with the relation y = arctan(x) = tan−1(x), we have the
inverse relation x = tan(y). Because tan′(x) = sec2(x), the derivative of the
inverse is given by

arctan′(x) = 1
tan′(y) = 1

sec2(y) .

The Pythagorean identity relates tan(y) and sec(y) by

tan2(y) + 1 = sec2(y)

so that sec2(y) = x2 + 1. Consequently

arctan′(x) = 1
x2 + 1 .

�

Theorem 11.2.4 Derivative of Arcsecant.

arcsec′(x) = d

dx
[sec−1(x)] = 1

|x|
√
x2 − 1

Proof. Starting with the relation y = arcsec(x) = sec−1(x), we have the
inverse relation x = sec(y). Because sec′(x) = sec(x) tan(x), the derivative of
the inverse is given by

arcsec′(x) = 1
sec′(y) = 1

sec(y) tan(y) .

The Pythagorean identity relates tan(y) and sec(y) by

tan2(y) + 1 = sec2(y)

so that tan2(y) = sec2(y)− 1 = x2 − 1. In the restricted domain of the secant,
the tangent and secant have the same sign so that the product will always be
positive. Consequently

arcsec′(x) = 1
|x|
√
x2 − 1

.

�
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12.1 Introduction to Optimization
When we know how to find extreme values of a function, we can use those
techniques to answer physical questions involving optimization. Optimization
problems involve at least two related physical quantities. One quantity is a
control variable, a physical attribute of the system that one can adjust. The
other quantity depends on the control variable and measures an aspect of the
system that we wish to improve.

In this section, we consider some examples of optimization. The primary
challenge for such problems is in clearly defining the system, identifying the
control variable and the quantity to optimize. We then apply the calculus
techniques for finding extreme values.

12.1.1 Objective Functions
Optimization is the application of finding extreme values to either maximize
or minimize some quantity of interest. We usually have a physical incentive
for this optimization, such as minimizing energy consumption, maximizing
evolutionary fitness, minimizing costs of materials, or maximizing profit. The
quantity of interest will depend on some independent variable that we have
the ability to control or adjust. We call the mapping from the control variable
to the physical quantity being optimized the objective function.

Frequently, identifying the appropriate objective function is the more chal-
lenging aspect of an optimization problem. Once the function is identified, the
task is reduced to identifying local extreme values and behavior at end points.
Sometimes the objective function depends on multiple independent variables
that are related through some constraint. The constraint typically determines
an equation which can be used to rewrite the objective functions as having
only have a single independent variable. In addition, we need to determine a
meaningful physical domain for the function.

We begin with several examples of creating objective functions for optimiza-
tion problems. The actual analysis will follow later. Several simple examples
come from geometry where we need to construct a shape that has some feature
(like a given perimeter, area or volume) and we wish to make some other fea-
ture as large as possible. We use these examples not because they are practical
but because they illustrate the principles of optimization effectively.

Example 12.1.1 Suppose we want to create a rectangle that has an area of
500 cm2. Three sides will have one type of trim while the fourth side will have
trim that is twice as expensive. What should be the dimensions of the rectange
to minimize the cost of the trim?
Solution. Start by identifying the variables.

• h is the horizontal width of the rectangle

• v is the vertical length of the rectangle

• C is the cost of the trim around the rectangle

Once we have identified our variables, we need to find a formula for the cost
because that is what we want to minimize. We will assume that the more
expensive side is one of the horizontal lengths. Let p be the unit cost (per cm)
of the less expensive trim so that 2p is the unit cost of the more expensive trim.
The total cost of the trim is given by

C = (h+ 2v) · p+ h · (2p) = (3h+ 2v) · p.
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Our objective function (h, v) 7→ C involves two independent variables. This
means we need an additional constraint. Reviewing the problem, we recall that
the total area needs to be 500 cm2. The area is computed by A = h · v = 500
so that we can treat v as another dependent variable,

v = 500
h
.

Substituting this formula into our objective function, we can rewrite it involving
only a single independent variable h:

C =
(

3h+ 2 · 500
h

)
· p = 3ph+ 1000p

h
.

Because p is a constant multiple in this formula, the location of the minimum
will not depend on p.

Finally, we need to consider the physical domain for the objective function.
The natural domain for the map h 7→ C is h 6= 0. However, negative values
for h don’t make physical sense. The physical domain for this problem will be
h ∈ (0,∞). That is, the optimization problem will be answered by finding the
global minimum of C on the interval (0,∞).

A graph of this relation is shown below using p = 1. The minimum value
occurs somewhere near h = 20 with a cost C close to 100p. We need to use
calculus to find the exact value.

0 10 20 30 400

100

200

300

h

C

�

Example 12.1.2 Suppose you have a flexible pipe of length 10 meters that
you will bend to make three sides of a rectangle. How long should you make
these sides so that the rectangle has as large an area as possible?
Solution. We start by identifying the variables. It is often helpful to draw a
figure. A sample diagram is shown in Figure 12.1.3. We label the two opposite
vertical sides by the variable h (height) and the horizontal side by the variable
w (width).
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h h

w

Figure 12.1.3 Three sides of a rectangle are made from a flexible pipe.
We want to make the area as large as possible. This makes the area of the

rectangle A the dependent variable. The area of a rectangle is the height times
the width, so our objective function is defined by

A = h · w.

We need to write this as a function of one independent variable.
The constraint for our independent variables h and w is that the total length

of pipe used is 10 meters. The pipe is used for two edges of length h and one
edge of length w. As an equation, the constraint becomes

2h+ w = 10.

If we solve this equation for w, we find

w = 10− 2h

which we can substitute into the objective function,

A = h · (10− 2h) = 10h− 2h2.

The last step is to identify the physical domain for the objective function.
A physical measurement of length must be non-negative, so h ≥ 0. What is the
largest value of h that is possible? We need w ≥ 0 which requires 10− 2h ≥ 0.
This implies h ≤ 5. The physical domain is therefore h ∈ [0, 5]. Even though
the shape would be an empty rectangle (no area), all of the variables are still
defined when h = 0 or h = 5. We include the end points since closed intervals
are easier to analyze.

A graph of the objective function is shown in Figure 12.1.4. We can see
that the area will be maximized at the vertex of this parabola. Calculus will
give us an efficient method to find this point.
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Figure 12.1.4 A = 10h− 2h2 with domain [0, 5]
�

A biological example follows. A fundamental hypothesis of biology is that
evolution drives organisms to maximize their fitness, which corresponds to the
number of surviving offspring. There is often a trade-off between the number
of offspring and the probability that the offspring survive. Let f (fecundity)
represent the number of offspring an organism produces and let s (survival)
represent the probability that an offspring will survive. The then fitness is
given by F = f · s, the average number of offspring that survive.

Example 12.1.5 Suppose that the survival probability is related to fecundity
so that it decreases linearly. If each organism has ten offspring, the survival
probability is s = 0.95. If each organism has forty offspring, the survival
probability drops to s = 0.8. How many offspring should the organism have to
maximize fitness?
Solution. First, identify the variables. The objective function is the fitness
F which depends on both f (fecundity) and s (survival probability) through

F = f · s.

This objective function has two independent variables, (f, s) 7→ F .
We need to reduce the number of independent variables to a single variable

by realizing that f and s will satisfy a linear relation. Because the original
question asks for how many offspring should be produced, we will choose f to
be the independent variable. The line passes through points (f, s) = (10, 0.95)
and (f, s) = (40, 0.8). We can compute the slope

∆s
∆f = 0.8− 0.95

40− 10 = −0.15
30 = −0.005.

Using the point-slope equation of a line, we find

s = 0.95− 0.005(f − 10) = −0.005f + 1.
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Using substitution in the objective function gives

F = f · (−0.005f + 1) = −0.005f2 + f .

To find the physical domain, we require f ≥ 0 and s ≥ 0. The second
requirement becomes −0.005f + 1 ≥ 0, which means that f ≤ 200. The
physical domain is therefore f ∈ [0, 200]. A graph shows that the maximum
should occur at the vertex of a parabola.

50 100 150 200

20

40

60

f

F

Figure 12.1.6 F = −0.005f2 + f with domain [0, 200]
�

12.1.2 Analysis for Optimization
Now that we have illustrated how to find the objective function for several
examples, let us work through the analysis to solve the optimization problems.
Two of our examples had objective functions that were quadratic polynomials.
We start with those examples.

Example 12.1.7 The bent pipe example resulted in an objective function

A = 10h− 2h2

and a physical domain h ∈ [0, 5]. Complete the optimization and find the
dimensions that will maximize the area of the resulting rectangle.
Solution. To find the global extreme of the function A(h) = 10h − 2h2, we
begin by computing the derivative,

A′(h) = 10(1)− 2(2h) = 10− 4h.
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To perform sign analysis of A′(h), we first find the root A′(h) = 0:

10− 4h = 0
10
4 = h

h = 5
2 .

Our test intervals are [0, 5
2 ) and ( 5

2 , 5]. Testing the sign at h = 1 and h = 4 as
sample points, we find

A′(1) = 10− 4(1) = 6 > 0,
A′(4) = 10− 4(4) = −6 < 0.

The results of our sign analysis are summarized on the following number line.

A′(h)
h0 55

2

0+ −

Our sign analysis of A′(h) implies that A has a maximum value at h = 5
2 .

Because A is increasing on [0, 5
2 ] and decreasing on [] 5

2 , 5], we see that this is
a global maximum on the domain. The resulting dimensions of the rectangle
are h = 5

2 = 2.5 meters and w = 10 − 2h = 10 − 2(2.5) = 5 meters. The area
of the rectangle will be A = 12.5 square meters. �

Example 12.1.8 The fitness example resulted in an objective function

F = −0.005f2 + f

and a physical domain f ∈ [0, 200]. Complete the optimization to find the
number of offspring that will maximize the fitness.
Solution. To find the global maximum of F (f), we first compute the deriva-
tive,

F ′(f) = −0.005(2f) + 1 = −0.01f + 1.

The root F ′(f) = 0 occurs at f = 100. Our sign analysis uses test intervals
[0, 100) and (100, 200]. We compute the sign of F ′(f) at sample points f = 0
and f = 200:

F ′(0) = −0.01(0) + 1 = 1 > 0,
F ′(200) = −0.01(200) + 1 = −1 < 0.

The results of our sign analysis are summarized on the following number line.

F ′(f)
f0 200100

0+ −

The First Derivative Test allows us to conclude that F has a local maxi-
mum value at f = 100. Because F is increasing on [0, 100] and decreasing on
[100, 200], this must also be a global maximum. The fitness will be maximized
when each individual reproduces with 100 offspring. �

For our third example, the objective function is not a polynomial. Because
we have not yet established a rule for the derivative in this case, we will use
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technology to find it.

Example 12.1.9 The cost to put trim on our rectangle was found to be the
objective function

C(h) = 3ph+ 1000p
h

with a physical domain h ∈ (0,∞).
Solution. The SageMath computer algebra system allows us to compute
derivatives automatically.

# Tell the system about our variables
var('h','p')
# Define our function
C(h) = 3*p*h + 1000*p/h
# Compute the derivative with variable h
show( diff(C(h), h) )

3*p - 1000*p/h^2

We now know
C ′(h) = 3p− 1000p

h2 .

Like C(h), this derivative is not defined for h = 0 but is otherwise continuous.
We find a root by solving C ′(h) = 0 and finding a common denominator:

3p− 1000p
h2 = 0

3ph2

h2 −
1000p
h2 = 0

p(3h2 − 1000)
h2 = 0

3h2 − 1000 = 0

h2 = 1000
3

h = ±
√

1000
3

Only h = +
√

1000
3 ≈ 18.257 is in the domain.

We can test the signs of C ′(h) using h = 10 and h = 20.

C ′(10) = 3p− 1000p
102 = 3p− 10p = −7p < 0

C ′(20) = 3p− 1000p
202 = 3p− 5p

2 = p

2 > 0

C ′(h)
h0

VA √
1000

3

0− +

The First Derivative Test shows that C has a local minimum at h =
√

1000
3 .

Because C is decreasing on (0,
√

1000
3 ] and increasing on [

√
1000

3 ,∞), this min-
imum is a global minimum.
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We finish by interpreting our mathematics. The question was how to find
the dimensions of the rectangle. Our analysis gave us a value for h =

√
1000

3 ≈
18.257 cm. We also need v, which was another dependent variable:

v = 500
h

= 500 ·
√
frac31000 ≈ 27.386 cm.

The minimal cost to trim a rectangle would have a horizontal length of 18.26
cm, one of which has the more expensive trim, and a vertical length of 27.386
cm. �

12.1.3 Summary
• Optimization is the application of finding extreme values to physical

problems. The dependent variable is the quantity that should be as large
or as small as possible. The independent variable(s) are the quantities
we can adjust. The map from the independent variable to the dependent
variable is called the objective function.

• When more than one independent variable is involved, an extra equation
called a constraint allows us to solve for one of the independent variables
in terms of the other.

• A physical domain for the objective function represents the values of the
independent variable(s) that are physically relevant.

12.1.4 Exercises
1. A rectangular frame will be made with horizontal edges that cost $0.50 per

inch and vertical edges that cost $0.40 per inch. What are the dimensions
of a rectangle that will maximize the enclosed area for a total cost of
$20.00?

2. Suppose that the survival probability for a species is related to fecundity so
that it decreases linearly. If each organism has five offspring, the survival
probability is s = 0.9. If each organism has twenty offspring, the survival
probability drops to s = 0.75. How many offspring should the organism
have to maximize fitness?

3. A population of animals has the property that each individual has fewer
offspring per year when the population is bigger. When the population
has 200 individuals, the average number of offspring per individual per
year is 4.8. When the population has 300 individuals, the average num-
ber of offspring per individual per year drops to 4.2. Assuming a linear
relation between the per capita number of offspring per year and the pop-
ulation size, what population size corresponds to the largest total number
of offspring per year? (The total number of offspring equals the per capita
number of offspring times the population size.)

4. A company sells bowling balls. The higher the price the company charges,
the fewer balls are sold. When the price is $50, the company can sell 500
balls per week. When the price is $60, the company can sell 400 balls per
week. Assuming a linear relation between the price and the number of
balls sold per week, find the price for which the company earns the most
revenue per week. (Weekly revenue equals the price per ball times the
number of balls sold per week.)

5. A rectangular container with a square base (top/bottom) is to be manu-
factured. The top and bottom (squares) are made from a material that
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costs $1.50 per square meter while the other four sides (rectangles) are
made from a material that costs $1.00 per square meter. What should be
the dimensions of the container that would maximize the volume and cost
$20 in materials?

6. A rectangular container with a square profile (front/back) is to be manu-
factured. The top and bottom (rectangles) are made from a material that
costs $1.50 per square meter while the other four sides (two squares and
two rectangles) are made from a material that costs $1.00 per square me-
ter. What should be the dimensions of the container that would maximize
the volume and cost $20 in materials?

7. A beverage can is being designed in the shape of a circular cylinder
(volume=πr2h). The top and bottom (circles, area=πr2) are made from
metal that costs $0.01 per square centimeter while the curved wall of the
can (curved rectangle, area=2πrh) is made from metal that costs $0.004
per square centimeter. What should be the radius and height of the can
that would maximize the volume in the container for a can that costs
$0.25 in materials?

8. A rectangular box with a square base and no top needs to contain a volume
of 1000 cubic centimeters. The square base (all sides equal) is made from
a material that costs 10 cents per square centimeter. The other four sides
are made from a material that costs 6 cents per square centimeter. What
dimensions should the box have to minimize the total cost of materials?

9. A beverage can is being designed in the shape of a circular cylinder to
hold 360 cubic centimeters (volume=πr2h). The top and bottom (circles,
area=πr2) are made from metal that costs $0.01 per square centimeter
while the curved wall of the can (curved rectangle, area=2πrh) is made
from metal that costs $0.004 per square centimeter. What should be the
radius and height of the can that would minimize the materials cost?
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12.2 Extreme Values and Optimization
We have already learned that derivatives can help us identify the location of
local extreme values, points that are the highest or lowest values in a neigh-
borhood of that point. It is often the case that we need to find the highest or
lowest value that a function ever achieves, not just in its own neighborhood.
We call these global extremes.

Applications involving the identification of extreme values are often called
optimization problems. The task in optimization is to identify the value of
an independent variable in the system that will maximize or minimize some
objective. Aside from the calculus in finding the extreme values, creating
an appropriate function that will serve as the objective is often the greatest
challenge.

12.2.1 Global Extreme Values
The Extreme Value Theorem guarantees that a continuous function restricted
to a closed interval will always have global maximum minimum values. Those
extremes can only occur at either the end points of the interval or at critical
points (points with horizontal or undefined tangents). This guides our strategy.

1. Compute f ′(x).

2. Identify critical points: solve f ′(x) = 0 and identify all points where
f ′(x) is not defined.

3. Classify the points, including the end points for comparison.

Example 12.2.1 Find the maximum and minimum values of f(x) = x− 1
x2 + 1

on the interval [−2, 2].
Solution. Because the denominator of f(x) is never zero, x2 + 1 6= 0, f(x) is
continuous everywhere. Consequently, the Extreme Value Theorem guarantees
that f will have a maximum and minimum value on the closed interval [−2, 2].

First, we compute f ′(x), which involves the quotient rule.

f ′(x) = d

dx
[ x− 1
x2 + 1]

= (x2 + 1)(1)− (x− 1)(2x)
(x2 + 1)2

= x2 + 1− 2x2 + 2x
(x2 + 1)2

= −x
2 + 2x+ 1

(x2 + 1)2

Next, we find critical points. Again, the denominator is nonzero, so f ′(x)
will be defined and continuous for every value x. We only need to find solutions
to f ′(x) = 0, which are solutions to −x2 + 2x+ 1 = 0. The quadratic formula
gives

x =
−2±

√
4− 4(−1)(1)
2(−1) = −2± 2

√
2

−2 .

The critical values are x = 1−
√

2 ≈ 0.414 and 1 +
√

2 ≈ 2.414.
If we were to test these critical values as turning points, we would look

at the signs of f ′(x) on the intervals formed by the critical points. The sign
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analysis is summarized with the number line below, showing that x = 1−
√

2
is a local minimum and x = 1 +

√
2 is a local maximum.

f ′(x)
x

1−
√

2

0

1 +
√

2

0− + −

To find the extreme values on the interval, we really just need to compare
the values of f(x) at the end points of the interval with the critical points that
are inside the interval. Because x = 1+

√
2 is outside [−2, 2], we do not include

that point.

f(−2) = −2− 1
(−2)2 + 1 = −3

5 = −0.6

f(2) = 2− 1
(−2)2 + 1 = 1

5 = 0.2

f(1−
√

2) = (1−
√

2)− 1
(1−

√
2)2 + 1

= −
√

2
4− 2

√
2
≈ −1.207

We finish by interpreting our results. The maximum value of f on the
interval [−2, 2] is 1

5 , occurring at x = 2. The minimum value of f on the
interval is

√
2

4−2
√

2 ≈ −1.207, occurring at x = 1−
√

2 ≈ 0.414. A graph of the
function showing these extremes is given below.

−4 −2 0 2 4
−2

−1

0

1

x = −2

x = 2

x = 1−
√

2

�
When the function is not continuous or the interval is not a closed interval, the
function is not guaranteed to have global extreme values. When an end point
for a continuous function is not included, the function achieves every value up
to the limit at that end point. This means that it is possible that the function
does not actually have an extreme value. For every value the function does
achieve, there may be another value that is more extreme.
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Example 12.2.2 The function f(x) = x restricted to (0, 1) is continuous. The
values (range) is obviously (0, 1). But f does not have a maximum or minimum
value. The upper limit y = 1 is never achieved because x = 1 is not in the
restricted domain. But for any value y < 1, there will always be another value
that is larger. Similarly, y = 0 is an unacheived lower limit and f does not
have a minimum value. �

When looking for extreme values for functions that have discontinuities or
where the domain is restricted to an open interval, we do the same things
as for continuous functions: find critical points and compare values of the
function. However, we need to include any relevant limits in the comparison.
If a limiting value is more extreme than any of the achieved extreme values,
then the function does not achieve that extreme value.
Example 12.2.3 Find the extreme values of the function f(x) = x3+x2−2x+2
on the interval (−2, 2).
Solution. The function is continuous. If the interval was closed, [−2, 2], the
Extreme Value Theorem would guarantee that it had a maximum and minimum
value. By excluding the end points, we might no longer achieve one or both of
those values.

First, find f ′(x) = 3x2 + 2x − 2. Use this to find critical points, where
f ′(x) = 0. The quadratic formula is needed:

x =
−2±

√
4− 4(3)(−2)
2(3)

= −2±
√

28
6

= −1±
√

7
3 .

The critical values are x = −1−
√

7
3 ≈ −1.215 and x = −1+

√
7

3 ≈ 0.5486. Both
critical values are in the interval.

We now compare the values of the function at the critical values and at the
end points.

f(−1−
√

7
3 ) ≈ 4.113

f(−1 +
√

7
3 ) ≈ 1.369

f(−2) = 2
f(2) = 10

The minimum value for f on the interval [−2, 2] is approximately 1.369 at
x = −1+

√
7

3 ; the maximum value is 10 at x = 2. However, when working
with the open interval (−2, 2), the maximum value is a limit value that is not
achieved. So f does not have a maximum value on (−2, 2), though it does have
the same minimum value.
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�

Example 12.2.4 Find the extreme values of the function f(x) = 10x−15
x2 .

Solution. The function f(x) = 10x−15
x2 has a discontinuity at x = 0 because

division by zero is undefined. This corresponds to a vertical asymptote at
x = 0. Because the question does not give an interval, we must be considering
the entire domain, (−∞, 0) ∪ (0,∞). Extreme values are not guaranteed.

We begin by finding critical values. The derivative requires the quotient
rule.

f ′(x) = d

dx
[ 10x− 15

x2 ]

= x2(10)− (10x− 15)(2x)
x4

= 10x2 − 20x2 + 30x
x4

= x(−10x+ 30)
x4 = −10x+ 30

x3

The critical value is the solution to −10x+ 30 = 0, or x = 3. When doing sign
analysis, we also need to use the discontinuity x = 0 to create the intervals
that are tested.

f ′(x)
x0

dne

3

0− + −

The sign analysis on f ′(x) informs us about the vertical asymptote. The
function decreases immediately to the left of x = 0, letting us know

lim
x→0−

f(x) = −∞.

Similarly, the function is increasing immediately to the right of x = 0, showing
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that
lim
x→0+

f(x) = −∞.

This is enough to guarantee that f(x) does not have a minimum value because
it is unbounded in the negative direction.

The critical point x = 3 is a turning point corresponding to a local max-
imum. The value of the function is f(3) = 15

9 = 5
3 . To see if this is a global

maximum, we need to compare it with the ends of the intervals, as x → ±∞.
These limits are both zero.

lim
x→−∞

f(x) = lim
x→−∞

10x− 15
x2 = lim

x→−∞

10
x
− 15
x2 →

10
−∞

− 15
∞

= 0

lim
x→∞

f(x) = lim
x→−∞

10x− 15
x2 = lim

x→−∞

10
x
− 15
x2 →

10
∞
− 15
∞

= 0

These limits show that y = 0 is a horizontal asymptote for f(x) as x→ ±∞.
Interpreting our results, we see that f(x) has a maximum value of 5

3 at
x = 3 and no minimum value due to the infinite limit at x = 0.

−10 −5 0 5 10
−20

−15

−10

−5

0

5
x = 3

�

12.2.2 Optimization
Optimization is the application of finding extreme values to either maximize
or minimize some quantity of interest. In general, we will have a system where
there is some variable that we have freedom to vary and some quantity that
is a function of that variable that we want to be at a maximum or minimum
value. The variable that we vary is the independent variable. The quantity
that we optimize is called the objective function.

For example, consider a crystal goblet. When a pure note is sounded, the
goblet will resonate with a strength that depends on the frequency of the note.
If we wanted to shatter the goblet, we would want to find the frequency with
which the goblet resonated the most. In this example, the frequency of the
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note being played is the independent variable and the strength of resonance
would be the objective function.

Example 12.2.5 The most elementary example of resonance is for a forced
simple harmonic oscillator. The independent variable is the forcing frequency
ω. The objective function is the amplification factor of the resonant response
A. The system also has parameters related to the oscillator itself: ω0, which
represents natural frequency of the oscillator in the absence of friction, and
α, which represents a rate at which the oscillator’s motion would decay in the
absence of a stimulus. The amplification factor is defined by the equation

A(ω) = 1√
(ω2 − ω2

0)2 + 4α2ω2
=
(
(ω2 − ω2

0)2 + 4α2ω2)−1/2
.

Find the frequency that is amplified the most.
Solution. Physically, the driving frequency must be a non-negative value,
so ω ≥ 0. So we will look for extreme values on the domain [0,∞). The
denominator involves the sum of two squares which can not be simultaneously
equal to zero. Consequently, A(ω) is a continuous function defined for all values
of ω. We need to find the critical values by solving A′(ω) = 0. Computing A′
involves repeated use of the chain rule.

A′(ω) = d

dω
[
(
(ω2 − ω2

0)2 + 4α2ω2)−1/2]

= −1
2
(
(ω2 − ω2

0)2 + 4α2ω2)−3/2 · d
dω

[(ω2 − ω2
0)2 + 4α2ω2]

= −1
2
(
(ω2 − ω2

0)2 + 4α2ω2)−3/2 ·
(
2(ω2 − ω2

0)(2ω) + 8α2ω
)

= − ω(ω2 − ω2
0 + 2α2)(

(ω2 − ω2
0)2 + 4α2ω2

)3/2
Critical values are solutions to the equation 2ω(ω2 − ω2

0 + 2α2) = 0. Solutions
occur when ω = 0 and ω2 = ω2

0 − 2α2, which only occurs when ω2
0 > 2α2.

When ω2
0 > 2α2, the sign of A′(ω) changes sign at the critical value at

ω = ω∗ ≡
√
ω2

0 − 2α2

since the factor ω2− (ω2
0 − 2α2) changes sign. The denominator will always be

positive. This allows us to determine the sign analysis of A′(ω).

A′(ω)
ω0

0

ω∗

0+ −

The sign analysis of A′(ω) shows that A(ω) is increasing for ω in the interval
[0, ω∗] and decreasing for ω in the interval [ω∗,∞). Consequently, A achieves
a maximum value when ω = ω∗. That maximum value is

A(ω∗) = 1√
4α2(ω2

0 − α2)
.

A typical resonance response curve is shown below for this case (ω0 = 1 and
α = 0.25).
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In the case that ω2
0 < 2α2 and the only critical value is ω = 0, the factor

in the numerator of A′(ω) given by ω2 − ω2
0 + 2α2 will always be positive.

This implies that A′(ω) < 0 for all ω > 0, meaning that A(ω) is a decreasing
function whose maximum must be at the end-point ω = 0. �

Not every application involves unspecified parameters.

Example 12.2.6 The number of births in a population during a given time
period is equal to the per capita birth rate times the population size. Suppose
that the per capita birth rate was found to also depend on the population
size. Average per capita birth rates for certain controlled population sizes were
experimentally obtained and shown in the table below. Find a model for the
per capita birth rate as a function of population size and use that model to
predict the maximum population birth rate.

Population Per Capita Birth Rate
100 0.0190
200 0.0158
300 0.0146
400 0.0134
500 0.0120

Solution. We start by looking at the graph of the data. Let P be the pop-
ulation size and let b be the per capita birth rate. We are interested in the
function P 7→ b, so the graph plots points (P, b).
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The relationship between these points is decreasing. A linear model looks
like it could be appropriate. Using linear regression on our data, we find a
model

b(P ) = −1.6423× 10−5P + 0.019878.

The total birth rate is defined as B(P ) = b(P ) · P , which according to our
model is given by

B = 0.019878P − 1.6423× 10−5P 2.

This is our objective function, the quantity we want as large as possible.
To find the maximum value of B, we compute B′ = 0.019878 − 3.2846 ×

10−5P and solve B′ = 0 to find the critical point.

0.019878− 3.2846× 10−5P = 0
0.019878 = 3.2846× 10−5P

P = 0.019878
3.2846× 10−5 = 605.2

Because B′′ = −3.2846× 10−5 is negative, we know that B is a concave down
function and the critical value corresponds to a maximum value. The maximum
total birth rate is

B(605.2) = 6.015,

occurring for P = 605.2. A population should be an integer value, so we would
expect the maximum birth rate to occur when P = 605.

However, our prediction is dependent on the model that we chose. What if
we used a different equation for our original per capita birth rate? The original
data points have the appearance of being concave up. So maybe we should use
an exponential regression curve. This gives

b(P ) = 0.02069e−0.001125P .
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The graph below shows the two models for per capita birth rate with the data.

0 100 200 300 400 500 600 7000

0.5

1

1.5

2

2.5
·10−2

P (population size)

b
(p
er

ca
pi
ta

bi
rt
h
ra
te
)

data
linear fit

exponential fit

Using the exponential model for the per capita birth rate, we obtain a
modified objective function

B(P ) = 0.02069Pe−0.001125P .

The derivative is

B′(P ) = 0.02069e−0.001125P+0.02069P (−0.001125e−0.001125P ) = 0.02069e−0.001125P (1−0.001125P ).

The critical value must solve 1 − 0.001125P since the exponential factor is
always positive. This gives P = 1

0.001125 ≈ 888.9. Sign analysis of B′(P ) shows
that this critical value corresponds to a maximum value, B(888.9) = 6.763.

Notice how two different models can yield significantly different predictions.
The two models are illustrated together in the figure below. Notice that the
original, quadratic model has the non-physical predication of a negative number
of births for sufficiently large population sizes.
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12.3 Integrals and the Method of Substitution
Every rule for differentiation has a corresponding rule for integrals or antidif-
ferentiation. This section focuses on the integration rule that corresponds to
the chain rule.

Recall that the chain rule states that if F (x) is a function with a derivative
F ′(x) and u is any expression (or function), then

d

dx
[F (u)] = F ′(u)du

dx
.

The corresponding antidifferentiation rule says that if we have a function f(x)
with an antiderivative F (x) (F ′(x) = f(x)), then∫

f(u)du
dx
dx = F (u) + C.

Usually, the integrand does not appear so obviously in the form of the chain
rule. The method of substitution provides a formalized method to guide the
process. The method relies on transforming the integral from an integrand in
terms of the independent variable, say x, as a new integral with an integrand
in terms of the chain variable u. For the transformation to be valid, we must
account for the chain rule factor du

dx = u′. We use the substitution rule for
differentials

du = u′ · dx ⇔ dx = du

u′
.

12.3.1 Substitution and Antiderivatives
To apply the method of substitution, we start with an integral whose integrand
is a function the independent variable (x) which appears to involve a compo-
sition (suggesting a chain rule). Define u to be the formula in the composition
and compute u′. We then substitute dx = du

u′
in the integral and attempt to

rewrite the entire integrand in terms of only u. We then find antiderivatives
in terms of u and express the result in terms of the orignal variable.

Example 12.3.1 Use the method of substitution to find
∫
e3x dx.

Solution. The integrand e3x involves composition with u = 3x. This is
our substitution variable. Because u′ = 3, we have du = 3dx so that dx =
du

3 . We rewrite the integral in terms of the substitution variable u. After
antidifferentiation using the variable u, we back-substitute our original formula
for u = 3x. The work is shown below.∫

e3x dx
u = 3x
du = 3 dx

=
∫
eu · du3

=
∫ 1

3e
udu

= 1
3e

u + C

= 1
3e

3x + C

�
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Example 12.3.2 Use the method of substitution to find
∫ √

3x+ 5 dx.

Solution. The integrand
√

3x+ 5 = (3x + 5)1/2 involves composition with
u = 3x + 5. Because u′ = 3, we have du = 3dx and dx = du

3 . We rewrite the
integral in terms of u, find an antiderivative, and then back-substitute to find
a formula in terms of x.∫ √

3x+ 5 dx u = 3x+ 5
du = 3 dx

=
∫ √

u · du3

=
∫ 1

3u
1/2du

= 1
3 ·

2
3u

3/2 + C

= 2
9(3x+ 5)3/2 + C

�

Example 12.3.3 Use the method of substitution to find
∫
x sin(x2) dx.

Solution. The integrand x sin(x2) is a product with the composition involv-
ing u = x2. We hope that the product is a result of the chain rule. Because
u′ = du

dx = 2x, we have du = 2x dx or dx = du

2x . We rewrite the integral

∫
x sin(x2) dx u = x2

du = 2x dx

=
∫
x sin(u) · du2x

=
∫

x

2x sin(u)du

=
∫ 1

2 sin(u)du

= −1
2 cos(u) + C

= −1
2 cos(x2) + C

This problem relied on the factor x and the formula for u′ = 2x having x cancel
so that the transformed integral involves only the substitution variable u. �

Example 12.3.4 Use the method of substitution to find
∫

tan(x) dx.

Solution. The integrand tan(x) can be rewritten as a quotient, or as a prod-
uct involving a negative power,

tan(x) = sin(x)
cos(x) = sin(x) · (cos(x))−1.

Once we have the negative power, we see the composition variable u = cos(x).
Because u′ = du

dx = − sin(x), we have du = − sin(x) dx or dx = −du
sin(x) . We
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rewrite the integral∫
tan(x) dx =

∫
sin(x)(cos(x))−1 dx

u = cos(x)
du = − sin(x) dx

=
∫

sin(x)u−1 −du
sin(x)

=
∫
−u−1 du

= − ln(|u|) + C

= − ln(| cos(x)|) + C

�
Sometimes, after substitution, the integrand still involves the original vari-

able. If the formula can be rewritten using only the substitution variable, then
we may still be able to find an antiderivative.

Example 12.3.5 Use the method of substitution to find
∫
x
√

1− x dx.

Solution. The integrand x
√

1− x = x(1− x)1/2 is a product with the com-
position involving u = 1 − x. Because u′ = du

dx = −1, we have du = −dx or
dx = −du. We rewrite the integral∫

x
√

1− x dx =
∫
xu1/2 · −du

=
∫
−xu1/2du

If we start with the substitution equation u = 1 − x and solve for x, we find
x = 1− u and can use this substitution in the integral.∫

x
√

1− x dx =
∫
−xu1/2du

=
∫
−(1− u)u1/2du

As currently written in a product, the antiderivative can not be found. How-
ever, if we multiply this out we can find antiderivatives using the power rule.∫

x
√

1− x dx =
∫
−(1− u)u1/2du

=
∫
−u1/2 + u3/2du

= −2
3u

3/2 + 2
5u

5/2 + C

= −2
3(1− x)3/2 + 2

5(1− x)5/2 + C

�
The method of substitution does not work (or at least does not help) if the

transformed integral is no closer to finding an antiderivative than the original.

Example 12.3.6 Use the method of substitution to rewrite
∫
e−x

2
dx.

Solution. The integrand e−x2 has a composition involving u = x2 and u′ =
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2x. For x > 0 we have the back-substitution

u = x2 ⇔ x =
√
u.

The method of substitution allows us to rewrite this integral.∫
e−x

2
dx

u = x2

du = 2x dx

=
∫
e−u

du

2x

=
∫ 1

2
√
u
e−u du

While these integrals are equivalent for x > 0, the new integral is no easier
to evaluate than the original. It happens that this integral does not have an
elementary antiderivative formula. �

12.3.2 Substitution and Definite Integrals
When using definite integrals, the Fundamental Theorem of Calculus allows us
to compute a definite integral as the change in an antiderivative. If the method
of substitution is used, our antiderivative will be a function of the substitution
variable u which is a function of the independent variable. Rather than rewrite
the antiderivative in terms of the original variable and then compute the change
of the antiderivative, we can compute the change in the antiderivative in terms
of the variable u.

Suppose that F (x) is an antiderivative of f(x). Now, suppose that u is a
function of x so that u(a) = c and u(b) = d. If we have an integral involving
composition and the chain rule, we find∫ b

a

f(u(x))u′(x)dx FTC= [F (u(x))]ba

= F (u(b))− F (u(a)) = F (d)− F (c).

This is identical to the integral we would get for the related definite integral∫ d

c

f(u) du FTC=
[
F (u)

]d
c

= F (d)− F (c).

Consequently, using the method of substitution on a definite integral can be
performed by changing the limits of integration to the values of the substitution
variable.

Example 12.3.7 Compute
∫ 3

1
(2x+ 1)4 dx.

Solution. The substitution variable is u = 2x+1. When x = 1, u = 2(1)+1 =
3, and when x = 3, u = 2(3)+1 = 7. The substitution step involves u′ = du

dx = 2

so that du = 2dx or dx = du

2 . In order to keep track of whether the limit of
integration refers to x or u, we need to clearly indicate this when both variables
are involved. ∫ 3

1
(2x+ 1)4 dx

u = 2x− 1 x = 1⇒ u = 3
du = 2 dx x = 3⇒ u = 7

=
∫ x=3

x=1
u4 du

2
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=
∫ 7

3

1
2u

4 du

FTC=
[ 1

10u
5
]7

3

= 1
10(75)− 1

10(35)

= 16564
10 = 8282

5

�
Sometimes the substitution variable is a decreasing function of the indepen-

dent variable. This will cause the apparent order of the limits to reverse. Be
careful that the limits of integration remain in the same starting and ending
position as the original.

Example 12.3.8 Compute
∫ 4

3

x dx

25− x2 .

Solution. The composition may not be apparent until we think of division
as multiplication by a negative power:

x

25− x2 = x(25− x2)−1.

This suggests a substitution u = 25− x2.∫ 4

3

x dx

25− x2
u = 25− x2 x = 3⇒ u = 16
du = −2x dx x = 4⇒ u = 9

=
∫ x=4

x=3

x

u

du

−2x

=
∫ 9

16
−1

2
du

u

FTC=
[
− 1

2 ln(|u|)
]9

16

= −1
2 ln(9)−−1

2 ln(16) = 1
2(ln(16)− ln(9))

= ln
(√16

9

)
= ln(4

3)

�
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12.4 Limits Involving Infinity
We have focused on limits of functions that correspond to points. That is,
we have looked at functions that approach a specific value in the output as
the input variable approaches a certain value in or at the edge of the domain.
In this section, we will consider examples where limits inform us about the
behavior of a function as the input or output grow without bound.

12.4.1 Vertical Asymptotes and Infinite Discontinuities
An asymptote is a curve (most commonly a line) that a graph approaches.
The two most important asymptotes are vertical asymptotes and horizontal
asymptotes. In order to classify each of these, we need to introduce a new type
of limit statement.

The mathematical statement

lim
x→a+

f(x) = +∞

means that the value of f(x) essentially increases without bound for any se-
quence of values from the domain xn ↓ a. More precisely, for any value M (no
matter how large), the sequence of values f(xn) must eventually exceed M ,
f(xn) > M for all n, eventually.

Definition 12.4.1 Infinite Limit. The mathematical statement

lim
x→a+

f(x) = +∞

formally represents the following statement: Given any M , there exists a value
δ > 0 such that f(x) > M for every x ∈ (a, a+ δ).

The mathematical statement

lim
x→a+

f(x) = −∞

formally represents the following statement: Given any M , there exists a value
δ > 0 such that f(x) < M for every x ∈ (a, a+ δ).

Similar definitions for left limits involve an interval to the left of a, (a−δ, a).
Two-sided limits require left- and right-limits agree. Otherwise, the two-sided
limit does not exist. ♦

The definition of an infinite limit allows for the possibility that the function
might rise and fall so long as overall the function ultimately is rising above every
number imaginable.

Example 12.4.2 Consider the function that is formed by joining line segments
that alternately go up and down over shorter and shorter intervals given in the
graph below. The peaks in the graph are given by the sequence of points
defined by

{( 1
n
, n) : n = 1, 2, 3, . . .}

while the minimum points are defined halfway between these points by

{(1
2( 1
n

+ 1
n+ 1), n− 1) : n = 1, 2, 3, . . .}.
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If we considered values of x approaching 0 from the right, x → 0+, the
values of f(x) might alternately go up and down. Overall, the value of f(x) in-
creases without bound because the graph will eventually surpass every positive
real number. Consequently, this function has a limit

lim
x→0+

f(x) = +∞.

�
For algebraic functions, infinite limits occur when the formula involves di-

vision such that the numerator has a non-zero limit and the denominator gets
smaller and smaller. Dividing a number by an infinitely small value results in
an infinitely large value. However, the denominator needs to approach zero
monotonically as repeatedly alternating between positive and negative will
make the limit not exist. The limit is either +∞ or −∞ depending on which
signs are involved.

Theorem 12.4.3 Infinite Limits from Division by Zero. Given f(x)
defined as a quotient f(x) = p(x)

q(x) such that p(x)→ L and q(x)→ 0 as x→ a+.
Then f(x) is unbounded as x→ a+ with limits determined by the signs of p(x)
and q(x) as follows.

• If p(x)→ L > 0 and q(x)→ 0+, then lim
x→a+

f(x) = +∞.

• If p(x)→ L > 0 and q(x)→ 0−, then lim
x→a+

f(x) = −∞.

• If p(x)→ L < 0 and q(x)→ 0+, then lim
x→a+

f(x) = −∞.

• If p(x)→ L < 0 and q(x)→ 0−, then lim
x→a+

f(x) = +∞.

• If q(x) changes sign infinitely many times as x→ a+, then the limit does
not exist.

We apply the theorem for rational functions by identifying points where
the formula involves division by zero, identifying all removable discontinuities,
and then determining the sign of the function immediately to the left and
right of each infinite discontinuity. Each infinite discontinuity corresponds to
a vertical asymptote.
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Example 12.4.4 Classify all of the discontinuities of f(x) = x3 − 9x
x4 − x3 − 6x2 .

Solution. Discontinuities occur when the denominator q(x) = x4 − x3 − 6x2

equals zero. We solve for these points by factoring the denominator.

q(x) = x4 − x3 − 6x2

= x2(x2 − x− 6)
= x2(x− 3)(x+ 2)

So there are discontinuities at x = 0, x = 3 and at x = −2.
We see if the discontinuities are removable by factoring the numerator

p(x) = x3 − 9x and seeing which factors might cancel.

f(x) = x3 − 9x
x4 − x3 − 6x2

= x(x2 − 9)
x2(x− 3)(x+ 2)

= x(x− 3)(x+ 3)
x2(x− 3)(x+ 2)

= (x+ 3)
x(x+ 2) , x 6= 3.

The discontinuity at x = 3 is removable. The nonremovable discontinuities
at x = 0 and x = −2 will be infinite discontinuities corresponding to vertical
asymptotes.

We finish classifying the removable discontinuity by evaluating the limit.
This limit will be the output value of the simplified (and continuous) formula:

lim
x→3

f(x) = lim
x→3

x+ 3
x(x+ 2) = 6

3(5) = 2
5 .

The infinite discontinuities are analyzed by determining if the unbounded
growth is positive or negative. This is usually different on each side, so we
check the signs. Because we already factored f(x), we can use the factors to
quickly determine a sign analysis summary.

x+ 3
x(x+ 2)
x−3

0

−2

VA

0

VA
(−)

(−)(−)
(+)

(−)(−)
(+)

(−)(+)
(+)

(+)(+)

We will now interpret the signs as we evaluate the limits at the discontinu-
ities. First consider x → −2. If we attempt to evaluate the limit directly, we
find

lim
x→−2

x+ 3
x(x+ 2) →

1
0 ,

and this division by zero is precisely the hallmark of infinite limits. Our sign
analysis summary shows that the denominator has a positive sign (−)(−) =
(+) for x → −2− and has a negative sign (−)(+) = (−) for x → −2+.
Consequently, our one-sided limits give

lim
x→−2−

f(x) = lim
x→−2−

x+ 3
x(x+ 2) →

1
0+ = +∞

lim
x→−2+

f(x) = lim
x→−2+

x+ 3
x(x+ 2) →

1
0− = −∞
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Using the 0+ and 0− is a notation that reminds us which sign the denominator
has as it approaches zero. We can then use arguments about sign to determine
if the resulting infinity is positive or negative. Because these limits are opposite,
the two-sided limit does not exist.

The work associated with the limits at x→ 0 is summarized below.

lim
x→0−

f(x) = lim
x→0−

x+ 3
x(x+ 2) →

3
0− = −∞

lim
x→0+

f(x) = lim
x→0+

x+ 3
x(x+ 2) →

1
0+ = +∞

lim
x→0

f(x) does not exist.

The graph y = f(x) is given below. Make note how the infinite limits
correspond to the vertical asymptotes x = −2 and x = 0. Be sure to connect
in your mind how the sign of the infinite limit corresponds to the direction in
which the graph of the function approaches the asymptote.

−4 −2 0 2 4
−10

−5

0

5

10

(3, 2
5 )

x

y

�
The following example does a similar analysis, but keeps comments to a

minimum to demonstrate what work might be normally expected.

Example 12.4.5 Classify the discontinuities of f(x) = x2 − 4
x4 − 7x3 + 10x2 .

Solution. Factor f(x):

f(x) = x2 − 4
x4 − 7x3 + 10x2

= (x+ 2)(x− 2)
x2(x2 − 7x+ 10)

= (x+ 2)(x− 2)
x2(x− 2)(x− 5)

= x+ 2
x2(x− 5) , x 6= 2

There is a removable discontinuity at x = 2 with limit

lim
x→2

f(x) = lim
x→2

x+ 2
x2(x− 5) = 4

4(−3) = −1
3 .
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There are infinite discontinuities at x = 0 and x = 5 corresponding to vertical
asymptotes.

Sign analysis:

x+ 2
x2(x− 5)
x−2

0

0

VA

5

VA(−)
(+)(−)

(+)
(+)(−)

(+)
(+)(−)

(+)
(+)(+)

The limits associated with the vertical asymptote x = 0:

lim
x→0−

f(x) = lim
x→0−

x+ 2
x2(x− 5) = 2

0− = −∞,

lim
x→0+

f(x) = lim
x→0+

x+ 2
x2(x− 5) = 2

0− = −∞,

lim
x→0

f(x) = −∞.

The limits associated with the vertical asymptote x = 5:

lim
x→5−

f(x) = lim
x→5−

x+ 2
x2(x− 5) = 7

0− = −∞,

lim
x→5+

f(x) = lim
x→5+

x+ 2
x2(x− 5) = 7

0+ = +∞,

lim
x→5

f(x) does not exist.

A graph illustrates the results below.

−4 −2 0 2 4 6 8
−10

−5

0

5

10

(2,− 1
3 )

x

y

�

12.4.2 Horizontal Asymptotes and Limits at Infinity
A function has a horizontal asymptote if the function behaves more and more
like a constant value for large input values. Horizontal asymptotes often have
applications relating to the idea of saturation. For example, when food is
scarce, the total amount of food an individual eats during a day will be pro-
portional to the amount of food available. However, there comes a point where
increasing the amount of food available does not lead to continuing increase in
the amount of food eaten per individual. Consumption saturates.

A common misconception by students is that a function does not cross a
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horizontal asymptote. This likely results from students applying something
they heard about vertical asymptotes and generalizing it to all asymptotes. A
function does not cross a vertical asymptote only because functions must obey
the vertical line test. If the graph crossed a vertical asymptote, it would need
to bend back to approach the asymptote from the other side; that process
violates the definition of a function. Horizontal asymptotes can be crossed
multiple times (even infinitely many times).

When a function has a horizontal asymptote, we are considering the be-
havior of the function as the input x→ +∞ or −∞. The value of the limit is
the y-value of the horizontal asymptote.

Definition 12.4.6 Limits at Infinity. The mathematical statement

lim
x→∞

f(x) = L

for a real number L means |f(xn) − L| → 0 for every unbounded increasing
sequence xn ↑ ∞. Formally, this corresponds to the statement: For every ε > 0,
there exists M > 0 so that |f(x)− L| < ε for every x > M . ♦

Example 12.4.7 Consider the function illustrated in the graph below. Notice
that the function goes above and below the value y = −1 but that the size
of the difference is shrinking in size as x → +∞. Consequently, we would say
y = −1 is a horizontal asymptote and

lim
x→∞

f(x) = −1.

In the other direction, notice that the function approaches another horizontal
asymptote y = 1 as x→ −∞, corresponding to a limit

lim
x→−∞

f(x) = −1.

−10 −5 0 5 10

−2

0

2

4

x

y

�
For functions defined algebraically, we find limits at infinity by identifying

terms that go to zero. These are often identified as being the multiplicative
inverse of terms that are unbounded. If p(x) → ∞, then 1/p(x) → 0. For
algebraic formulas, we can use limit arithmetic involving infinity to compute
determinate limits.
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∞p =∞, for p > 0

∞−p = 1
∞p

= 0, for p > 0

b∞ =∞, for b > 1
b−∞ = 0, for b > 1
b∞ = 0, for 0 < b < 1
b−∞ =∞, for 0 < b < 1

Example 12.4.8 Determine the limits at infinity for f(x) = 4− 3e−2x.
Solution. The base e is a number e > 1. So we will use e∞ = ∞ and
e−∞ = 0.

lim
x→∞

f(x) = lim
x→∞

4− 3e−2x = 4− 3e−2(∞) = 4− 3e−∞ = 4− 0 = 4

lim
x→−∞

f(x) = lim
x→−∞

4− 3e−2x = 4− 3e−2(−∞) = 4− 3e+∞ = 4−∞ = −∞

So y = 4 is a horizontal asymptote of f(x) as x→ +∞. There is no horizontal
asymptote as x→ −∞ since f(x)→ −∞. A graph is shown below.

−2 0 2 4

−1 · 108

0

1 · 108

2 · 108

x

y

�
A limit that appears to have infinities cancel in any way (or zeros cancel

in division) is indeterminate because the arithmetic of limits does not apply
when infinities might cancel. To compute such a limit, must rewrite the formula
to eliminate the indeterminate form. When a limit involves infinity, we factor
out the term that grows to infinity the fastest and seek to simplify.

Example 12.4.9 Determine the limits at infinity for f(x) = x2 − 3x+ 1
4x2 + 5x+ 7 .

Solution. The numerator and the denominator involve the term x2 and we
know x2 → +∞ as x → ±∞. This will lead to an indeterminate form ∞/∞.
So we factor out x2 (the fastest growing power) from the numerator and de-
nominator and simplify.

f(x) = x2 − 3x+ 1
4x2 + 5x+ 7
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=
x2(1− 3

x + 1
x2 )

x2(4 + 5
x + 7

x2 )

=
1− 3

x + 1
x2

4 + 5
x + 7

x2

This new representation involves terms that go to zero.

lim
x→∞

f(x) = lim
x→∞

1− 3
x + 1

x2

4 + 5
x + 7

x2

= 1− 0 + 0
4 + 0 + 0 = 1

4

lim
x→−∞

f(x) = lim
x→−∞

1− 3
x + 1

x2

4 + 5
x + 7

x2

= 1− 0 + 0
4 + 0 + 0 = 1

4

So y = 1
4 is a horizontal asymptote of f(x) on both sides.

−2 0 2 4
−10

−5

0

5

10

x

y

�
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12.5 Continuous Functions

12.5.1 Continuity
Recall our definition of continuity for a function at a single point.

Definition 12.5.1 Continuity at a Point. A function f is continuous at
a if

lim
x→a

f(x) = f(a).

♦
The single equation captures the full definition because for the equation to

be true, the limit must exist and the value of the function must exist. Also,
recall that the function is right-continuous if the limit comes from the right
(x→ a+) and left-continuous if the limit comes from the left (x→ a−).

These ideas allow us to define what we mean by saying that a function is
continuous on an interval.
Definition 12.5.2 Continuity on an Interval. A function f is continuous
on an interval (a, b) if f is continuous at every point x ∈ (a, b). We can include
an endpoint if the limit statement is true coming from within the interval. That
is, we include a if

lim
x→a+

f(x) = f(a)

and we include b if
lim
x→b−

f(x) = f(b).

♦

12.5.2 Definite Integrals and Average Value
When we studied the definite integral, we learned that continuity implies in-
tegrability. However, a discontinuous function might still be integrable. For
example, the definite integral of a piecewise continuous function with a finite
number of jump discontinuities can be computed using the splitting property.
The total definite integral would be equal to the sum of the definite integrals
on each of the subintervals.

Continuity does guarantee something stronger than integrability. It guar-
antees that the function attains its average value over an interval. To make
this precise, we first need to define the average value.

Definition 12.5.3 Average Value of a Function. The average value of
a function f on an interval [a, b], denoted 〈f〉[a,b], is defined as

〈f〉[a,b] = 1
b− a

∫ b

a

f(x) dx,

so long as f is integrable on [a, b]. ♦

The average value is defined as the value of a constant function that has
the same definite integral over the interval:∫ b

a

〈f〉[a,b] dx = 〈f〉[a,b] · (b− a) =
∫ b

a

f(x) dx..

Example 12.5.4 The figure below illustrates a simple function f(x) defined
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on the interval [0, 5],

f(x) =


3, 0 ≤ x < 1,
5, 1 ≤ x < 3,
−1, 3 ≤ x ≤ 5.

−1 0 1 2 3 4 5 6

−2

0

2

4

6

The definite integral equals the sum of the signed areas,∫ 5

0
f(x) dx = 3 · 1 + 5 · 2 +−1 · 2 = 11.

The average value is equal to this definite integral divided by the width of the
interval,

〈f〉[0,5] = 1
5

∫ 5

0
f(x) dx = 11

5 .
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−1 0 1 2 3 4 5 6

−2

0

2

4

6

�

Theorem 12.5.5 Mean Value Theorem for Integrals. Given a function
f that is continuous on [a, b], there must exist a value c ∈ (a, b) such that

f(c) = 〈f〉[a,b] = 1
b− a

∫ b

a

f(x) dx,

or equivalently,
∫ b

a

f(x) dx = f(c) · (b− a).

Proof. Because f is continuous on [a, b], the Extreme Value Theorem guaran-
tees that f attains a minimum value f(xmin) and a maximum value f(xmax)
so that f(xmin) ≤ f(x) ≤ f(xmax) for all x ∈ [a, b].

The average value 〈f〉[a,b] must be between the minimum and maximum val-
ues. The (((Unresolved xref, reference "thm-integral-inequality"; check spelling
or use "provisional" attribute)))Integral Bounds theorem guarantees

f(xmin)(b− a) ≤
∫ b

a

f(x) dx ≤ f(xmax)(b− a)

which then implies
f(xmin) ≤ 〈f〉[a,b] ≤ f(xmax).

By the Intermediate Value Theorem with the interval with end points xmin
and xmax (we don’t know which is on the left/right), there must be some value
c between these points, and so c ∈ (a, b), for which

f(c) = 〈f〉[a,b].

�
In the previous example, f was not continuous and we can see that the

graph y = f(x) did not intersect the constant value 〈f〉[0,5]. The Mean Value
Theorem for Integrals guarantees that when the function is continuous, the
constant function using the average value must intersect the graph y = f(x).
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Example 12.5.6 The function f(x) = x2 is continuous everywhere. The
average value on the interval [−1, 2] can be found using the (((Unresolved
xref, reference "thm-elementary-definite-integrals"; check spelling or use "pro-
visional" attribute)))elementary accumulation formula for a quadratic rate and
the splitting property.

〈f〉[−1,2] = 1
2−−1

∫ 2

−1
x2 dx

= 1
3

(∫ 2

0
x2 dx−

∫ −1

0
x2 dx

)
= 1

3

(1
3(23)− 1

3(−1)3
)

= 1
3

(8
3 + 1

3

)
= 1

A figure showing the graphs y = f(x) = x2 and y = 〈f〉[−1,2] = 1 is shown
below. The Mean Value Theorem predicted the existence of a point c ∈ (−1, 2)
where f(c) = 〈f〉[−1,2] = 1, which we can see occurs at c = 1.

−2 −1 0 1 2 3
−2

0

2

4

6

�
The Mean Value Theorem for Integrals also provides the justification for

the Monotonicity Test for Accumulation Functions.

Theorem 12.5.7 Monotonicity Test for Accumulation Functions. Sup-
pose that A(x) is an accumulation function with corresponding rate function
f(x), and suppose that f(x) is continuous on [a, b].

• If f(x) > 0 for all x ∈ (a, b), then A(x) is increasing on [a, b].

• If f(x) < 0 for all x ∈ (a, b), then A(x) is decreasing on [a, b].

• If f(x) = 0 for all x ∈ (a, b), then A(x) is constant on [a, b].
Proof. Consider any two points c1, c2 ∈ [a, b] with c1 < c2. Because A(x) is an
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accumulation function, by the splitting property of definite integrals,

A(c2)−A(c1) =
∫ c2

c1

f(x) dx.

On the other hand, because f is continuous, the Mean Value Theorem guar-
antees the existence of a point c ∈ (c1, c2) such that

A(c2)−A(c1) =
∫ c2

c1

f(x) dx = f(c) · (c2 − c1).

Now assume that f(x) > 0 for all x ∈ (a, b). Then f(c) > 0 and c2−c1 > 0,
guaranteeing that A(c2)− A(c1) > 0. That is, A(c2) > A(c1). This is what is
needed to show that A is increasing.

Next assume that f(x) < 0 for all x ∈ (a, b). Then f(c) < 0 while c2− c1 >
0, guaranteeing that A(c2) − A(c1) < 0. That is, A(c2) < A(c1), which shows
that A is decreasing.

Finally assume that f(x) = 0 for all x ∈ (a, b). Then f(c) = 0, implying
that A(c2)−A(c1) = 0. That is, A(c2) = A(c1), which shows that A is constant.

�
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12.6 Applications Involving Densities

12.6.1 Overview
Having developed the theory of definite integrals and functions defined as the
accumulation on increments, we turn our attention to applications of these
ideas. One of the most common mathematical applications is the calculation
of area of regions bounded by curves. Physically, this is closely related to the
calculation of total mass and center of mass. The same calculations are used
in statistics to calculate probabilities and averages.

The general setup for many applications involving definite integrals is to
think of the total quantity as a sum of the parts. If a region is cut into separate
pieces, for example, then the area of the total region should be the sum of the
areas of each region measured separately. Quantities that have this property
are called extensive. A definite integral can be used to compute extensive
quantities if we can consider the total as a sum of small increments over a
partition of an independent variable.

Theorem 12.6.1 Using Definite Integrals to Compute Extensive
Quantities. Suppose an extensive quantity Q can be subdivided into in-
crements corresponding to a uniform partition of an independent variable x
over an interval [a, b]. If there is a function f(x) so that on each subinterval
[xk−1, xk] there is some point x∗k so that

f(x∗k)∆x = ∆Qk,

then
Q =

∫ b

a

f(x) dx.

In this context, the rate of accumulation function f used to compute the
quantity Q as an integral is often called the density of Q with respect to x.

This section will explore the application of definite integrals to compute
various extensive quantities. This will require imagining a partition, identi-
fying the independent variable and its corresponding interval for integration,
determining the appropriate function used as the density, and setting up the
definite integral. Because our emphasis will be on identifying the appropriate
definite integral, we will use technology to compute the the resulting value.

12.6.2 Area of Regions in the Plane
When we developed the definite integral of a function f on an interval [a, b], we
noted that the integral represented the total signed area over the interval. It
was signed because the accumulation of negative values when the function was
below the axis was subtracting area. Because area is an extensive quantity, it
is an ideal example of a quantity that can be computed using integration.

Example 12.6.2 Find the area of the region bounded between y = x2 − 2x
and y = x.
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−2 −1 1 2 3 4 5

−2

2

4

x
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Solution. Start by identifying a convenient variable to partition. The region
is determined by where the graphs y = x2 − 2x and y = x intersect. Using
substitution and solving, the intersection occurs at the solution to x2−2x = x.

x2 − 2x = x

x2 − 3x = 0
x(x− 3) = 0

The region is completely contained between x = 0 and x = 3. We choose our
independent variable to be x over the interval [0, 3]. Now, imagine a partition
of the interval and consider the increments of area over each subinterval.

−2 −1 1 2 3 4 5

−2

2

4

x

y

As the increments ∆x are smaller and smaller, the increment of area ∆A will
be closely approximated by the width ∆x times the vertical distance between
y = x and y = x2 − 2x,

∆A ≈
(
x− (x2 − 2x)

)
∆x.

The total area is the sum of the increments, so we can use a definite integral.
The height h(x) = x − (x2 − 2x) = 3x − x2 between the curves acts as the
density of area,

A =
∫ 3

0

(
x− (x2 − 2x)

)
dx =

∫ 3

0
3x− x2 dx.

The density is a simple polynomial so that we can compute the value using
the elementary accumulation formulas.∫ 3

0
3x− x2 dx = 3

∫ 3

0
x dx−

∫ 3

0
x2 dx

= 3
(1

2(3)2)− (1
3(3)3)
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= 27
2 − 9

= 9
2

Except for such simple problems, we can use technology to compute or approx-
imate the value of the integrals. The SageMath engine attempts to compute
integrals exactly using the integrate command, which uses the following syn-
tax.

integrate (3*x-x^2, [x,0,3])

9/2

When SageMath is unable to do the exact calculation, we can still do a
numerical approximation using the numerical_integral command.

numerical_integral (3*x-x^2, 0, 3)

(4.5, 4.9960036108132044e-14)

The result gives an approximate answer along with an estimated error
bound. In this case, we find A = 4.5± 4.996× 10−14. �

Example 12.6.3 Express the area of a circle with center (0, 0) and radius
r = 2 as a definite integral.

−3 −2 −1 1 2 3

−2

2

x

y

Solution. The circle is clearly between the lines x = −2 and x = 2 so that we
can imagine a partition with variable x on the interval [−2, 2]. The increments
of area ∆A correspond to thin vertical strips with width ∆x (from the partition)
and a height computed as the distance from the top of the circle to the bottom
of the circle.

−3 −2 −1 1 2 3

−2

2

x

y

The equation of the circle is

x2 + y2 = 4.
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To find the height of the increments, we need to know the two y-values for each
x-value,

y = ±
√

4− x2.

The height is the difference between the values,

h(x) = (
√

4− x2)− (−
√

4− x2) = 2
√

4− x2.

Consequently, the area of the circle is defined by the integral

A =
∫ 2

−2
h(x) dx =

∫ 2

−2
2
√

4− x2.

Computational tools can compute this value, which is consistent with the
known formula

A = πr2 = π(2)2 = 4π.

integrate (2* sqrt(4-x^2), [x,-2,2])

4*pi

�
When curves cross multiple times, we may need to compute the area of

individual regions.

Example 12.6.4 Find the area bounded by the graphs y = x and y = x3−4x.

−4 −2 2 4

−4

−2

2

4

x

y

Solution. We start by identifying the points of intersection of the curves by
solving the equation x3 − 4x = x.

x3 − 4x = x

x3 − 5x = 0
x(x2 − 5) = 0

One solution is x = 0, corresponding to the intersection at (x, y) = (0, 0). Two
other solutions come from x2 = 5 at x = ±

√
5. The total area consists of two

regions, the first with x ∈ [−
√

5, 0] and the second with x ∈ [0,
√

5].
On the first interval [−

√
5, 0], the height of increments is given by

h(x) = (x3 − 4x)− x = x3 − 5x

because the cubic polynomial is the top curve. So the area over the interval
[−
√

5, 0] is computed by

A1 =
∫ 0

−
√

5
x3 − 5x dx.
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In order to use the elementary accumulation formulas, the integral needs to
start at x = 0, so we reverse the order of integration and change the sign.

A1 =
∫ 0

−
√

5
x3 − 5x dx

= −
∫ −√5

0
x3 − 5x dx

= −
∫ −√5

0
x3 dx+ 5

∫ −√5

0
x dx

= −
(

1
4(−
√

5)4
)

+ 5
(

1
2(−
√

5)2
)

= −25
4 + 25

2
= 25

4
On the second interval [0,

√
5], the height of increments is given by

h(x) = x− (x3 − 4x) = 5x− x3

because now the cubic polynomial is the bottom curve. The corresponding
area is

A2 =
∫ √5

0
5x− x3 dx

which has a value

A2 =
∫ √5

0
5x− x3 dx

= 5
∫ √5

0
x dx−

∫ √5

0
x3 dx

= 5
(

1
2(
√

5)2
)
−
(

1
4(
√

5)4
)

= 25
2 −

25
4

= 25
4

As we should expect from symmetry, the two areas are equal A1 = A2.
The total area of the region is

A = A1 +A2 = 25
4 + 25

4 = 25
2 .

If we were to think of the distance between the two curves in terms of the
absolute value, the integral could be computed over a single interval,

A =
∫ √5

−
√

5

∣∣x− (x3 − 4x)
∣∣ dx =

∫ √5

−
√

5

∣∣5x− x3∣∣ dx.
Using SageMath, the absolute value prevents an exact integral.

A1 = integrate(x^3-5*x, [x,-sqrt (5) ,0])
A2 = integrate (5*x-x^3, [x,0,sqrt (5)])
show(A1)
show(A2)
show(A1+A2)
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25/4
25/4
25/2

integrate(abs(5*x-x^3), [x,-sqrt (5),sqrt (5)])

integrate(abs (5*x-x^3), [x,-sqrt (5),sqrt (5)])

numerical_integral(abs(5*x-x^3), -sqrt (5),sqrt (5))

(12.5, 1.3855583347321954e-13)

�

12.6.3 Density and Mass
12.6.4 Summary

•

12.6.5 Exercises

1.
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12.7 Functions Defined by Their Rates
When we learned about definite integrals, we learned that the definite integral∫ b

a

f(x) dx computes the total change in a quantity that depends on x when

x changes from a to b and where f(x) represents the rate of change of that
quantity with respect to x. We have worked from an intuitive idea of rate
of change with respect to time using concepts like velocity being the rate of
change of position or flow rates (as in gallons per minute) as being the rate of
change of volume with respect to time. We are now preparing to learn more
specifically what we mean by rate of change, namely introducing the concept
of the derivative.

12.7.1 Describing Function Behavior
One of the consequences of the properties of definite integrals is that we can
describe certain behaviors of a quantity in terms of the properties of the rate
of change. For sequences, we learned that the properties of a sequence are
determined from the increments. That is, a sequence is

• increasing when its increments are positive,

• decreasing when its increments are negative,

• concave up when its increments are increasing,

• concave down when its increments are decreasing.

(See Theorem 13.1.7 and Definition 13.1.8.) We learned analogous prop-
erties of functions defined by an accumulation of changes defined by a rate of
change. That is, for a quantity Q with a rate of change R:

• Q is increasing when its rate of change is R is positive,

• Q is decreasing when its rate of change R is negative.

(See Theorem 3.3.5.) We define concavity for functions analogously.

Definition 12.7.1 Concavity of Functions. A quantityQ that is a function
of an independent variable x with a corresponding rate of change R that is
itself a function of x has concavity that is determined by whether the rate is
increasing or decreasing. Suppose that I = (a, b) is an interval.

• Q is concave up on I if R is increasing on I.

• Q is concave down on I if R is decreasing on I.

♦
Concavity is closely related to the concept of acceleration (by which we

also include the idea of deceleration). A constant rate of change leads to a
linear relation. On a graph, this is a straight line. Concavity refers to a rate
of change that is itself changing. This is acceleration. In physics, acceleration
is caused by a force, so we can think of concavity as the effect on an object in
the presence of a force.

Suppose that a quantity has a positive rate of change (increasing) and is
also concave up (an increasing rate of change). This would be like a car moving
forward (positive rate) with a rocket pushing it forward (positive acceleration).
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The result would be that the car continues to go faster (increasing rate), cov-
ering ever increasing distances per unit time. A graph of the position would
be rising (increasing) and bending up (concave up).

x

Q

Figure 12.7.2 Q is an increasing and concave up function of x. The rate is
positive and increasing.

Next, suppose that a quantity has a positive rate of change (increasing) but
is concave down (a decreasing rate of change). This would be like a car moving
forward (positive rate) but with a rocket in reverse (negative acceleration). The
car would still be moving forward, but the rocket is slowing it down. A graph
of position in this case would be rising (increasing) but bending down (concave
down).

x

Q

Figure 12.7.3 Q is an increasing and concave down function of x. The rate
is positive but decreasing.

If the rocket continues to exert a negative force, there will be a moment
when all of the forward momentum is gone and then the car begins to go back-
wards. Consequently, we learn that a quantity that is concave down can switch
from increasing to decreasing. Graphically, this is exactly what a parabola that
opens down does. However, if the rocket is gradually reduced, we might be
able to slow the car down without ever changing direction.
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x

Q

a

Figure 12.7.4 Q is a concave down function of x that is increasing for x < a
and decreasing for x > a.

Similar behaviors might be described for negative rates of change. This
would correspond to a car that is already going backwards. Being concave
up (increasing rate of change) corresponds to a positive acceleration (rocket
force), which in this case is opposite the motion and would serve to slow the car
down maybe to the point of reversing direction. Graphically, this corresponds
to a dropping graph that is bending up (moving toward flat). Being concave
down (decreasing rate of change) corresponds to negative acceleration (rocket
force) which now is the same direction as the motion. This would cause the
car to speed up (in the negative direction). Graphically, being concave down
corresponds to a graph that is bending down and growing ever steeper.

Example 12.7.5 Suppose V measures the volume of water (liters) in a con-
tainer and that V is a function of time t (minutes) such that the rate of change
(liters per minute) is also a function of time defined by

dV

dt
= R(t) = 10− 0.25t.

Describe the behavior of V and sketch a representative graph.
Solution. The rate of change of the volume in the container, R(t) determines
the behavior of the volume. Because R has a negative slope m = −0.25, the
rate is decreasing. This tells us that the volume is a concave down function.
Solving the inequalities R(t) > 0 and R(t) < 0 will allow us to see when the
rate is positive or negative, which will imply when the volume is increasing or
decreasing, respectively.

The inequalities are solved by solving the equation R(t) = 0 and then
testing the inequalities in the resulting intervals.

10− 0.25t = 0
−0.25t = −10

t = −10
−0.25 = 40

Testing the sign of R(t) when t < 40, we find, for example R(20) = 10 −
0.25(20) = 5, that the rate is positive. Consequently, V is increasing when
t < 40. On the other hand, testing the sign of R(t) when t > 40, such as
R(60) = 0 − 0.25(60) = −5, we find that the rate is negative so that the
volume is decreasing when t > 40.

The graph of R(t), shown below, is consistent with these analyses. The
graph is decreasing (corresponding to the negative slope), above the axis for
t < 40 and below the axis for t > 40.
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Figure 12.7.6 A graph of the rate of change of volume of water as a function
of time.

The graph of the volume therefore needs to be concave down, increasing
for t < 40 and decreasing for t > 40. We do not know the starting volume (it
wasn’t given), so we might measure the change of volume from the initial value.
That is, V = 0 on the graph will mean the volume is the same as the initial
volume, rather than meaning there is no water. Using our knowledge of (((Un-
resolved xref, reference "thm-elementary-definite-integrals"; check spelling or
use "provisional" attribute)))definite integrals of elementary algebraic formulas
and the (((Unresolved xref, reference "thm-definite-integral-linearity"; check
spelling or use "provisional" attribute)))linearity of definite integrals, we can
find an explicit formula for our volume:

V (t) =
∫ t

0
R(z) dz =

∫ t

0
10− 0.25z dz

=
∫ t

0
10 dz − 0.25

∫ t

0
z dz = 10t− 0.25 t

2

2 .

The graph of this functions is shown below.
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Figure 12.7.7 A graph of the change in volume of water as a function of time.
�

Definite integrals allow us to compute the change in a quantity when we
know the rate of change. We are now turning our attention to the reverse
question. If we know how to describe the quantity itself as a function of time,
how do we find its corresponding rate of change? That rate of change is called
the derivative.

12.7.2 Introduction to Differential Equations
The rate of change or derivative of a quantity Q with respect to an independent
variable x is itself another variable in the state of the system. It is often the
case for physical and biological systems that there is a relationship between Q
and its derivative dQ

dx
. When expressed as an equation, such a relationship is

called a differential equation. A function for which the differential equation
is satisfied is called a solution.
Example 12.7.8 A population P is a function of time t. The derivative dP

dt
is the rate of change of the population, which consists of the birth rate (total
births per unit time) and death rate (total deaths per unit time). When each of
these rates is proportional to the population size, we have Malthusian growth
and can write the differential equation

dP

dt
= b · P − d · P

where b is the per capita birth rate and d is the per capita death rate. If we
write r = b − d to define a per capita net growth rate r, then the differential
equation simplifies to

dP

dt
= rP.

�
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Example 12.7.9 In physics, Newton’s second law of motion is usually written
as its equation F = ma, which says that the total force acting on a body
is always equal to the mass of that body times the acceleration of the body.
Because acceleration is the rate of change of velocity,

a = dv

dt
,

Newton’s law is actually a differential equation if we can compute the force.
Consider a falling object with mass m. Gravity is a downward force acting

on the body with gravitational force Fg = −mg where g is the constant accel-
eration due to gravity. In the absence of other forces (no air resistance), the
differential equation from Newton’s law would be written

Fg = ma ⇔ −mg = m
dv

dt
⇔ dv

dt
= −g.

If there is air resistance, the resulting force is itself usually a function of the
velocity of the object passing through the air, Fa = f(v). Experimentally, it
has been found that many objects follow a square law, that the air resistance
is proportional to the square of the velocity. Because air resistance is always
in opposition to motion, Fa must have the opposite sign as v. So we have

Fa = −γv|v| =
{
−γv2, v ≥ 0
+γv2, v < 0.

Consequently, the differential equation of a falling object with air resistance is

F = ma ⇔ Fa + Fg = m
dv

dt
⇔ −γv|v| −mg = m

dv

dt
.

�
Knowing a differential equation can often allow us to understand much of

the behavior of the system of interest simply by determining when the rate is
predicted to be positive and negative. Reasoning through concavity can be a
little more difficult. We will focus on the case where the differential equation
only involves the quantity y and its derivative dy

dx but does not involve the inde-
pendent variable x. Such an equation is called an autonomous differential
equation.
Theorem 12.7.10 Suppose that we can write an autonomous differential equa-
tion in the form

dy

dx
= f(y),

so that the rate of change is explicitly a function of the dependent quantity
itself. Then the behavior of y as a function of x depends on the sign of f(y).

• y is increasing if f(y) is positive

• y is decreasing if f(y) is negative

• y is constant if f(y) is zero

Note: There are some technical requirements on f that determine whether
the differential equation has a good solution, but for typical algebraic functions
everything is okay. A course on differential equations would include some dis-
cussion of these additional conditions.

Values where an autonomous rate function f(y) = 0 are called equilibrium
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solutions because the value of y will never change if it has that value. That
is, y will be a constant function that satisfies the differential equation.

We often summarize the behavior of an autonomous differential equation
using a phase line. A phase line is a number line representing the dependent
quantity y. We mark the equilibrium solutions, where f(y) = 0, on the line.
Between these points, we draw arrows representing whether y is increasing or
decreasing between those points. If we also know where the rate f(y) reaches
extreme values, we mark the location of those extreme rate points on the
number line as well to represent inflection points.

The behavior of the dependent quantity then depends on where its initial
value starts. If the initial value is at an equilibrium, then the dependent
variable has the same constant value for all values of the independent variable.
Otherwise, the function will be either increasing or decreasing, moving toward
or away from equilibrium solutions.

Example 12.7.11 Consider an autonomous differential equation

dy

dx
= f(y)

where the rate function f(y) is illustrated below. Create a phase line and
use it to sketch expected shapes for solutions representing initial values in the
different regions identified in the phase line.

y

dy

dx
= f(y)

−3 −
√

3
√

3 3

Solution. The graph of dy
dx = f(y) has zeros at y = 0 and y = ±3. These

correspond to equilibrium solutions of the differential equation. That is, y(x) =
3 (constant function) is one of the possible solutions. If the initial value is
y(0) = 3, then y(x) = 3 for all other values of x as well. Similarly for y(0) = 0
or y(0) = −3. These will be the points shown on the phase line.

The three equilibrium points divide the phase line into four intervals: (−∞,−3),
(−3, 0), (0, 3) and (3,∞). The graph of dy

dx = f(y) allows us to look at the
sign of dy

dx for each of those regions. We see that dy
dx > 0 for y ∈ (−∞,−3),

so y(x) will be an increasing function if the initial value starts in this interval.
We summarize the behavior in each interval with the following table.

Interval (−∞,−3) (−3, 0) (0, 3) (3,∞)
Sign of dydx = f(y) + (pos) − (neg) + (pos) − (neg)
Behavior of y increasing decreasing increasing decreasing
The phase line is a graphical summary of the table. Marked points on the

line represent the equilibrium solutions. Arrows above the line represent the
behavior as direction of motion. We will also include the locations of extreme
rates, namely y = ±

√
3, on the phase line as tick marks (not points) to indicate

the locations of inflection points.
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y
−3 −

√
3

√
3 3

When we translate the information in the phase line to a sketch of the graph
of solutions, we think of the phase line as the y-axis. The information about
whether the function is increasing or decreasing is translated into the graph.
Equilibrium solutions are also horizontal asymptotes for the solutions in the
adjacent intervals. So we need to level off whenever the solution gets close to
an equilibrium.

0 1

-3

−
√

3

0

√
3

3

x

y

�
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13.1 Introduction to Discrete Calculus

13.1.1 Overview
Calculus studies functions through their rates of change. Our goal is to under-
stand relationships between concepts and not just rules of computation. The
better we understand, the easier time we will have in drawing upon those con-
cepts to answer questions. If we can use simpler concepts that can motivate
the ideas of calculus, then those ideas will make more sense. Sequences provide
one possible framework through which we can motivate the ideas of calculus.

In this section, we introduce the ideas that will be explored throughout the
chapter. We learn to describe the behavior of sequences in terms of monotonic-
ity and concavity in terms of increments of change. The ideas of monotonicity
will allow us to answer questions relating to extreme values. We then outline
how the rest of the chapter will proceed.

13.1.2 Behavior of Sequences
One of the results of calculus is the ability to describe the behavior of functions.
We begin our discussion of the analysis of sequences with this in mind. We
motivate the discussion on the behavior of sequences with some graphs.

2 4 6
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4

6

8

n

x
n

(a) increasing,
concave up

2 4 6
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4

6
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x
n

(b) increasing,
concave down

2 4 6

2

4

6

8

n

x
n

(c) decreasing,
concave up

2 4 6

2

4

6

8

n

x
n

(d) decreasing,
concave down

Figure 13.1.1 Graphs of four short subsequences that illustrate the concepts
of monotonicity and concavity.

In mathematics, monotonicity refers to the direction of change in a se-
quence or function. In the figure above, the two sequences that are increasing
show that the values of the sequence are rising. The sequences that are de-
creasing have values that fall. Concavity in the graphs corresponds to how
the sequence appears to be bending. Imagine the sequences as points on a
bowl shape. If the curve is bending up, the sequence is concave up. If the
curve is bending down, the sequence is concave down. A sequence can change
behavior multiple times, as shown in the figure below. We seek for methods
of analyzing a sequence that will allow us to describe the monotonicity and
concavity of a sequence.
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Figure 13.1.2 An example of a sequence that illustrates all four basic behav-
iors.

13.1.3 Monotonicity: Increasing and Decreasing
Our goal is to establish a way to describe these behaviors without relying solely
on graphs. We begin by focusing on monotonicity.

Definition 13.1.3 Monotonicity of Sequences. For a sequence x with
index k, we say that x is increasing on the interval {m, . . . , n} if for every
two values in the interval, i, j ∈ {m, . . . , n} with i < j, we have xj > xi. That
is, values later in the sequence are always greater than values earlier in the
sequence.

We say that x is decreasing on the interval {m, . . . , n} if for every two
values in the interval, i, j ∈ {m, . . . , n} with i < j, we have xj < xi. That is,
values later in the sequence are always less than values earlier in the sequence.

♦
Our definition of monotonicity is on an interval of integers for the index.

We talk about increasing and decreasing on intervals for several reasons. First,
monotonicity is about comparisons of values. We should not think that the
sequence is increasing or decreasing at a particular point. Instead, we are
looking at how the sequence changes going from one index value to another.
Second, when we later discuss the monotonicity of functions, we will describe
monotonicity in terms of intervals from the domain. Consequently, we want to
establish that pattern of thinking now.

Inequalities are transitive. That is, if a < b and b < c, then we know a < c.
For sequences, this means that we don’t really need to look at all possible pairs
of index values in the interval. We only need to look at the consecutive terms
in the sequence and see if they are increasing or decreasing.

Example 13.1.4 Consider the finite sequence

x = (xk)9
k=0 = (−5,−8,−9,−8,−5, 0, 7, 4, 2, 1).

Describe the monotonicity of x.
Solution. We look at whether the sequence values are moving to the left or
to the right on the number line. You could probably just visualize it in your
mind, but a number line showing the values is illustrated below.
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-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

x0x1x2 x3 x4
x5 x6x7x8x9

We can see that x is decreasing on the index interval {0, 1, 2} because the
values of the sequence move left on the number line:

x1 < x0, x2 < x1.

Next, we see that x is increasing on the interval {2, . . . , 6} as the sequence
moves to the right:

x3 > x2, x4 > x3, . . . x6 > x5.

Finally, x is decreasing on the interval {6, . . . , 9}:

x7 < x6, x8 < x7, x9 > x8.

We compare this analysis with a graph of the sequence, shown below. When
the sequence is decreasing, the graph shows points of lowering heights. When
the sequence is increasing, the graph shows points of rising heights.
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5

n

x
n

�
When analyzing a sequence to determine monotonicity, we focus on inequal-

ities involving consecutive terms. If we use k = n − 1 and k = n to represent
consecutive index values, then the inequalities are:

• xn > xn−1 for increasing

• xn < xn−1 for decreasing.

By moving all terms to one side, the inequalities become:

• xn − xn−1 > 0 for increasing

• xn − xn−1 < 0 for decreasing.

This means that monotonicity can be determined by looking at the signs of
the differences between terms. We call those differences the increments.
Definition 13.1.5 Given a sequence x = (xk)nk=m, the increments form a
new sequence, ∇x = (∇xk)nk=m+1, calculated by the backward difference,

∇xk = xk − xk−1.
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♦
When computing the increments, we had to make a choice whether to do

the backward difference or the forward difference,

∆xk = xk+1 − xk.

The values of the backward differences and the forward differences are exactly
the same. They differ only in terms of index values. I have chosen to use
backward differences in order for our later work with accumulation sequences
and summation to work out more cleanly.

Example 13.1.6 For the sequence x = (xk)10
k=3 = (1, 2, 4, 7, 11, 16, 22, 29), find

the increments defined by the backward difference.
Solution. We can find the values by writing the sequence as a row of values.
Then below the gaps between the values, we can write the differences.

xn 1 2 4 7 11 16 22 29
∇xn 1 2 3 4 5 6 7

When the increments are defined by the backward difference, the index
starts one value later than the original sequence. Thus, the increments are the
sequence

∇x = (∇xk)10
k=4 = (1, 2, 3, 4, 5, 6, 7).

Because all of the increments are positive, x is increasing on the full interval
{3, . . . , 10}. �

We can therefore analyze monotonicity of a sequence if we know the signs
of its increments.
Theorem 13.1.7 Increment Test for Sequence Monotonicity. Given
a sequence x, we look at the sequence of increments defined by the backward
difference. Suppose m and n are integers with m ≤ n.

• If the sequence of increments is positive, ∇xk > 0 for every k = m, . . . , n,
then x is increasing on the interval {m− 1, . . . , n}.

• If the sequence of increments is negative, ∇xk < 0 for every k = m, . . . , n,
then x is decreasing on the interval {m− 1, . . . , n}.

• If the sequence of increments is zero, ∇xk = 0 for every k = m, . . . , n,
then x is constant on the interval {m− 1, . . . , n}.

The interval of monotonicity always begins one value before the first index in
the interval of increments because the first increment is ∇xm = xm − xm−1.

13.1.4 Concavity
We now turn our attention to the concavity of a sequence. Concavity is
based on whether the sequence of increments is increasing or decreasing. When
the increments are constant, we have an arithmetic sequence which follows a
straight line. To be concave up, we need the graph to bend up. If an increment
is positive, then the next increment needs to be a larger positive value. If an
increment is negative, then the next increment needs to be a smaller magnitude
negative value or a positive value. Either way, we need the increments to
increase:

∇xn > ∇xn−1.
Similarly, for a sequence to be concave down, the increments need to decrease:

∇xn < ∇xn−1.
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Definition 13.1.8 Concavity of a Sequence. Suppose x is a sequence
with increments ∇xk and m and n are index values with m < n.

• If the increment sequence ∇x is increasing on {m, . . . , n}, then the se-
quence x is concave up on {m− 1, . . . , n}.

• If the increment sequence ∇x is decreasing on {m, . . . , n}, then the se-
quence x is concave down on {m− 1, . . . , n}.

• If the increment sequence ∇x is constant on {m, . . . , n}, then the se-
quence x has no concavity and is linear (i.e., straight) on {m−1, . . . , n}.

♦
Because the increments themselves form a sequence, we can look at the

signs of the increments of the increments to analyze concavity. Computing the
backward difference of a backward difference is called the second backward
difference.
Definition 13.1.9 Suppose x is a sequence with increments ∇xk. The second
backward difference of x, written ∇2xk, measures the backward difference
of the increments,

∇2xk = ∇(∇xk) = ∇xk −∇xk−1.

The first index of ∇2xk is two greater than the first index of x. (A second
forward difference δ2x is defined similarly but will not be used.) ♦

Having defined the second backward difference, we can state the test that
allows us to analyze the concavity of a sequence.

Theorem 13.1.10 Second Difference Test for Sequence Concavity.
Given a sequence x and integers m and n with m < n.

• If the second backward difference is positive, ∇2xk > 0 for every k =
m, . . . , n, then x is concave up on the interval {m− 2, . . . , n}.

• If the second backward difference is negative, ∇2xk < 0 for every k =
m, . . . , n, then x is concave down on the interval {m− 2, . . . , n}.

• If the second backward difference is zero, ∇2xk = 0 for every k = m, . . . , n,
then x has no concavity and is linear on the interval {m− 2, . . . , n}.

The interval of concavity always begins two values before the first index in the
interval of second backward difference.
Example 13.1.11 The values for the subsequence shown in Figure 13.1.2 are
shown in the table below, rounded to the nearest ten-thousandth. Determine
the intervals of monotonicity and concavity.
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n un
0 6
1 3.5376
2 2.3136
3 2.0016
4 2.3136
5 3
6 3.8496
7 4.6896
8 5.3856
9 5.8416
10 6

n un
11 5.8416
12 5.3856
13 4.6896
14 3.8496
15 3
16 2.3136
17 2.0016
18 2.3136
19 3.5376
20 6

Solution. We can augment the table with additional columns for the first and
second backward differences. Then we can look at the signs of those increments
to determine intervals for monotonicity and concavity. With as many terms
as we are working with, we would definitely want to use a computer to assist
here.

n un ∇un ∇2un
0 6
1 3.5376 -2.4624
2 2.3136 -1.224 1.2384
3 2.0016 -0.312 0.912
4 2.3136 0.312 0.624
5 3 0.6864 0.3744
6 3.8496 0.8496 0.1632
7 4.6896 0.84 -0.0096
8 5.3856 0.696 -0.144
9 5.8416 0.456 -0.24
10 6 0.1584 -0.2976

n un ∇un ∇2un
11 5.8416 -0.1584 -0.3168
12 5.3856 -0.456 -0.2976
13 4.6896 -0.696 -0.24
14 3.8496 -0.84 -0.144
15 3 -0.8496 -0.0096
16 2.3136 -0.6864 0.1632
17 2.0016 -0.312 0.3744
18 2.3136 0.312 0.624
19 3.5376 1.224 0.912
20 6 2.4624 1.2384

We begin by looking at the signs of the increments based on the first back-
ward difference. Again, it is more compact to use a table to summarize our
results.

Sign of ∇un Interval Behavior of un Interval
negative {1, 2, 3} decreasing {0, . . . , 3}
positive {4, . . . , 10} increasing {3, . . . , 10}
negative {11, . . . , 17} decreasing {10, . . . , 17}
positive {18, 19, 20} increasing {17, . . . , 20}

We perform a similar analysis on the second backward differences to de-
scribe the concavity of the sequence.

Sign of ∇2un Interval Behavior of un Interval
positive {2, . . . , 6} concave up {0, . . . , 6}
negative {7, . . . , 15} concave down {5, . . . , 15}
positive {16, . . . , 20} concave up {14, . . . , 20}

�
When doing this analysis, if you discover that an increment equals zero,

remember that is neither positive nor negative. Do not include the index in
the interval for the signs of increments. An increment of zero indicates that
the sequence was not changing. If the second difference is zero, this indicates
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the increments are not changing and the sequence is linear.

13.1.5 Extreme Values
Having discussed monotonicity, we turn our attention to the extreme values of
a sequence. An extreme value refers to a maximum or minimum value in the
sequence. Of course, when we have a list of the sequence values, we can scan
through the list of values to find the highest or lowest value. We want some
methods of analysis that will not require checking all of the values.

On an interval where a sequence is monotone, an extreme value will never
occur within that interval. Extreme values can only occur at the edge of such
an interval. To find a maximum value, we look for where a sequence transitions
from increasing to decreasing. To find a minimum value, we look for where it
transitions from decreasing to increasing. These turning points identify local
extreme values.
Definition 13.1.12 Local Extreme Values for Sequences. A sequence
x has a local maximum at index value k if there are index values m < k < n
so that

xk ≥ xi,

for all i ∈ {m, . . . , n}.
A sequence x has a local minimum at index value k if there are index

values m < k < n so that
xk ≤ xi,

for all i ∈ {m, . . . , n}. ♦

A sequence can have multiple local extremes. The example shown in Fig-
ure 13.1.2 has two local minima and one local maximum. The two minima
happen to have the same value. However, even if one was higher than the
other, they would both still be minima because they would be where the se-
quence transitioned from decreasing to increasing.

A global extreme value describes a value in the sequence that is either
the largest value of all (the global maximum) or the lowest value of all (the
global minimum). To describe the global extreme values, we would compare
all of the local extremes as well as check if the sequence increased or decreased
without bound. To describe that in more depth, we need to wait until we talk
about limits.

13.1.6 Patterns in the Increments
Backward differences are not only useful for describing the monotonicity and
concavity of a sequence. There are many sequences where patterns in the incre-
ments can be used to create non-recursive recurrence relations. A recurrence
relation describes how to go from the previous value in a sequence to the next
value. It is recursive if the relation is the same for every index. A non-recursive
recurrence relation will have a relation that depends on the index. Sometimes,
we can still identify a pattern by looking at the higher-order differences.

An arithmetic sequence is a sequence where the backward difference is
a constant sequence. More complicated sequences arise where it is not the
backward difference but the second difference or higher that is constant. If we
can identify a higher-order backward difference that is constant, then we can
use that pattern to predict additional terms.

Example 13.1.13 Consider the sequence w = (0,−23,−40,−45,−32, 5, 72, 175, . . .).
Identify a pattern and find the next two values in the sequence.



CHAPTER 13. SEQUENCES AS MODELS 551

Solution. This sequence is not arithmetic, nor is it geometric. To look for a
pattern, we proceed to generate the backward differences.

wn 0 -23 -40 -45 -32 5 72 175
∇wn -23 -17 -5 13 37 67 103
∇2wn 6 12 18 24 30 36
∇3wn 6 6 6 6 6

The pattern of backward differences shows that the third-order backward
difference is a constant value, ∇3wn = 6. We can use this pattern to find the
next few values of the sequence. We do this by extending the table, adding
the increments one at a time. The last term in ∇2wn shown was ∇2w8 = 36.
So the next term will be ∇2w9 = 36 + 6 = 42. We can use that to find
∇w9 = ∇w8 + 42 = 103 + 42 = 145. That allows us to obtain w9 = w8 + 145 =
175 + 145 = 320. Repeating the process allows us to find w10 = 513, as
illustrated in the extended table below.

wn 0 -23 -40 -45 -32 5 72 175 320 513
∇wn -23 -17 -5 13 37 67 103 145 193
∇2wn 6 12 18 24 30 36 42 48
∇3wn 6 6 6 6 6 6 6

�

13.1.7 Where Do We Go From Here?
In this section, we have introduced the ideas of the characterizing a sequence
in terms of monotonicity and concavity. We considered examples of sequences
with given values to find the backward differences by hand. In the next section,
we will consider how to find an explicit formula for the backward differences
when we know an explicit formula for the sequence itself. This will allow us to
analyze the monotonicity and concavity of a sequence without needing all of the
values being tabulated. Knowing monotonicity will allow us to identify extreme
values, again without computing all of the values. The ideas of backward
differences are analogous to the concepts of derivatives in calculus.

At the end of this section, we considered an example where we used a pat-
tern in the backward differences to generate additional values for the sequence.
In a future section, we will consider the idea of starting with a known sequence
at the level of increments and using that sequence to generate a corresponding
sequence. We call the generated sequence an accumulation sequence, named
this because the new value is an accumulation of increments. An important
topic raised in that section is how to show that two sequences are the same.
We often have multiple methods of describing a sequence, such as an explicit
definition and a recursive definition. We want to know that the sequences
really agree because we can’t (and wouldn’t want to) compute and compare
infinitely many values. The ideas of accumulation are analogous to the con-
cepts of integration in calculus.

One of the most important applications of accumulation is summation.
Summation formulas will continue to generalize our last example in this sec-
tion. Where accumulation allows us to take a known sequence of increments
and generate the original sequence, summation formulas will allow us to take
the formula of an increment sequence and compute an explicit formula for
the original sequence. Summation formulas will be critical in generating the
explicit formulas of integration later.

Finally, we will end the chapter by introducing limits of sequences. Limits
are the key tool that generates all of calculus. A limit in a sequence corresponds
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to having the values in a sequence converge to some value. We will then be
ready to begin a new chapter that begins our look at calculus.

13.1.8 Summary
• Monotonicity of a sequence describes where the sequence is increasing

or decreasing. We say that a sequence is increasing or decreasing on
intervals of integers. The sequence is increasing if the sequence values
move to the right on the number line. The sequence is decreasing if the
sequence values move to the left on the number line.

• We calculate the increments of the sequence using the backward dif-
ference to analyze monotonicity,

∇xk = xk − xk−1.

◦ If the increments are positive, ∇xk > 0 for all k on an interval
{m, . . . , n}, then the values of the sequence xk are increasing on the
interval {m− 1, . . . , n}.

◦ If the increments are negative, ∇xk < 0 for all k on an interval
{m, . . . , n}, then the values of the sequence xk are decreasing on
the interval {m− 1, . . . , n}.

• Concavity of a sequence describes where the increments are increasing or
decreasing. A sequence whose increments are increasing is concave up.
A sequence whose increments are decreasing is concave down.

• We can analyze concavity by computing the increments of the increments
using the second backward difference,

∇2xk = ∇xk −∇xk−1.

◦ If the second increments are positive, ∇2xk > 0 for all k on an
interval {m, . . . , n}, then the values of the sequence xk are concave
up on the interval {m− 2, . . . , n}.

◦ If the second increments are negative, ∇2xk < 0 for all k on an
interval {m, . . . , n}, then the values of the sequence xk are concave
down on the interval {m− 2, . . . , n}.

• We can also use the increments and higher-order increments to find pat-
terns in some sequences. Following these patterns can be used to predict
later terms in the sequence with index-dependent recurrence relations.

13.1.9 Exercises

For the following finite sequences, find the intervals of monotonicity and con-
cavity. Also, identify the index and values of the local maximum and minimum
points. Graph the sequences and compare with your results.

1. a = (an)10
n=1 = (35, 55, 70, 80, 85, 85, 80, 70, 55, 35)

2. b = (bi)9
i=0 = (−8,−5,−4,−5,−8,−9,−8,−5,−1, 4)

3. c = (ct)6
t=−3 = (5, 8, 10, 10, 10, 9, 8, 7, 8, 10)

For the following sequences, identify a pattern using backward differences. Use
the pattern to predict the next two values of the sequence.
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4. u = (uk)∞n=0 = (−8,−13,−16,−17,−16,−13,−8, . . .)
5. v = (vj)∞j=1 = (6, 0,−6,−10,−10,−4, 10, . . .)

6. w = (wn)∞n=0 = (−3,−6,−5, 1, 12, 27, 44, 60, 71, . . .)
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13.2 Recursive Sequences and Projection Func-
tions

Overview. When looking for patterns in sequences, we usually explore two
possibilities. One approach is to look at the values of individual terms and
see if there is an explicit formula relating the index with the formula. There
were several examples of this in the previous section. Another approach is to
look for a pattern in how terms are generated from earlier terms. For example,
the sequence (7, 10, 13, 16, . . .) is easy to recognize that each term is found by
adding 3 to the previous term.

In this section, we consider recursively defined sequences. Arithmetic and
geometric sequences are two familiar examples of sequences with recursive def-
initions. We review some basic ideas about functions. We will learn about
projection functions used in such recursive definitions. We visualize the role
of projection functions as maps between sequence values and through cobweb
diagrams.

13.2.1 Arithmetic and Geometric Sequences
We often think of sequences in terms of a pattern for how to find the values.
When a sequence can be defined so that the next value can found knowing
only the previous value, we say the sequence has a recursive definition. The
simplest pattern-based sequences follow simple recursive patterns.

An arithmetic sequence is a sequence whose terms change by a fixed
increment or difference. For example, consider the sequence introduced above,

x = (7, 10, 13, 16, . . .).

The pattern for this sequence was that we add 3 to each term in the sequence
to find the next term. The value 3 is called the increment or difference of
the sequence. It is called the increment because there is a pattern of adding
the same value to values in the sequence:

x2 = x1 + 3 = 7 + 3,
x3 = x2 + 3 = 10 + 3,
x4 = x3 + 3 = 13 + 3,

...

It is called the difference because each of those equations can be rewritten as
a difference of values:

x2 − x1 = 3,
x3 − x2 = 3,
x4 − x3 = 3,

...

A geometric sequence is a sequence whose terms change by a fixed mul-
tiple or ratio. An example of a geometric sequence is given by

u = (2, 6, 18, 54, . . .).
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Each term is found by multiplying the previous term by 3, which is the mul-
tiple or ratio of the sequence. We call the value 3 the multiple because of the
pattern

u2 = 3u1 = 3 · 2,
u3 = 3u2 = 3 · 6,
u4 = 3u3 = 3 · 18,

...

It is call the ratio if we rewrite the equations as a ratio of a value to its previous
value

u2
u1

= 3,
u3
u2

= 3,
u4
u3

= 3,

. . .

For recursively defined sequences, the equation that describes the relation-
ship between consecutive terms of the sequence is called the recurrence re-
lation. When the recurrence relation for a sequence x is solved for the next
value as a dependent variable in terms of an expression involving of the pre-
vious term, we call this map or function the projection function because it
allows us to project future values based on current values.

13.2.2 Functions as Maps
Before we discuss more about projection functions, we take a short diversion
to review some core concepts about functions in general. Functions are at
the heart of everything we do in calculus. Unfortunately, many students have
subtle misconceptions about how to think about functions. We want to use
our emphasis on sequences to come to terms with these ideas. Be prepared
to think about functions from many different points of view. We begin by
thinking of a function as a map between variables.

Definition 13.2.1 Function. Given two related variables, say x and y, such
that there is a rule or relation that defines a map x 7→ y, we say that the map
is a function. (We will make this more precise later.1) ♦

Similar to other mathematical objects like variables and sequences, func-
tions are usually represented by symbols for their names. Letter symbols like
f or g are particularly common. We would write f : x 7→ y to say that the
name of the function representing the map from a variable x to y is f . The
independent variable x is the input for the function; the dependent variable y
is the output of the function.

We often use function notation, writing y = f(x). The parentheses in
function notation indicate that whatever is inside is the value for the input, not
multiplication. So this equation says that the dependent variable y is equal to
the output of the function f when the input has the value represented by x.
We usually read the equation, “y equals the value of f of x.” When we have
an equation expressing y as an explicit expression involving x, that expression
can be used to define the function.

1The precise definition needs to address the domain of the function and clarify what is a
map when there is no defining expression.
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Example 13.2.2 Consider the equation 2x+ 5y = 10, which relates the vari-
ables x and y. Because we can solve for the variable y to be a dependent
variable,

y = −2
5x+ 2,

the equation defines a function x 7→ y. We can choose any name for this
function (other than the symbols x or y, obviously). We might choose to use
the name P and write this as a map

P : x 7→ y = −2
5x+ 2.

Using the usual function notation, we would instead write

y = P (x) = −2
5x+ 2.

�
When we wrote explicit formulas for the value of a sequence with the index

as the independent variable, we noted that we had a map from the index to
the value of the sequence. That was an example of a function.

Example 13.2.3 For the explicitly defined sequence xn = 3n − 2, n =
1, 2, 3, . . ., the equation defines a map n 7→ xn = 3n − 2. We could name
the function S, for example, and write S(n) = 3n− 2 so that xn = S(n). �

13.2.3 Projection Functions
We now return to the concept of a recursively defined sequence and the pro-
jection function. A sequence is recursive if the same rule is used to go from
one value of the sequence to the next. For our earlier example of an arithmetic
sequence, we had a pattern of equations

x2 = x1 + 3,
x3 = x2 + 3,
x4 = x3 + 3,

...

The rule was always the same, but the symbols were different because they
involved different index values.

We need some notation to capture the idea of consecutive values of a se-
quence. If n represents the value of the index for a sequence, then n + 1
represents the value of the index for the subsequent term of the sequence and
n− 1 represents the value of the index for the preceding term of the sequence.
For example, if n = 3, then xn would be x3, xn+1 would be x4, and xn−1 would
be x2. All of our equations follow the pattern

xn = xn−1 + 3,

where the first equation corresponds to n = 2, the second to n = 3, and so
forth. Equivalently, we could think of all of the equations as following the
pattern

xn+1 = xn + 3,

but now the first equation comes from n = 1 and the second from n = 2.
This equation which relates xn and xn−1 is called a recurrence relation or
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recursive equation for the sequence. Because the equation has been written
with xn as a dependent variable in terms of the value of xn−1, we actually have
a projection function.

Definition 13.2.4 Projection Function. Suppose a sequence x is defined
by a recurrence relation of the form

xn = f(xn−1).

The function f defining the relation xn−1 7→ xn is called the projection
function. Equivalently, we could write the recurrence relation in terms of a
previous value as

xn+1 = f(xn).

♦
For a sequence with a recurrence relation xn = xn−1 + 3, the projection

function is f : xn−1 7→ xn = xn−1 + 3. The function f takes a value as an
input and maps it to an output that is that value plus 3. I find it useful to
imagine the independent variable in a function as if it were a box, as in

f(xn−1) = xn−1 + 3 ⇔ f(�) = �+ 3.

Whatever is between the parentheses for the input of a function will go in the
box of the formula. With this understanding, any variable can be used as a
placeholder for the input: f(x) = x + 3 and f(a) = a + 3 describe the same
mapping rule.

When we have a projection function for a sequence defined recursively, we
can apply the function repeatedly to calculate values for the sequence. Many
sequences can use the same projection function. We need an initial value to
begin the process.

Example 13.2.5 A sequence u = (un)∞n=0 is defined recursively by the pro-
jection function f(x) = 2x− 5 and an initial value u0 = 3. Find the next four
terms of the sequence.
Solution. The projection function defines the map un−1 7→ un according to
the rule f(x) = 2x− 5 or f(�) = 2 ·�− 5. It tells us that if we use an input
coming from a sequence value, the output of the function will be the next
sequence value. We were given an initial value u0 = 3. Using the recursive
equation for n = 1 and the preceding value u0 = 3 as the input to f , the output
will be the value u1:

u1 = f(u0) = f(3) = 2(3)− 5 = 1.

Now that we know u1, we can use that value as an input to get u2, and so on:

u2 = f(u1) = 2(1)− 5 = −3,
u3 = f(u2) = 2(−3)− 5 = −11,
u4 = f(u3) = 2(−11)− 5 = −27.

�
Sometimes, a recurrence relation is not written with the new sequence value

isolated. To identify the projection function, we need to solve for the new value
of the sequence.

Example 13.2.6 A sequence is defined by the recurrence relation

wn+1 − wn = 1.4wn −
3
wn

, n ≥ −1,
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and an initial value w−1 = 1. Find the recursive equation corresponding to the
projection function, wn 7→ wn+1, and find f(x). Use this to find w0 and w1.
Solution. To find the recursive equation, we need to solve for wn+1.

wn+1 − wn = 1.4wn −
3
wn

wn+1 = 2.4wn −
3
wn

This recursive equation gives us a map from a current value wn to the next
value wn+1 in the sequence, wn 7→ wn+1, which is the projection function

wn+1 = f(wn) = 2.4wn −
3
wn

.

This means that using an input x gives

f(x) = 2.4x− 3
x
.

Once we have the map, we can repeatedly use the projection function to
find subsequent values of the sequence.

w−1 = 1
w0 = f(w−1) = f(1)

= 2.4(1)− 3
1 = −0.6

w1 = f(w0) = f(−0.6)

= 2.4(−0.6)− 3
−0.6 = 3.56

�

13.2.4 Arithmetic and Geometric Sequences Revisited
The arithmetic and geometric sequences have simple explicit formulas. We use
these formulas to illustrate the idea of a sequence as a map from the index to
the sequence value.

The explicit formula for an arithmetic sequence is a special case of a linear
function. The increment of the sequence represents the slope. The initial value
gives us a known point. Knowing how many steps away from the given point
along with the increment allows us to compute other sequence values.

Example 13.2.7 Find the explicit formula for the arithmetic sequence x =
(7, 10, 13, 16, . . .). Use the formula to find x100.
Solution. The initial value x1 = 7 means our function will be a map n 7→ xn
that takes an input n = 1 to an output x1 = 7. The increment of 3 that appears
in the recursive equation xn = xn−1 + 3 means that the function increases by
3 for every increment of the index by 1. That is, the slope is m = +3. The
value of xn will equal 7 plus 3 times the number of increments in the index,

xn = 7 + 3(n− 1).

We could find an equivalent expression after using the distributive property,

xn = 4 + 3n.

Because we now have the function n 7→ xn, we can find the value of the
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sequence for any index using this expression. To find x100, we use n = 100 and
the map n 7→ xn,

x100 = 4 + 3 · 100 = 304.

�
The following theorem provides the formula for the explicit formula of any

arithmetic sequence.

Theorem 13.2.8 Explicit Formula of Arithmetic Sequences. An arith-
metic sequence x with an increment β so that xn = xn−1 + β and with a given
initial value xk has an explicit representation n 7→ xn given by

xn = xk + β · (n− k).
The explicit formula for a geometric sequence is a special case of an expo-

nential function. The multiple for the sequence corresponds to the base of the
exponential. An initial value gives us a known point. The formula will count
how many increments the index has changed and multiply by the base to that
power.

Example 13.2.9 Find the explicit formula for the geometric sequence u =
(48, 24, 12, 6, 3, . . .). Use the formula to find u20.
Solution. The sequence u is geometric because the ratio of the sequence
value to its predecessor is always the same.

u2
u1

= 24
48 = 1

2
u3
u2

= 12
24 = 1

2
u4
u3

= 6
12 = 1

2
u5
u4

= 3
6 = 1

2

The recursive formula for the sequence multiplies the previous sequence value
by ρ = 1

2 ,

un = 1
2 · un−1.

The initial value u1 = 48 means our function will be a map n 7→ xn that takes
an input n = 1 to an output x1 = 48.

Each time the index is incremented by 1, the value of the sequence is mul-
tiplied by ρ = 1

2 . We can count the number of increments for the index n by
the expression n−1. Because repeated multiplication is a power, we obtain an
explicit formula

un = u1 · ρn−1 = 48 ·
(

1
2

)n−1
.

Using the properties of powers, this is equivalent to

un = 48
2n−1 .

With the function n 7→ un, we can find the value of the sequence for any
index using this expression. To find u20, we use n = 20 and the map n 7→ un,

u20 = 48
219 .
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If we rewrite 48 = 16 ·3 = 24 ·3 and then simplify the fraction, this is equivalent
to

u20 = 3
215 = 3

32768 .

�
The general formula for a geometric sequence is provided in the following

theorem.
Theorem 13.2.10 Explicit Formula of Geometric Sequences. A ge-
ometric sequence x with a multiple ρ so that xn = ρ · xn−1 and with a given
initial value xk has an explicit representation n 7→ xn given by

xn = xk · ρ(n−k).

13.2.5 Graphical Representations of Projections
If we think about a function as a map between two number lines, then the
process of using a projection function to find values in a sequence can be
visualized using such a mapping. Consider two number lines. The top number
line will represent the current value of the sequence or the input of the function.
The bottom number line will represent the next value of the sequence or the
output of the function. The projection function defines the rule for how we go
from the input to the output. Because the process repeats, we also go from
the output number line to the same value on the input number line.

Example 13.2.11 For the sequence defined by the projection function f(x) =
2x − 5 and initial value u0 = 3, the mapping used to generate the first few
terms of the sequence can be represented graphically as shown below.

un−1

un

3

u0

1

u1

1

u1

−3

u2

−3

u2

−11

u3

−11

u3

−27

u4

�

Example 13.2.12 For the sequence defined by the projection function

wn+1 = 2.4wn −
3
wn

and initial value w−1 = 1, the mapping used to generate the first few terms of
the sequence can be represented graphically as shown below.

wn

wn+1

1

w−1

−0.6

w0

−0.6

w0

3.56

w1

3.56

w1

�
The graph of a function f shows all points (x, y) in the plane where y =

f(x). Where a mapping visualizes a function as going from the input number
line to the output number line, a graph visualizes a function by thinking of the
x-axis as the input number line and the vertical position of the graph in the
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y-direction as the output. It is as if there were a separate vertical number line
parallel to the y-axis (and perpendicular to the x-axis) through every value on
the x-axis. The point on the graph corresponds precisely to the location of the
output for the function.

We can use the graph of a projection function to visualize how to generate
a recursive sequence. The algorithm we use follows the same pattern as we
used in the mapping and generates what is called a cobweb diagram in the
plane.

Algorithm 13.2.13 Generating a Cobweb Diagram. A cobweb diagram
for a sequence x with projection function f and initial value x0 is generated by
the following steps.

1. Graph y = f(x) and y = x in the same plane.

2. Label the x-axis xn−1 (for the previous value) and the y-axis xn (for the
next value).

3. Find the initial value x0 on the x-axis. The initial point will be (x0, 0)
representing the current sequence value.

4. Draw a vertical line from the point representing the current sequence
value to the graph y = f(x). This corresponds to using the map to find
the next sequence value.

5. Draw a horizontal line from the point for the next sequence value to the
graph y = x. This corresponds to resetting the current sequence value
based on the most recent next sequence value.

6. Repeat the last two steps as many times as desired.
Example 13.2.14 Draw the first four iterations of the cobweb diagram for
the sequence u with projection function f(x) = 2x−5 and initial value u0 = 3.
Solution. We start by drawing the graphs y = f(x) = 2x−5 and y = x on the
same graph. We then start with a point on the x-axis at x = 3 corresponding
to the value of u0 = 3. We want to use this value to find the next value in
the sequence u1. This use the projection function, so we go up to the value of
the function f(3) = 1, drawing a vertical line segment to the point (3, 1). We
now know u1 = 1 and we need to use this as a new input for the projection
function. So the next step is to draw a horizontal segment to y = x at the
point (1, 1). Now that our x-value is 1, we can repeat the process and use the
function to find u2 = f(1) = −3, drawing a vertical segment down to the point
(1,−3) and then a horizontal segment to (−3,−3).
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13.2.6 Summary
• A sequence x is recursive when the relation between consecutive values

of the sequence is the same for every index. An equation describing this
relation is called a recurrence relation. If we can solve for xn as a
dependent variable with xn−1 as the independent variable, the corre-
sponding equation is called the recursive equation.

• An arithmetic sequence with common difference c has a projection func-
tion f(x) = x+ c, a recursive relation

xn = xn−1 + c,

and an explicit formula given a known value for xk,

xn = xk + β(n− k).

• A geometric sequence with common ratio ρ has a projection function
f(x) = ρx, a recursive relation

xn = ρ · xn−1,

and an explicit formula given a known value for xk,

xn = xk · ρn−k.

• We think of functions as maps from the value of one variable to the value
of another variable. For a sequence x, the map from the index n to the
sequence value xn is called the explicit function of the sequence. For a
recursive sequence, the map from one sequence value xn−1 to the next
sequence value xn is called the projection function.

• The graph of a function uses values on the x-axis as input values and
the vertical position of the graph as output values. A cobweb diagram
uses the graph of a projection function with repeatedly updated inputs
to generate a visual representation of a recursive sequence.
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13.2.7 Exercises

Determine if each sequence is arithmetic, geometric, or neither. For each se-
quence that is arithmetic or geometric, (i) state the recursive equation for the
sequence, (ii) find the projection function f(x), (iii) state an explicit formula
for the sequence, and (iv) use the explicit formula to find the value with index
20.

1. u = (un)∞n=0 = (−8,−2, 4, 10, . . .)
2. t = (tk)∞k=2 = (27, 23, 19, 15, . . .)
3. v = (vk)∞k=−2 = (12, 16, 21, 27, . . .)
4. w = (wk)∞k=1 = (4, 20, 100, 500, . . .)
5. z = (zi)∞i=0 = (27, 18, 12, 8, . . .)

Each problem gives a projection function and an initial value that together
determine a sequence recursively. Find the four terms following the initial
value. Illustrate the sequence as a map between two number lines.

6. P = (Pt)∞t=0 with P0 = 400 and projection function f(x) = x+ 25.
7. u = (un)∞n=0 with u0 = 3 and projection function f(x) = 1.5x+ 1.
8. u = (un)∞n=0 with u0 = −3 and projection function f(x) = 1.5x+ 1.
9. w = (wi)∞i=1 with w1 = 4 and projection function f(x) = 2.5x− 6.
10. w = (wi)∞i=1 with w1 = 5 and projection function f(x) = 2.5x− 6.
11. z = (zj)∞j=0 with z0 = 16 and projection function f(x) =

√
x.

Each problem defines a sequence recursively. Give the formula of the projection
function f(x). Create the cobweb diagram for the sequence corresponding to
the first five values of the sequence.

12. Q = (Qt)∞t=0 with Q0 = 3 and Qt = Qt−1 + 4.
13. c = (ck)∞k=0 with c0 = 10 and ck+1 = 0.75ck.
14. S = (Sn)∞n=0 with S0 = 10 and Sn = 0.8Sn−1 + 4.

15. P = (Pt)∞t=0 with P0 = 1 and Pt+1 = 20Pt
Pt + 10 .
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13.3 Computing Sequence Values

13.3.1 Overview
When working with sequences, we often need to generate many sequence values.
It is quite cumbersome to do this by hand. There would be a lot of repetition.
Computers should be used to compute.

This section focuses on developing some basic skills in using computers
to generate and plot sequences. Spreadsheets are one tool that can be used
to compute and plot sequences. A spreadsheet is essentially a blank table;
you create computational rules for individual entries within the table. For
sequences, those rules correspond to the formulas for generating the sequence.

An alternative to spreadsheets is writing a computational script in a pro-
gramming language. This might seem intimidating, especially if you have never
done any programming. However, many modern scripting languages use com-
mands very similar to the mathematical statements we already use. Scripts
have the advantage of reducing the amount of work required to generate data
quickly.

13.3.2 Sequences in Spreadsheets
One way to generate a sequence is with a spreadsheet. Common spread-
sheet applications include Microsoft Excel, Apple Numbers, and Google Drive
Sheets. A spreadsheet essentially starts as a giant blank table with rows and
columns. The rows are numbered starting at 1 and the columns are labeled by
letters. (After the first 26 columns, columns are labeled by pairs of letters.)
Every cell in the table is identified by its column and row, called its address.
So cell B4 would be the cell in the fourth row of the second column.

Spreadsheets are designed to perform calculations based on the values of
other cells. Suppose that A1 contained the number 3 and A2 contained the
number 5. If you were to type in cell A3 the formula =A1+A2 (including the
equal sign), then A3 would show the value 8. However, it internally remembers
the formula. If you were to change the values in either A1 or A2, the value in A3
would automatically be updated. We can take advantage of these calculations
to compute the values of sequences.

For our first example, we look at how to use a spreadsheet to generate a
sequence defined explicitly.

Example 13.3.1 Use a spreadsheet to generate values for the sequence defined
by

xn = 3n
4n+ 5 , n = 0, 1, 2, . . . .

Solution. Our sequence is defined explicitly by the map n 7→ xn. In our
spreadsheet, we will use one column to define a subsequence of the values for
the index. Then we will define a second column for the values of the sequence.

We will make the first column, A, contain the values for the index. The first
entry in the column will be a label. So type n in the cell A1. Our first value
for the index i n = 0, so type 0 in cell A2. The next value will be n = 1, so we
type 1 in cell A3.

Now, it would be very tedious to type all of the values for the index once
entry at a time. We take advantage of technology to have the spreadsheet
apply a pattern to complete the rest of the column. Select the two cells we
have already created, A2 and A3. You should see a grab box, usually in the
bottom right corner. If you drag that box down the column and then let go,
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the spreadsheet will follow your pattern for all of the cells you select before
releasing. You can make this column of index values as long as you desire,
within the limits of the program you use.

We are now ready to create the column containing the values of the se-
quence. We start with a label for the column in B1, for example typing x_n.
The rest of the column needs to use the map

n 7→ xn = 3n
4n+ 5 .

The value of input for this map, the index, is in column A. We want the value
of the output for the map placed in column B. In cell B2, we want the output
based on an input from A2, so we type =(3*A2)/(4*A2+5).

We want to have this process repeated for the rest of the column, but we do
not want to type a formula for each cell. We want the software to fill the column
automatically. Notice that if you copy the formula from B2 and paste it into B3,
the formula is automatically adjusted to refer to A3 instead of A2. This type
of automatic modification of a formula is called relative addressing, where
a pasted formula uses the relative position of a calculation. In this case, the
relative position is to use the cell immediately to the left of the output.

Pasting the formula into every cell in the column is faster than typing a
formula in every cell, but it is still too much work. We let the spreadsheet
do all of the work by filling the remaining cells at once. We can do this by
repeating the process earlier. Select the cell with a valid formula in B2, and
you will again see the grab box in the corner. Click on the box and drag down
the column. When you release the selection, the formula will be filled into all
of the selected cells, adjusted to use relative addresses.

You now have two columns: the index in column A and the values in column
B. You can create a graph by selecting the two columns of data and inserting
a scatter plot. �

The second example illustrates how to use spreadsheet to compute the
values of a recursively defined sequence.

Example 13.3.2 Use a spreadsheet to generate values for the sequence defined
by

xn = 2.3xn−1(1− 0.1xn−1)
with an initial value x0 = 1.
Solution. We again want a column for the index values, which for conve-
nience we will put in column A. The same steps as in the previous example
apply. Put a label n in A1. Start with values 0 in A2 and 1 in A3. Use the filling
tool of the spreadsheet to extend the pattern for as far down the column as
you desire.

In the next column B, we will put the values of the sequence. Put the label
x_n in B1. Enter the initial value 1 in B2 since x0 = 1. For the rest of the
values in the column, we will use the recursive map,

xn−1 7→ xn = 2.3xn−1(1− 0.1xn−1).

In the table, the previous value xn−1 corresponds to that value in the cell
directly above the cell in question. Consequently, to compute x1, we select B3
and type =2.3*B2*(1-0.1*B2). The value of x1 should appear in the cell.

The rest of the column can be calculated by selecting B3, where we just
typed the formula, and using the applications fill down feature. Notice that if
you change the value for the initial condition in B2, every subsequent entry in
the column is automatically updated. If you create a graph using columns A
and B, the graph also is updated whenever the initial value is updated. �
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The final example illustrates using parameters in our calculations.

Example 13.3.3 Use a spreadsheet to generate values for an arbitrary arith-
metic sequence defined by

xn = xn−1 + β

with an initial value x0 = a, where a and β are parameters. Include the explicit
and recursive calculations side-by-side in the table.
Solution. When we have parameters, we need to use part of our table to enter
those values. You could put them anywhere in the table that is convenient.
We will put them to the left of the generated table. There are two parameters:
β and a. In cell A1, type the label beta. Then enter a value in the neighboring
cell B1 such as 3 for β = 3. In cell A2, type the label a. Then enter a value in
the neighboring cell B2 such as 8 for a = 8. The labels are primarily for our
convenience to remember the meaning of the parameter values.

The parameters occupy part of the first two columns. You could start the
remainder of your table below the parameters, but I find it more convenient to
keep values in their own columns. We will skip column C to create a gap between
our parameters and our sequence table. Column D will have the index values,
column E will have the explicitly computed sequence values, and column F will
have the recursively computed sequence values. Start by putting the labels in
the first row. You might use explicit in E1 and recursive in E2.

Create the values for the index in column D in the same way as described
above. The explicit formula for our arithmetic sequence is given by

n 7→ xn = a+ βn.

In the table, the index n is always found using relative table location. That
is, the index used in E2 will be found to the left in D2. The values for the
parameters, however, will always be found in the same table positions.

Our parameters need to use absolute addresses, which spreadsheet indi-
cate by putting a dollar sign in front of the column and row. To create the
formula in E2, we will type $B$1 to represent β and $B$2 to represent a. This
means our spreadsheet entry in E2 is $B$2+$B$1*D2. If you copy and paste this
into E3, you should see that only the cell representing the index is updated to
$B$2+$B$1*D3. Selecting one of these cells and filling the rest of the column
will finish generating the explicitly calculated values.

To create the column with recursively calculated values, we start by putting
the initial value in F2. Because that is our parameter a, stored in B2, we enter
the simple formula =$B$2 to use that initial value. To apply the recursive
relation

xn−1 7→ xn = xn−1 + β,

we enter =F2+$B$1 in F3. The rest of the column can be automatically filled
with this formula.

If you did this correctly, you should see that the explicit and recursive
columns contain the same values even though they were calculated in different
ways. �

13.3.3 Computer Programming
Spreadsheets are useful, but typing a script can be even more efficient. In a
spreadsheet, the use of cell references is a little awkward. There are some ad-
vanced techniques where you can reference cells by names instead of reference.
However, if you want to adjust the size of your table and change the number
of rows, you essentially need to repeat the dragging and filling steps.
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Writing computer scripts in a programming language is one of the most effi-
cient approaches. A free online tool called SageMath uses a scripting language
based on the Python programming language. The online version of this text
has interactive cells where you can try the scripts directly. Otherwise, you can
use the following website and type the scripts: https://sagecell.sagemath.org/.

The idea of a scripting language is that the computer will store values in
memory associated with names of your choosing. You can includes commands
in your script to display the values or even to create graphs. To create a
sequence of values, there are two fundamental ideas to understand: memory
assignment and looping.

First is the idea of memory assignment. In a script, we tell the computer
to perform a computation and then to store the result somewhere in memory.
That memory location is assigned a variable name. The pattern for this step
is the form name = calculation, where name is replaced by whatever name
you want associated with the memory and calculation is replaced by the
expression used in the calculation. The calculation can use variable names for
any memory previously saved.

Below is a very short script. It will store a value of 3 in memory associated
with the name x. It will then calculate x2− 5x and store the result in memory
associated with the name y. Finally, it will show the values of x and y as
results. You will notice extra lines that begin with the # symbol. These are
called comments and the script ignores them. We use comments in scripts to
remind ourselves or to explain to others what is happening.

# Store the value for x
x = 3
# Calculate x^2-5x and store the value as y
y = x^2 - 5*x
# Show the results
show(x,y)

3
-6

For a sequence, we repeat the same process of calculation many times. Re-
peating a computation is called a loop. In a script, a loop is usually associated
with a variable (a named memory location) that is associated with a given list
of values. The basic scripting pattern in Python and Sagemath to repeat a
computation for each value in a list is as follows.

for name in list:
repeated block

The name is replaced by whatever variable name you want for the associated
memory location. The list is replaced by a list of values that will be used
for name. The repeated block is a collection of scripting commands, indented
exactly four spaces to the right of the for statement. The script will take the
values from the list, one at a time and in order, and will then go through the
repeated block immediately after the value has been placed in the memory
associated with name.

In Python or SageMath, we create a list of consecutive integers using the
range function. The command range(integer), where integer is replaced by
any expression representing an integer, creates a list of consecutive integers
starting at 0 and ending at the integer before the integer used. For example,
range(5) creates the list (0, 1, 2, 3, 4) and range(3) creates the list (0, 1, 2).
The following two scripts are equivalent, but the looped version is much more

https://sagecell.sagemath.org/
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efficient.

# Unlooped
n=0
x=3*n+1
show(n)
show(x)
n=1
x=3*n+1
show(n)
show(x)
n=2
x=3*n+1
show(n)
show(x)

# Looped
for n in range (3):

x=3*n+1
show(n)
show(x)

We are almost ready to create a script that generates a table of values. The
last step is creating a table with two values on the same line. We can do this
with the print command and value formatting. In place of the show commands,
we will use print(format % (values)), with format being a format string and
values being a comma-separated collection of expressions to be formatted.
An integer uses format string %d while a decimal value (a floating-point) uses
format string %f. We can include a tab character using \t. Our improved
script to generate a table with twenty values is now given.

# Loop to calculate a table of values.
for n in range (20):

x=3*n+1
print("%d\t%f" % (n,x))

The script can be quickly modified to generate a table as large or small as
desired. If we want to create a graph of these sequence values, we need to create
a table in memory. SageMath expects a table to be graphed as a list of points.
We can modify our script to create an empty table before the loop, and then
add (append) the individual points one at a time in the loop. In SageMath,
a graphic is itself an object stored in memory, so we give it a name and then
show it. A scatterplot is created using the list_plot command, which has an
option to label the axes with a given list of names.

# Create an empty list named "dataPoints"
dataPoints = []
# Loop to calculate a table of values.
for n in range (20):

x=3*n+1
print("%d\t%f" % (n,x))
# Append the current point to our list.
# Each point is itself a list with two entries.
dataPoints.append( [n,x] )

# Create the scatter plot with labels on the axes
myGraph = list_plot(dataPoints , axes_labels =["$n$","$x_n$"])
# Show the resulting figure with given width/height
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show(myGraph , figsize =[4 ,3])

Once you have a script, such as the one above, you can just modify it for
a new problem. A table for any explicit sequence can be calculated using the
script above simply by modifying the first line in the repeated block to match
the explicit formula. More values can be generated by modifying the range
command. If the table is not wanted, just remove the print command.

To create a table for a recursive sequence, we need to make another modifi-
cation. A recursive sequence uses the previous value of a sequence to compute
the next value. In a script, we can use a memory assignment command using
the variable name in the expression and then storing the result back into the
original memory location. The old value is replaced by the new value.

The following script illustrates how to generate a table and a graph for a
recursively defined sequence with recurrence

xn = 1.05xn−1 − 10

and initial value x0 = 400.

# Create an empty list named "dataPoints"
dataPoints = []
# Set the initial value.
# We use the name "x" for the currently -stored sequence value
x = 400
# Loop to calculate a table of values.
for n in range (20):

# Because the loop starts at n=0, we print and append
data first.

print("%d\t%f" % (n,x))
dataPoints.append( [n,x] )
# Before we end the repeat block , we update for the next

value.
# The formula on the right uses the old value.
# The answer replaces what was in memory for the next

loop block
x=1.05*x-10

# Create the scatter plot with labels on the axes
myGraph = list_plot(dataPoints , axes_labels =["$n$","$x_n$"])
# Show the resulting figure with given width/height
show(myGraph , figsize =[4 ,3])

When we have parameters in a model, we just need to add a few memory
assignment commands at the beginning of the script. The following script is a
generalization of the previous script for a recursive model

xn = (1 + r)xn−1 − w

where r and w are parameters. When using variables in scripts, remember that
the symbols must exactly match. Uppercase and lowercase letters are not the
same—w and W are different.

# Assign parameters
r = 0.05
w = 10
# Create an empty list named "dataPoints"
dataPoints = []
# Set the initial value.
# We use the name "x" for the currently -stored sequence value



CHAPTER 13. SEQUENCES AS MODELS 570

x = 400
# Loop to calculate a table of values.
for n in range (20):

# Because the loop starts at n=0, we print and append
data first.

print("%d\t%f" % (n,x))
dataPoints.append( [n,x] )
# Before we end the repeat block , we update for the next

value.
# The formula on the right uses the old value.
# The answer replaces what was in memory for the next

loop block
x=(1+r)*x-w

# Create the scatter plot with labels on the axes
myGraph = list_plot(dataPoints , axes_labels =["$n$","$x_n$"])
# Show the resulting figure with given width/height
show(myGraph , figsize =[4 ,3])
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13.4 Dynamic Models Using Sequences
Overview. A dynamic model considers how quantities change in time. Se-
quences are often useful for such models. Many populations, including some
plants and animals, reproduce on an annual cycle. It thus makes sense to cen-
sus these populations on an annual basis so that the population is measured as
a sequence. Financial models, such as paying off a loan or receiving amortized
payments on a contract, involve interest accrual and periodic payments. In
these cases, the balance of the loan or fund is a sequence relative to the num-
ber of periods. Even for quantities that do not change at such regular periods,
we might take measurements at equal spacings for our own convenience. This
also will result in a naturally observed sequence.

This section focuses on the formulation and interpretation of models using
sequences. We often develop models by considering gain terms and loss terms.
For example, in population growth, gains include births and immigration; losses
include deaths and emigration. The development of a model involves creating
formulas that compute or approximate the size of these terms based on the
state of the system.

We will consider simple models that represent various rates of change. For
a population model, we might consider the rate of births or the rate of deaths.
For a financial model, we might consider the rate of interest or the rate of
payment. Finding simple but meaningful models for different rates allows us
to predict overall changes of the system. We will analyze the overall rate of
change to understand the behavior of the model.

13.4.1 Population Models
Populations are frequently modeled using sequences. Many population are
adapted to reproduce on an annual cycle, so it makes sense that such pop-
ulations might be censused on an annual basis. Even for populations that
reproduce throughout the year, it might still make sense to measure the pop-
ulation at the same time to measure year-over-year growth or decline. Fast
growing populations like bacteria or some species of insects might be measured
on even shorter time scales, such as hourly (bacteria) or weekly (insects). Se-
quences are appropriate in these circumstances because we are interested in
the population size at specific times rather than at all possible times.

There are many variables that determine how a population changes. Some
of these are unpredictable. Unpredictability or randomness is called stochas-
ticity. Populations are subject to environmental stochasticity and demo-
graphic stochasticity. Environmental effects might include temperature fluctu-
ations or variation in rainfall. Demographic stochasticity includes the random-
ness in number of offspring (e.g., seeds or eggs) or randomness in mortality or
the timing of development.

In spite of these random effects, it is often the case that the size of the pop-
ulation can be approximately predicted knowing the population of the previous
year. Recursive equations using projection functions provide the mathemati-
cal framework for modeling these sequences. We will use P as our population
sequence and will develop the projection function f that relates consecutive
values of the population as

Pn = f(Pn−1).

Population sizes change because individuals are entering and leaving the
population. Growth in the population includes births as well as immigration.
Decline in the population includes deaths as well as emigration. The quantities
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measuring the number of births, deaths, and migration events per year are rates
of change. For the state of our system, we include a variable representing the
size of the population as well as a variable for each of the rates of change. In
a more complex model, we might have variables for the number of individuals
at different ages or stages of development. In principle, each state variable
corresponds to its own sequence.

For example, consider a population that only changes from births and
deaths. Let P be the size of the population, let B be the annual birth rate, and
let D be the annual death rate. These variables are each measured annually
and can be considered as sequences. Our index variable t will measure the time
in years. The population sequence will satisfy a recurrence relation

Pt+1 − Pt = Bt −Dt.

This equation simply states that the net change in the population, called the
forward difference ∆Pt = Pt+1 − Pt, is equal to the number of births (a
gain) minus the number of deaths (a loss). We usually consider a reference
time at t = 0 so that the first value in the sequence would be P0.

We will explore a variety of models based on different assumptions for how
the rate of births and deaths relate to the size of the population.

Constant Rates. The simplest model would be that the numbers of births
and deaths are constant values every year. For such a model, the forward
difference is also constant, ∆Pt = ∆P = B − D. The resulting recursive
equation becomes

Pt+1 = Pt + ∆P ,

which we recognize as an arithmetic sequence with an increment ∆P . Using
Theorem 13.2.8, we know the explicit formula for this sequence is given by

Pt = P0 + ∆P · t.

Such a population either increases linearly (if B > D), decreases linearly (if
B < D), or is constant (if B = D).

Example 13.4.1 This example considers a dynamic graph for constant birth
and death rates. There are sliders for the birth rate B and the death rate D
and the initial population is also adjustable. The resulting population sequence
automatically updates to visualize the result. Such a model gives an arithmetic
(linear) sequence.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 13.4.2
�

Constant Per Capita Rates. Of course, it is not realistic to think that a
population has the same number of births, regardless of how large the popula-
tion is. Rather, we would expect that the population will see more births when
the size of the population itself is larger. The simplest model for this would be
that the number of births is proportional to the size of the population. That is,
we expect that there is a parameter b so that B = b ·P . This parameter is the
proportionality constant and is called the per capita birth rate. The phrase
“per capita” literally means per head. If we rewrote the equation relating B
and P as

b = B

P
,
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we see that the model is really saying that the total number of births in a
year divided by the population that year is always the same constant. In a
similar way, we might expect the number of deaths to be proportional to the
population size,

D = d · P,
where d is the per capita death rate.

Using constant per capita birth and death rates leads to a new model for
the population. The recurrence relation is defined by

∆Pt = b · Pt − d · Pt = (b− d)Pt.

The recursive equation becomes

Pt+1 = Pt + (b− d)Pt = (1 + b− d)Pt.

We recognize this as the equation of a geometric sequence with the ratio ρ =
1+b−d. Using Theorem 13.2.10, we know the explicit formula for this sequence
is given by

Pt = P0 · (1 + b− d)t.
This form of growth for the sequence is often called Malthusian growth.
Example 13.4.3 This example considers a dynamic graph for constant per
capita birth and death rates. There are sliders for the per capita birth rate b
and the per capita death rate d. The initial population is also adjustable. The
resulting population sequence automatically updates to visualize the result.
Such a model gives a geometric (exponential) sequence.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 13.4.4
�

In many circumstances, we may not be as interested in the individual values
of the per capita birth and death rates b and d as we are in their difference
b−d. This quantity is called the net per capita growth rate and is frequently
denoted by the symbol r = b − d. In that case, the explicit formula for the
Malthusian growth model can be rewritten in the same form as compounded
interest,

Pt = P0 · (1 + r)t.
That is, we can interpret r as the decimal value corresponding to percent
change in the population year-over-year.

Example 13.4.5 Suppose a population of 2500 has 400 births and 250 deaths
in the year. Compare the model for constant births and death rates with the
model for constant per capita birth and death rates over the next five years.
Solution. The model for constant birth and death rates assumes that B =
400 and D = 250 are constants. The recursive equation for the population is
then given by

Pt+1 = Pt + 400− 250 = Pt + 150.

In this model, the population increases by a net number of 150 individuals per
year with an explicit formula given by

Pt = 2500 + 150t.

The model for constant per capita birth and death rates assumes the ratios
b = B

P = 400
2500 = 0.16 and d = D

P = 250
2500 = 0.1 are constants. The recursive
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equation for this model becomes

Pt+1 = Pt + 0.16Pt − 0.1Pt = 1.06Pt,

with a corresponding explicit formula given by

Pt = 2500 · 1.06t.

The table and figure below illustrate the growth of these two models. In
the table for the Malthusian model (geometric growth), the model predicts
non-integer values which I have shown to two decimal places. Of course, a
population itself must be integer-valued. When working with mathematical
models, we will leave the values exact until we are ready to interpret.

Year Linear Geometric
t Pt = 2500 + 150t Pt = 2500 · 1.06t

0 2500 2500
1 2650 2650
2 2800 2809
3 2950 2977.54
4 3100 3156.19
5 3250 3345.56

0 1 2 3 4 5
2,000
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3,000

3,500
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t
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linear
geometric

The arithmetic and geometric models agree at the initial value and after the
first year. But from that point, the geometric model steadily grows faster than
the arithmetic model. The geometric model grows each year by the same per-
centage. Since the population itself is getting larger, the increment of growth
is going to be larger each year. The two models diverge from one another even
more dramatically as time progresses.
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�

13.4.2 Other Models Using Sequences
The mathematical models introduced for sequences of populations can be ap-
plied and adapted to other situations. The ideas of per capita growth rates
are mathematically the same as those for percentage growth or decay, such as
appear in compounded interest investment problems. Any situation where a
quantity increases or decreases by a fixed amount or by a fixed proportion or
percentage will be modeled using a sequence defined in a similar way.

Example 13.4.6 Car Loan. Suppose you want to buy a car and obtain a
loan for $10000 that includes an annual interest rate of 3%. A bank charges
interest in a way that the annual percentage rate is divided equally into the
months. The monthly rate of 3

12% applies to the remaining balance of your
loan. If you make a monthly payment of $250, find a model for your remaining
loan balance. Use your model to determine when you pay off the loan and the
total cost of the loan.
Solution. Start by identifying the relevant variables. Our main concern is
the outstanding balance on the loan. Let us use the variable B to represent
our sequence. The initial balance on the loan is B0 = 10000.

Next, we identify all sources to changes in the balance. A payment P on the
loan reduces the loan balance. Interest I on the loan causes the loan balance
to increase. If t represents the number of months since the loan began, then
we have a recurrence relation describing how the loan changes,

∆Bt = Bt+1 −Bt = −Pt + It.

Solving for the new balance gives the recursive equation for the loan balance

Bt+1 = Bt − Pt + It.

For the car loan, the monthly payment is a constant, Pt = P = 250. The
interest accrued each month is proportional to and depends on the current
balance, It = 0.0025Bt.

The model for our loan balance is given by the recursive equation and the
initial value:

Bt+1 = Bt − 250 + 0.0025Bt,
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B0 = 10000.

Our model is not arithmetic or geometric but a combination of the two. The
projection function, f : Bt 7→ Bt+1, is the linear function defined by

f(x) = x− 250 + 0.0025x = 1.0025x− 250.

The values for the loan balance are plotted below, along with a table of values
showing when the loan would be paid off.

t Bt
37 1289.212365
38 1042.435396
39 795.041485
40 547.029088
41 298.396661
42 49.142653
43 -200.734491
44 -451.236327
45 -702.364418

0 10 20 30 40
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1,000
2,000
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The computer calculations show that the last month in which there is a
positive balance is month 42. That month, the remaining balance is $49.14,
which we will pay off completely in month 43. The model continues to use the
same rule even after the loan is paid. This explains why the model predicts a
negative balance.

We can compute the total amount paid for this loan. For 42 months, we
paid $250.00, followed by a final payment of $49.14. The total cost of the loan
is

42(250) + 49.14 = 10549.14.

Because the original cost of the car was $10000, we paid $549.14 in interest.
�

Another example that follows similar dynamics is in mixing solutions.

Example 13.4.7 Mixing Solutions. Suppose that you have 2 liters of
salt water that initially has 200 grams salt. You pour out 0.5 liters from your
bottle, replace it with a solution of pure water, and then shake well. This is
repeated, making your bottle less and less salty. Use a sequence to describe
the saltiness of the solution as a function of the number of dilutions.
Solution. Start by identifying the variables. We are interested in the amount
of salt in the water. Use S as the variable representing the sequence of total
salt (grams) in the water. The concentration C would be S/2 (grams per liter).
The initial value is S0 = 200. Let n be the variable representing the number
of dilutions performed, which we will use as our index for the sequence.

Next, identify what causes the change in the solution. Every dilution, a
fraction of the solution is removed, 0.5

2 , along with all salt in that volume.
Since the bottle is well-mixed, we have a fourth of the salt remaining taken out
of the bottle. The replacement water is pure, so no new salt is added back in.

Based on our discussion, the recursive model for the salt includes only a
single loss term:

Sn = Sn−1 − 0.25Sn−1 = 0.75Sn−1,

S0 = 200.
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Thus our model is a simple geometric sequence. We have an explicit solution
using Theorem 13.2.10:

Sn = 200 · 0.75n.

�

13.4.3 Nonlinear Projection Functions
Much more interesting (and surprising) dynamics occur when a sequence is
defined by a nonlinear projection function. To motivate one example where
this might occur, we return to the ideas of per capita growth for a population.

Recall that our earlier discussion used the idea that the net per capita
growth rate was a constant and did not depend on the population size. That
is, the number of births and deaths were simply proportional to the total
population size. However, this is ultimately not physically possible. When a
population gets too large, resources are limited and the population will even-
tually be unable to sustain such rapid growth. Either the per capita birth rate
will decrease or the per capita death rate will increase (or both). Either way,
the net per capita growth rate r = b − d will need to decrease as a function
of population size. Once we say that one variable decreases with respect to
another variable, we can use a mathematical model to capture that idea.

In this case, we want r to be a decreasing function of the population P ,
P 7→ r. The simplest such model would be a linear function with a negative
slope. If we had enough data, we could plot points (P, r) and find a line of
best fit. For now, we will use a parametrized model,

r(P ) = r0 − αP,

where the parameter r0 is called the intrinsic net per capita growth rate
(because that is the growth rate for a very small population before resources
are limited) and α > 0 is the magnitude of the negative slope.

A better parametrization uses the formula for a line given both the inter-
cepts, (P, r) = (0, r0) and (P, r) = (K, 0), so that

r(P ) = r0
(
1− P

K

)
.

The value K is called the carrying capacity because for P > K, the growth
rate will be negative (net decrease in population). That is, for any popula-
tion greater than K, the available resources are inadequate to support such a
population.

The final population growth model is based on the model we just found.
Recall that a population grows with a recursive model

Pt+1 = Pt + rPt,

where r is the net per capita growth rate. Using the model given above for
r = r0(1− P

K ), we construct a nonlinear model for the population sequence,

Pt+1 = Pt + r0
(
1− Pt

K

)
Pt = (1 + r0)Pt −

r0
K
P 2
t .

This model is called the discrete logistic model. The model only makes
sense when the parameter r0 is in the interval r0 ∈ (0, 3).

Different behaviors for the population arise, depending on the values of
the parameter r0. A Sage script is provided below that will generate plots of
the population sequence for values of the parameters that you specify. The
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following graphs were generated by Sage using an initial value P0 = 5 and
parameter values K = 100 (all plots) and r0 = 0.2, r0 = 1.8, r0 = 2.2 and
r0 = 2.6. In addition, a dynamic graph is given where you can adjust the
parameters using sliders.

# Set the parameter values
r0 = 0.2 # Change this number for different behavior
K = 100 # Change this number for carrying capacity

# Set the initial value
P = 5
# Create what is initially an empty list
data = []
Tmax = 50 # Number of data points to create

# Use a loop repeating the balance update
for t in range(Tmax):

data.append( (t,P) )
# Now update the population
P = P + r0*P - r0/K*P^2

list_plot(data , frame=True ,
axes_labels =['time','population '])

(a) r = 0.2 (b) r = 1.8

(c) r = 2.2 (d) r = 2.6

Figure 13.4.8 Logistic growth with K = 100 with P0 = 5 and varying values
of r.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 13.4.9 Dynamic graph of the discrete logistic model with variable r
and P0.

13.4.4 Summary
• Sequences can be used to model any quantities that are observed at regu-

lar intervals, with populations and financial balances as typical examples.

• A common strategy for building a recurrence model is to add rates of
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gain and subtract rates of loss,

∆xt = xt+1 − xt = +Gains− Losses.

• For a population, common gain rates include births and immigration;
common loss rates include deaths and emigration.

• A per capita rate is the ratio of the total rate to the population size. It
represents the contribution toward the total rate for one individual. The
total rate equals the per capita rate times the population size.

• Finding models for individual rates or per capita rates in terms of the
population size allows us to formulate a recursive equation for the popula-
tion sequence. Simple examples are to assume constant rates or constant
per capita rates. More complex models might fit models for density-
dependent per capita rates.

• We use computers to find values numerically for a sequence based on the
recursive equation. This might be through a spreadsheet or through a
scripting language like Python. These data allow us to create graphs.

13.4.5 Exercises
1. A population of annual plants has all plants die every year. Before dying,

each plant releases 20 seeds which will grow the following year.
(a) Find a recurrence equation for the population.

(b) If P0 = 10, find P1 and P2 by hand.

(c) Find an explicit formula for the sequence Pt.
2. A population has constant per capita birth and death rates. When the

population is P = 1000, there are B = 200 births per year and D = 250
deaths per year. In addition, this population has a constant immigration
rate of I = 300 individuals per year.
(a) Find a recurrence equation for the population.

(b) If P0 = 1000, find P1 and P2 by hand.

(c) Use a computer to generate a plot of the sequence (t, Pt) for t =
0, . . . , 50.

3. You put $500 in a bank which pays 1% interest, compounded annually.
(a) Find a recurrence equation for the balance B of your account. What

is the initial value, B0?

(b) Compute B1 and B2 by hand.

(c) Find an explicit formula for the sequence Bt.
4. You inherit $50,000, which you immediately invest. Your investment fund

guarantees an annual interest payment of 2%, compounded annually. You
withdraw $2,000 each year to spend.
(a) Find a recurrence equation for the balance of your fund F . What is

the initial value, F0?

(b) Compute F1 and F2 by hand.

(c) Use a computer to generate a table and a plot of the sequence (t, Ft)
for t = 0, . . . , 40.
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(d) How long will the fund last? What was the total value of the inher-
itance?

5. You purchase a house with a home loan of $350,000 with an annual in-
terest rate of 4%, which accrues monthly. You choose to make a monthly
payment of $1,500.
(a) Find a recurrence equation for the balance of your loan L. What is

the initial value, L0?

(b) Compute L1 and L2 by hand.

(c) Use a computer to generate a table and a plot of the sequence (t, Lt)
for a long enough period to determine when the loan is completely
paid.

(d) When will you pay off the house loan? What will have been your
total cost? How much interest will you have paid?

(e) If you increase the monthly payments to $1,600, when will you pay
off the loan? How much interest will you have paid?

6. A pond with 100,000 gallons of water has a stream flowing in and out at
a rate of 5,000 gallons per day. One day, the stream flowing in is polluted
with a chemical of 200 grams per gallon. Assuming that the pond mixes
the water quickly, develop a model for the amount of chemical in the pond
as a daily sequence.
(a) State your variables.

(b) What is your model for how much chemical enters the pond each
day?

(c) What is your model for how much chemical leaves the pond each
day?

(d) State your recurrence relation and the initial value for your sequence.
Determine the resulting recursive equation.

(e) Find an explicit formula for your sequence. How much chemical is
in the pond after 30 days?
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A.1 Numbers, Sets and Arithmetic
Numbers started as a conceptual way to quantify count objects. Later, num-
bers were used to measure quantities that were extensive, such as the geomet-
ric ideas of length, area and volume. Arithmetic was developed to provide a
numeric representation of physical operations. Combining two quantities or
collections corresponds to addition. Repeated addition corresponds to multi-
plication. Repeated multiplication corresponds to powers or exponents. As
these ideas developed, inverse operations were invented to help solve problems,
including subtraction, division and roots. However, the introduction of each
inverse operation required an extension of the idea of number.

A.1.1 Integers, Rational Numbers and Real Numbers
Numbers conceptually begin with the natural numbers, which are the num-
bers 1, 2, 3, . . .. The set of all natural numbers is represented by the symbol N:

N = {1, 2, 3, . . .}.

If we include the number 0, we get all possible counting numbers, represented
by the symbol N0:

N0 = {0, 1, 2, 3, . . .}.

Both of these sets have an infinite number of elements because there is no
upper bound (i.e., for any number you find, there is always a number greater).

The natural and counting numbers are used most basically for ordering
and counting elements in sets or collections of objects. For example, consider
a set consisting of the basic suits of a standard deck of playing cards, namely
hearts, diamonds, spades, and clubs, {♥,♦,♠,♣}. We can count the number
of elements by associating each element in the set with one of the natural
numbers in order:

1 7→ ♥,
2 7→ ♦,
3 7→ ♠,
4 7→ ♣.

This ordering (which is admittedly arbitrary) allows us to refer to the first,
second, third or fourth element in our set. When numbers are used to order
elements of a set in this way, we are thinking of numbers as ordinal numbers.
Because the greatest number used in our ordering was 4, we can say that the
number of elements in our set is 4. When numbers are used to count the number
of elements in a set, we are thinking of numbers as cardinal numbers. Both
of these ideas can be extended to sets with infinities of elements. It is not in
the scope of this text to deal with these issues, but they are typically addressed
in more general discussions of set theory.

However, the elementary ideas of the arithmetic operations of addition and
multiplication are often introduced using the ideas of counting. Addition is first
defined by joining sets of known size and asking how many elements are in the
combined set. For example, 3+5 is interpreted in this context as joining a set of
three elements, say {a, b, c}, to another set of five elements, say {z, y, x, w, v},
to get a combined set {a, b, c, v, w, x, y, z}. The size of this new set is 8. The
equation

3 + 5 = 8
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is interpreted in this context, namely that “the number of elements in a set
formed by joining a set with 3 elements and a set with 5 elements” (3+5)
is the same as “the number of elements as a set formed from 8 elements” (8).
Multiplication is first defined as adding a certain number of groups of the same
size. For example, 3× 5 is interpreted as creating a set consisting of 3 groups
of 5 elements, which is a new set with 15 elements. This leads to the equation

3× 5 = 15.

Once the arithmetic operations of addition and multiplication are intro-
duced, inverse operations of subtraction and division soon follow. Subtraction
corresponds to taking away from a set with 5− 3 being interpreted as starting
with a set of 5 elements and removing a subset of 3 elements, so that

5− 3 = 2.

Division corresponds to determining how many groups of a certain size are in
a particular set, with 12÷ 4 counting the number of groups of size 4 that can
be formed from a set of size 12, so that

12÷ 4 = 3.

Inverse operations have the property that when performed consecutively,
the original value remains unchanged. That is, a + b − b = a for any values
of a and b because you join and then remove a set of size b to a set of size a,
resulting in a set of the original size a. Similarly, a× b÷ b = a because the set
a× b has a groups of sets with b elements.

The problem that arises is that using only natural or counting numbers,
there are expressions that have no valid interpretation. For example, the in-
verse property suggests that 3 − 5 + 5 = 3, but the intermediate calculation
3−5 does not make sense using counting numbers because there is no interpre-
tation for how to remove 5 elements from a set with only 3 elements. Similarly,
although the inverse property suggests 5 ÷ 3 × 3 = 5, the intermediate calcu-
lation 5 ÷ 3 has no whole number interpretation because grouping 5 into sets
of size 3 results in one group of 3 and another group of 2 (the remainder).

In order to resolve this complication, the idea of number itself is extended.
Negative numbers resolve the challenge for subtraction. The set of all integers,
also called the whole numbers, introduces both positive and negative counting
numbers and is represented by the symbol Z:

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

Although we originally thought of subtraction as the inverse operation of
addition, the introduction of negative numbers motivated the idea of a number
itself having and inverse with respect to addition, or an additive inverse.
Every positive and negative number of the same size are inverses because the
add to zero,

a+−a = 0.

With additive inverses, the concept of subtraction is equivalent to addition by
an additive inverse,

a− b = a+−b.

The advantage of this perspective is that it makes clear how to subtract nega-
tive numbers — subtracting a negative number is defined as adding the inverse
of the negative number, or adding the corresponding positive number.
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Just as subtraction led to the development of negative numbers, division
motivates the need to extend numbers from just the integers to rational num-
bers. As soon as we leave the world of whole numbers, our sense of arithmetic
actually changes from counting elements in a set to measuring divisible quan-
tities (like length or volume). The standard representation of numbers on a
number line illustrates this directly by thinking of numbers as measuring a
directed length from an origin (the number 0). There always must be a unit
length which corresponds to the distance between 0 and 1. Positive numbers
are to the right and negative numbers are to the left.

A new interpretation of number requires a new interpretation of arithmetic.
Addition of numbers corresponds to combining lengths, with 3+5 meaning we
find the number which is found by starting at 0 (the origin), moving three units
to the right (to find 3) and then moving five more units to the right (to add 5).
Since this the same as the number 8 (starting at 0 and moving 8 units to the
right), we know 3+5=8. Multiplication (by integers) will still mean repeated
addition, just repeating the displacement interpretation of addition instead of
groups.

-3 -2 -1 0 1 2 3

1

Figure A.1.1 The integers are placed on the real number line with a spacing
defined by the unit length.

If we consider the property of consecutive inverse operations, we know that
we should get 1 ÷ 5 × 5 = 1. So if we think about the intermediate value
a = 1 ÷ 5 (which is not an integer), we can see that it is a value such that
a × 5 = 1. In the geometric interpretation, a is a length such that when it is
repeated five times, we recover the unit length. This is the unit fraction 1

5 ,
which is also called the multiplicative inverse (or reciprocal) of the integer
5. Other fractions have a similar interpretation, such as 3 ÷ 4 = 3

4 (dividing
three into fourths) being the length such that when it is repeated four times is
equivalent to three units.
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Figure A.1.2 Rational numbers are placed on the real number line using a
fractional unit length based on the denominator.

Just as subtraction was found (or defined) to be equivalent to addition by an
additive inverse, division is also equivalent to multiplication by a multiplicative
inverse. Given any non-zero number a 6= 0, the multiplicative inverse ÷a is
that number so that

a · ÷a = 1.

Then division a÷ b is defined by

a÷ b = a · ÷b.

This process allows us to define the rational numbers Q. The rational num-
bers are formed by considering all of the integers, their multiplicative inverses,
and all sums and products of those values. It is most commonly defined by

Q = {p÷ q : p ∈ Z, q ∈ N}.
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That is, it consists of all fractions defined by integers.
My goal is not to provide an exhaustive explanation of arithmetic and these

representations. That would require, for example, an explanation of what it
means to multiply and divide negative numbers. However, let it suffice to say
that multiplying two negative numbers together will be a positive number while
multiplying a positive number and a negative number will result in a negative
number.

Other mathematical operations introduce the need for even more extensions
to the idea of number. For example, the mathematical operation of squaring a
number has an inverse operation of the square root. The square of a rational
number is still a rational number, but the square root of a rational number
is not necessarily rational. The most famous historical example is

√
2, which

was proved not to be a rational number (according to legend) by the Greek
philosopher Pythagoras. The existence of irrational numbers was a closely
guarded secret by his followers, the Pythagoreans. The set of real numbers
is the set of both rational and irrational numbers and is represented by the
symbol R. Complex numbers extend the real numbers to include square roots
of negative numbers by introducing i =

√
−1 and is defined as

C = {a+ bi : a, b ∈ R}.

Every real number a ∈ R is also complex with b = 0.
We will be working almost exclusively with the real numbers. So we very

often think in terms of the real number line, which is a continuous and con-
nected curve. Every point on the number line corresponds to a particular real
number. Locations correspond to rational numbers if they can be exactly rep-
resented using fractional units. An irrational number can never be exactly
represented using fractional units.

A.1.2 Sets and Intervals
A set is a mathematical collection of objects. The objects that are in the set
are called elements of the set. Set notation uses curly braces { and } with a
description of the elements that belong to the set. When the set has a finite
number of elements, we can just list them between the braces. Like other
mathematical objects, we can use symbols to represent the set in the same way
that variables can be represented by symbols.

Example A.1.3 The set that contains the odd digits could be written

O = {1, 3, 5, 7, 9}.

The set that contains the even digits could be written

E = {0, 2, 4, 6, 8}.

The set that contains the prime digits could be written

P = {2, 3, 5, 7}.

Note: The symbols (names) for these sets, O,E, P , are just used as examples.
We could have used any other symbols that might have been convenient. �

The symbol ∈ is a logical operator used to say that an element is in a set.
Using the example sets above, we would say 3 ∈ O (read as “3 is in O”) since
3 is an odd digit. But 3 6∈ E (read as “3 is not in E”).

Most useful sets can not be described by listing all of the elements. Instead,
we define sets according to a logical rule that describes when an element is in
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the set. Such sets start with what is called a universal set that classifies what
type of elements are being considered. For example, a set containing numbers
might have a universal set Z (only integers) or R (all real numbers). A typical
set would be defined with a statement like the following,

A = {x ∈ U : logical statement about x},

where A is the symbol for the set being defined, U is the universal set, x is a
symbol being used to represent an arbitrary element of U , and the statement
is how you decide if x ∈ A.

Example A.1.4 To define the set of all real numbers between -1 and 1, we
would write

A = {x ∈ R : −1 < x < 1}.

To define the set of positive real numbers, we would write

B = {x ∈ R : x > 0}.

�
We can combine sets to create new sets using unions and intersections.

Suppose that A and B represent any two sets. The union of the sets, written
A ∪ B, is the combination of sets that includes elements that are in at least
one of the sets:

A ∪B = {x : x ∈ A or x ∈ B}.

The intersection of the sets, written A ∩ B, is the combination of sets that
includes only elements that are in both of the sets, also thought of as the
overlap of the sets:

A ∩B = {x : x ∈ A and x ∈ B}.

Example A.1.5 Using the sets defined in the examples above, we have the
following statements. The union of O (odd digits) and P (prime digits) gives

O ∪ P = {1, 2, 3, 5, 7, 9},

which is the same as O ∪ {2}. The intersection of A (real numbers between -1
and 1) and B (positive real numbers) gives

A ∩B = {x ∈ R : 0 < x < 1}.

�
Because most sets being studied in calculus come from the real numbers,

the universal set is often not explicitly stated. So the following represent the
same set:

{x ∈ R : 1 < x < 3} = {x : 1 < x < 3}.

One of the most common type of sets in calculus is the interval. An
interval is a set of real numbers representing a connected segment of the real
number line. Intervals are defined by their end points. An open interval
does not include the end points while a closed interval does include the end
points. An open interval with end points a and b with a < b is represented by
the notation using round parentheses

(a, b) = {x : a < x < b}.



APPENDIX A. MATHEMATICS FOUNDATIONS 587

A closed interval with the same end points is represented by similar notation
using square brackets

[a, b] = {x : a ≤ x ≤ b}.

If only one end point is included, then the notation uses both parentheses and
brackets:

[a, b) = {x : a ≤ x < b},
(a, b] = {x : a < x ≤ b}.

A set that consists of disjoint intervals can be represented with interval
notation using unions. Consider, for example, the interval [1, 5] and remove
the two values 2 and 4. This is no longer a single interval but consists of three
disjoint intervals, namely [1, 2), (2, 4), and (4, 5]. We can write this set as a
union of the three intervals.

{x ∈ [1, 5] : x 6= 2 and x 6= 4} = [1, 2) ∪ (2, 4) ∪ (4, 5].

Notice how the set defined on the left uses curly brackets because the set is de-
fined using a rule, but the interval notation on the right does not include curly
brackets because the interval notation defines everything about the sets.

A.1.3 Algebra Properties
One of the guiding principles in interpreting arithmetic in different representa-
tions is that we expect the fundamental properties of arithmetic to be satisfied.
These include the commutative and associative properties of addition and mul-
tiplication and the distributive properties of multiplication over addition. That
is, for every system of numbers, we expect the following properties to hold for
any numbers a, b, c.

Table A.1.6 Properties of arithmetic of real numbers.

Property Description
a+ b = b+ a Addition is Commutative
(a+ b) + c = a+ (b+ c) Addition is Associative
a+ 0 = a Zero is Additive Identity
a+−a = 0 Additive Inverse Property
−a = −1 · a Finding Additive Inverse
a · b = b · a Multiplication is Commutative
(a · b) · c = a · (b · c) Multiplication is Associative
a · 0 = 0 Multiplication by Zero
a · 1 = a One is Multiplicative Identity
a · ÷a = 1 Multiplicative Inverse Property
÷a = 1

a , a 6= 0 Finding Multiplicative Inverse
a · (b+ c) = a · b+ a · c Left Distributive Property
(a+ b) · c = a · c+ b · c Right Distributive Property

These basic rules establish the basic properties of arithmetic (and algebra)
over the real numbers. (Advanced mathematics considers other structures
that have some but not all of the same properties in a subject called abstract
algebra.) Other consequences of these properties are often used in algebra. We
list some of these below for reference.
Theorem A.1.7 If a · b = 0, then a = 0 or b = 0.
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Theorem A.1.8 (a+ b) · (c+ d) = ac+ ad+ bc+ bd (FOIL)
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A.2 Algebra Review

A.2.1 Lines and Linear Functions
Lines are perhaps the most important elementary geometric object. A line
captures the idea of following a given direction without turning. In ordinary
language, we sometimes think of a line as a smooth curve that we could draw.
Mathematically, a line would then be a straight line or a straight curve that
does not bend. Algebraically, we can define a line using an equation involv-
ing two variables. This section reviews the basic principles of the algebraic
properties of lines.

Definition A.2.1 General Equation of a Line. Every line in the (x, y)
plane can be described as the set of points (x, y) that satisfy an equation

Ax+By = C (A.2.1)

where A, B and C are constants. ♦
There are some special cases that describe horizontal and vertical lines.

The (x, y) plane uses x as the horizontal axis (independent variable) and y
as the vertical axis (dependent variable). So a horizontal line is a line where
the dependent variable is constant while a vertical line is a line where the
independent variable constant.

Definition A.2.2 Horizontal Line. A horizontal line in the (x, y) plane
is the set of points that satisfy an equation

y = k (A.2.2)

where k is a constant. ♦

Definition A.2.3 Vertical Line. A vertical line in the (x, y) plane is the
set of points that satisfy an equation

x = h (A.2.3)

where h is a constant. ♦
All other lines have an equation that involves both variables. We often

wish to think of the line as describing the dependent variable as a function of
the independent variable. These equations involve the calculation of the slope,
which represents a rate (or ratio) of change.

Definition A.2.4 Slope as Rate of Change. Given any two points (x1, y1)
and (x2, y2) on a non-vertical line, the change in the dependent variable ∆y =
y2−y1 is proportional to the change in the independent variable ∆x = x2−x1,
written ∆y = m ·∆x. The proportionality constant m is called the slope of
the line, calculated as the ratio of changes (rate of change)

m = ∆y
∆x = y2 − y1

x2 − x1
. (A.2.4)

♦
Knowing the slope and one point is enough to quickly find an equation of

a line.
Definition A.2.5 Point–Slope Equation of Line. Given that a line has
slope m and passes through a point (x, y) = (h, k), every point on the line
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satisfies the equation
y = m (x− h) + k. (A.2.5)

We interpret k as the starting value for y and the expression ∆y = m (x − h)
as the change in y given the change in x, ∆x = x− h. ♦

A special case of the point–slope equation of the line occurs when the point
is on the y-axis or, in other words, is a y-intercept.

Definition A.2.6 Slope–Intercept Equation of Line. Given that a line
has slope m and passes through a y-intercept (x, y) = (0, b), every point on the
line satisfies the equation

y = mx+ b. (A.2.6)

♦

Remark A.2.7 Preparatory mathematics courses often emphasize the slope–intercept
equation of a line as if it were the most important. However, the point–slope
equation is the preferred equation to use in almost every circumstance.

Another special case of the point–slope equation of a line is when we know
the slope and the x-intercept.

Definition A.2.8 Slope and X-Intercept Equation of Line. Given that
a line has slopem and passes through an x-intercept (x, y) = (a, 0), every point
on the line satisfies the equation

y = m(x− a).. (A.2.7)

♦

A.2.2 Quadratic Polynomials
Definition A.2.9 A quadratic polynomial in a variable x is an algebraic
function that is equal to a formula of the form

f(x) = ax2 + bx+ c, (A.2.8)

where a, b and c are constants called coefficients. ♦
The graph of a quadratic function, y = ax2 + bx+ c, is a parabola. Such a

parabola has a mirror symmetry across a vertical line that passes through its
vertex x = − b

2a . Depending on whether the vertex is above, on or below the
x-axis and whether the parabola opens up or down, the graph can cross the
x-axis twice, once or never. The location of these points are called x-intercepts,
roots or zeros of the function. The values of the roots can always be found
using the (((Unresolved xref, reference "thm-quadratic-formula"; check spelling
or use "provisional" attribute)))quadratic formula.

Zeros are closely related to factoring. If we know the zeros, then we can
immediately rewrite the polynomial in a factored form. On the other hand,
if we know the factors, then we can quickly solve for the zeros without using
the quadratic formula. This is a consequence of the fundamental properties of
numbers in Theorem Theorem A.1.7.
Theorem A.2.10 Factor–Root Theorem for Quadratics. A quadratic
function f(x) = ax2 + bx+ c with real roots x = r and x = s (r = s is possible)
is equal to the factored equation

f(x) = a(x− r)(x− s). (A.2.9)
A quadratic polynomial that has complex roots is called irreducible be-

cause it can not be rewritten in a factored form involving only real roots.
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There are some tricks to factoring that can be useful to know. Factoring
is the reverse process of multiplying by distribution, so we start by noticing
what happens when you multiply out two simple factors:

(x+ a)(x+ b) = x2 + (a+ b)x+ ab.

Notice that the coefficient of x is the sum a + b and the constant term is the
product ab. When trying to factor a quadratic, look for numbers that multiply
to give the product term and add to give the coefficient of x. This is often a
matter of trial and error.

Knowing one root x = r of a quadratic f(x) = ax2 +bx+c so that f(r) = 0,
we know that x− r is a factor. The other factor can be determined easily.

Theorem A.2.11 Using Roots to Factor Quadratics. Suppose that x = r
is a root of f(x) = ax2 + bx+ c so that f(r) = 0. Then

f(x) = (x− r)(ax+ d) (A.2.10)

where d = b+ ar = −c/r.
Synthetic division is a procedure that works for quadratics as well as higher

order polynomials. This procedure uses a table that starts with the coefficients
on the first row. For a more thorough discussion for higher-order polynomials,
see Algorithm A.2.19.

Algorithm A.2.12 Synthetic Division (Quadratics). To divide a quadratic
polynomial f(x) = ax2 + bx + c by the factor x − r (proposed root x = r), we
will apply the following steps.

1. Create a table that will have three rows and three columns. The first row
will have the coefficients a, b and c in the three columns. The first entry
of the second row will always be 0. So the start of the table will look like
the following.

a b c

0

2. We finish a column, starting with the first column, by adding the values
from the first and second rows, which in this case gives a again.

a b c

0
a

3. We next update the second row of the next column by multiplying the most
recent value in the third row by the proposed root value r, which in this
case gives ar.

a b c

0 ar

a

4. Add the values in the second column to update the third row to define the
new coefficient d = ar + b (recall Theorem A.2.11) and multiply by r to
update the second row.

a b c

0 ar ar2 + br

a d = ar + b
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5. When we finish updating the third row by adding the values in the third
column, we discover that the last entry in the third row corresponds to
f(r) = ar2 + br + c.

a b c

0 ar ar2 + br

a d = ar + b f(r) = ar2 + br + c

Once the table is complete, we interpret the values in the third row as giving
coefficients of the factored polynomial along with the value of the polynomial at
x = r (called the remainder) and can write

f(x) = (x− r)(ax+ d) + f(r).

If f(r) = 0 (remainder is 0), then this is an actual factorization

f(x) = (x− r)(ax+ d).

Because synthetic division is quick, this can be a simple way to test for roots
and factor simultaneously.

Every quadratic can be rewritten in a form y = a(x− h)2 + k where (h, k)
is the vertex of the parabola and a is the leading coefficient and scaling factor.
The process of rewriting a quadratic y = ax2 + bx + c in this vertex form is
called completing the square. It is based on noticing what happens with
expanding the square of a binomial, (x + a)2 = x2 + 2ax + a2. The strategy
involves adding a term to form a perfect square and subtracting the same term
to guarantee the expression does not change.

Algorithm A.2.13 Completing the Square. A quadratic y = ax2 + bx+ c
can be rewritten in terms of its vertex by completing the following steps.

1. Factor the leading coefficient from the leading two terms

y = a(x2 + b

a
x) + c.

2. Think of the x term as being double half its value and add and subtract
the square of the half-value:

y = a
(
x2 + 2 b

2ax+ ( b2a )2 − ( b2a )2
)

+ c.

3. Recognize the square of a binomial, group those terms, and regroup the
remaining terms:

y = a
(

(x+ b

2a )2 − ( b2a )2
)

+ c = a(x+ b

2a )2 + −ab
2

4a2 + c.

4. Interpret the results: The vertex is (h, k) where h = − b
2a (because vertex

form uses (x − h)2) and k = − b2

4a + c. The leading coefficient a is a
scaling factor that determines the steepness of the parabola and whether
the parabola opens up (a > 0) or down (a < 0).

Example A.2.14 Complete the square for 3x2 − 4x+ 1.
Solution.
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1. Group the non-constant terms and factor out the leading coefficient.

3x2 − 4x+ 1 = (3x2 − 4x) + 1

= 3(x2 − 4
3x) + 1

2. Recognize the coefficient − 4
3 as double − 2

3 and use this to complete the
square.

3x2 − 4x+ 1 = 3
(
x2 + 2 · −2

3 x
)

+ 1

= 3
(
x2 + 2 · −2

3 x+ (−2
3 )2 − (−2

3 )2
)

+ 1

= 3
(
x2 − 4

3x+ 4
9

)
− 3(4

9) + 1

= 3
(
x− 2

3

)2
− 4

3 + 1 = 3
(
x− 2

3

)2
− 1

3 .

3. Interpret the results as saying h = 2
3 (because the completed square is

always of the form (x−h)2) and k = − 1
3 . Thus the vertex of the parabola

is at ( 2
3 ,−

1
3 ). The leading coefficient a = 3 indicates that the parabola

opens up and is three times steeper than the standard parabola y = x2.

�

A.2.3 Polynomials
Linear and quadratic formulas are special cases of polynomials. This section
gives an overview of principles about polynomials that are likely to appear in
calculus. First, we introduce some basic definitions.

Definition A.2.15 Monomials. A monomial is an expression that is a
constant multiple of a variable raised to a non-negative integer power, axk,
where k = 0, 1, 2, 3, . . . and a ∈ R.

Examples include 4x2 (with a = 4 and k = 2), 1
3x

7 (with a = 1
3 and

k = 7) and 3 (where a = 3 and k = 0). The following are not monomials:
3
√
x = 3x1/2 (since not an integer power) and 3

x2 = 3x−2 since the power is a
negative integer. ♦

Definition A.2.16 Polynomials. An algebraic expression that can be
rewritten as a sum of monomials is called a polynomial. The monomials
are called the terms of the polynomial. The monomial with the highest power
is called the leading term and its power is called the degree of the polyno-
mial. The constant multiples in the monomials are called coefficients and the
coefficient in the leading term is called the leading coefficient.

We usually write a polynomial with terms ordered by decreasing powers,
called standard form. An abstract representation of a polynomial with degree
n is written

p(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0

where the symbols an, an−1, . . . , a0 represent the coefficients. A missing term
is represented by a coefficient zero. ♦

Example A.2.17 x4 − 2x2 + 3x + 1 is a polynomial with degree n = 4. The
coefficients are a4 = 1, a3 = 0 (since no x3 term), a2 = −2, a1 = 3 and a0 = 1.

2x2(3x + 1)(x − 2) is a polynomial, but must be expanded (multiply out)
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to find the coefficients.

2x2(3x+ 1)(x− 2) = 2x2(3x2 − 6x+ x− 2)
= 2x2(3x2 − 5x− 2)
= 6x4 − 10x3 − 4x2

We see that the polynomial has degree n = 4 and coefficients a4 = 6, a3 = −10,
a2 = −4 and a1 = a0 = 0. �

Every polynomial p(x) is a function whose domain is all real numbers
(−∞,∞). Values of x for which p(x) = 0 are called zeros or roots of the
polynomial. These roots are related to factors.

Theorem A.2.18 Root–Factor Theorem. Suppose p(x) is a polynomial
of degree n for which x = c is a root, p(c) = 0. Then p(x) can be written in a
factored form

p(x) = (x− c) · q(x)

where q(x) is a polynomial of degree n− 1.
Synthetic division is an algorithm that can both test if a value x = r is a

root and determine the coefficients of the factored polynomial q(x) at the same
time. Synthetic division for quadratic polynomials (degree n = 2) is a special
case of this process, described in Algorithm A.2.12.

Algorithm A.2.19 Synthetic Division. Given a polynomial p(x) = anx
n+

an−1x
n−1 + · · · + · · · + a1x + a0 and a test value x = c, synthetic division

is an algorithm for finding coefficients bn−1, . . . , b0 of a polynomial q(x) =
bn−1x

n−1 + · · ·+ b1x+ b0 and a remainder r such that

p(x) = (x− c)q(x) + r.

The remainder is also the value of the original polynomial at x = r, p(c) = r,
so that when x = c is a root, p(c) = 0 and p(x) factors as

p(x) = (x− c)q(x).

The coefficients for q(x) and the remainder are found using the steps below.
1. We will create a table with three rows and n + 1 columns. The first row

consists of the coefficients of p(x), using 0 for any skipped terms, ordered
by decreasing power. The first value of the second row is always 0. The
table will start as follows:

an an−1 · · · a1 a0
0 · · ·

· · ·

2. A column will always be completed (finding the third row) by adding the
values in the first and second rows.

3. Once a column is complete, the second row of the next column is found
by multiplying the previous value in the third row by the test value c.

4. Repeat these two steps until the table is complete. The third row of the
table gives the coefficients and remainder as follows:

an an−1 · · · a1 a0
0 c · bn−1 · · · c · b1 c · b0

bn−1 bn−2 · · · b0 r
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The interpretation is that

p(x) = (x− c)(bn−1x
n−1 + · · ·+ b1x+ b0) + r.

Example A.2.20 Use synthetic division with the polynomial p(x) = x3−6x+2
with the test value x = 2 and interpret the result.
Solution. Start by identifying the coefficients. Any missed terms have a
coefficient of zero,

p(x) = x3 + 0x2 +−6x+ 2.

We start the synthetic division table using the coefficients in the first row.

1 0 −6 2
0

We then finish filling the table. To find values in the second row, we use
the previous result in the third row and multiply by the test value 2. To find
the values in the third row, we add the values in the column. The first value
in the second row is always 0. The completed table is shown below.

1 0 −6 2
0 2 4 −4
1 2 −2 −2

Once the table is complete, we interpret the values in the third row as
coefficients and a remainder. The last value is the remainder, r = −2, and the
other values are the coefficients of a polynomial whose degree is one smaller
than the original, in this case n − 1 = 2. That is, the quotient polynomial is
q(x) = x2 + 2x− 2. The original polynomial can be written

p(x) = (x− 2)q(x) + r

x3 − 6x+ 2 = (x− 2)(x2 + 2x− 2) +−2

The non-zero remainder means that x− 2 is not a factor and also tells us that
p(2) = −2. �

How do we know which numbers to try? If you have access to a graph of
the polynomial, you should use the values for roots that you see. If you do not
have access to a graph, then you might be able to use the results of the Integer
Root Theorem or Rational Root Theorem so long as all of the coefficients of
your polynomial are integers.

Theorem A.2.21 Integer Root Theorem. If the coefficients of a polyno-
mial

p(x) = anx
n + · · ·+ a1x+ a0

has all integer coefficients, then the only possible integer roots are factors of
the constant coefficient a0.

Example A.2.22 The polynomial p(x) = x3 − 6x + 2 has only integer coef-
ficients and a constant coefficient a0 = 2. The only factors of a0 are ±1 and
±2. So the Integer Root Theorem guarantees that these four integers are the
only four numbers that we need to check if they are roots. A quick test of each
of those values (below) shows that p(x) has no integer roots. (Without the
theorem, we wouldn’t know how many points we had to check.)
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x p(x)
1 -3
-1 -5
2 -2
-2 6

�

Theorem A.2.23 Rational Root Theorem. If the coefficients of a poly-
nomial

p(x) = anx
n + · · ·+ a1x+ a0

has all integer coefficients, then a rational number x = r/s (where r and s are
integers) might be a root only if r is a factor of a0 and s is a factor of an.

The Integer Root Theorem is a special case of the Rational Root Theorem
where s = 1 (which is always a factor of an.

A.2.4 Absolute Value
The absolute value operation takes a number and finds its magnitude (or dis-
tance from zero). Because magnitude is a non-negative value and positive and
negative pairs are the same distance from zero, we often imagine that the role
of absolute value is to remove a negative sign, |−3| = 3. However, when a vari-
able is involved, a negative sign means finding the inverse of a value for which
we may not know if it is positive or negative. So it is incorrect to say that
| − x| = x (FALSE). The proper definition of absolute value uses a piecewise
formula.
Definition A.2.24 Absolute Value.

|x| =
{
x, x ≥ 0
−x, x < 0

♦
As a function, the graph of absolute value y = |x| gives two lines: y = x

when x ≥ 0 and y = −x when x < 0.
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Figure A.2.25 Graph of the absolute value, y = |x|
It is sometimes useful to take advantage of an identity between the square

root of a square and the absolute value. This is the source of the plus/minus
when solving an equation with a square.

Theorem A.2.26 √
x2 = |x|

Example A.2.27 Solve the equation x2 = 16.
Solution. Applying a square root to both sides of the equation, we then get
to use the absolute value identity.

√
x2 =

√
16 ⇔ |x| =

√
16 = 4

The source of plus/minus is that there are two numbers with magnitude 4,

x = ±4.

�
The absolute value splits nicely with multiplication (and division). How-

ever, addition of two values with opposite signs shows that absolute values do
not add: |3 + −4| = | − 1| 6= |3| + | − 4| = 7. Instead, we have an inequality
called the triangle inequality.

Theorem A.2.28 Properties of Absolute Values.

|a · b| = |a| · |b|∣∣∣a
b

∣∣∣ = |a|
|b|

The triangle inequality is used to show that the absolute value of a sum (or
difference) is bounded by the sum of the magnitudes of the individual terms.
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Theorem A.2.29 Triangle Inequality.

|a+ b| ≤ |a|+ |b| (A.2.11)
|a− b| ≤ |a|+ |b| (A.2.12)

Occasionally we need to apply the triangle in reverse, showing that the
absolute value of a sum (or difference) must be bigger than the difference in
magnitudes of the parts.

Theorem A.2.30 Reverse Triangle Inequality.

|a+ b| ≥
∣∣|a| − |b|∣∣ (A.2.13)

|a− b| ≥
∣∣|a| − |b|∣∣ (A.2.14)

Absolute value and subtraction is often used to describe the distance be-
tween two values. For example, the graph y = |x− 2| represents a shift of the
graph y = |x| two units to the right, so that instead of measuring the distance
of x from 0 it measure the distance of x from 2.

−2 −1 0 1 2 3 4

−2

0

2

4

x

y

Theorem A.2.31 The expression |x−a| measures the distance between x and
the value a.

Note that |x + 3| = |x − −3| so that it represents the distance between x
and the value −3.
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B.1 Right Triangles and Trigonometry

B.1.1 Right Triangles
We already reviewed the idea that similar triangles have equal ratios of corre-
sponding sides. This is at the heart of trigonometry using right triangles. An
important fact from geometry is that any two triangles that have equal angles
are similar. A right triangle, by definition, has one angle that is perpendicu-
lar or 90 degrees. Because the sum of angles in a triangle always add to 180
degrees, it really only takes one of the other angles to establish similarity.

We consider an acute angle θ (less than 90 degrees). A right triangle with
base angle θ in standard position (with the base horizontal and the angle on
the left) is shown in the diagram below. The legs that join at right angles are
identified as being adjacent (adj) to the angle or opposite (opp) to the angle,
while the side opposite the right angle is the hypotenuse (hyp).

A

B

C

hyp opp

adj
θ

Figure B.1.1 An illustration of similar right triangles with base angle θ in
standard position.

For any right triangle with the same base angle, the ratios of these three
sides are always going to found in the exact proportions. These proportions
define the six trigonometric values of the angle:

sin θ = opp
hyp (sine)

cos θ = adj
hyp (cosine)

tan θ = opp
adj (tangent)

sec θ = hyp
adj (secant)

cot θ = adj
opp (cotangent)
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csc θ = hyp
opp (cosecant).

The first three proportions are often introduced using a mnemonic ``SOH-
CAH-TOA" where the three letters correspond to the first letter of the pro-
portion name (S ine), the numerator side (Opposite) and denominator side
(Hypotenuse).

It is sometimes useful to think of drawing special right triangles where
one of the sides has unit length (length=1). When the hypotenuse has unit
length, the triangle involves sine (opposite) and cosine (adjacent). When the
adjacent leg has unit length, the triangle has sides with lengths given by tangent
(opposite) and secant (hypotenuse). When the opposite leg has unit length,
the triangle has sides with lengths given by cotangent (adjacent) and cosecant
(hypotenuse). When I realized this simple fact, the naming of the proportions
made much more sense.

Figure B.1.2 Illustration of the three similar unit right triangles with angle
θ.

Theorem B.1.3 Pythagorean Identities. The Pythagorean theorem states
that the sum of the squares of the legs of a right triangle must equal the square
of the hypotenuse. Consequently, the trigonometric values of an angle must
satisfy:

(sin θ)2 + (cos θ)2 = 1
(tan θ)2 + 1 = (sec θ)2

1 + (cot θ)2 = (csc θ)2

Proof. Consider any triangle with base angle θ. The Pythagorean theorem
guarantees

opp2 + adj2 = hyp2.

The first identity is found by dividing both sides of this equation by hyp2. The
next two identities are found by dividing by adj2 and opp2, respectively. �

B.1.2 Special Right Triangles
There are two right triangles that often appear in problems because they are
geometrically simple. One of these is the isosceles right triangle where the base
angle is exactly half of a right angle (θ = 45◦). This triangle is often called
a 45–45–90 right triangle. The other simple triangle comes from dividing an
equilateral triangle in half, so that the base angle is either 30◦ or 60◦, and is
called a 30–60–90 right triangle.
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√
2

1

1
45◦

45◦ 1 1
2

√
3

2

30◦

60◦

Figure B.1.4 Illustration of 45–45–90 and 30–60–90 right triangles.
It is handy to be able to reproduce these two triangles as quickly as possible.

The key is to remember how the triangles were created. For the 45–45–90
triangle, draw an isosceles right triangle and label the lengths of both legs as
1. To find the length of the hypotenuse $h$, use the Pythagorean theorem:

12 + 12 = h2

h2 = 2
h =
√

2

For the 30–60–90 triangle, recall that this is exactly half of an equilateral
triangle. The hypotenuse will have length 1 while the leg opposite the 30
degrees is exactly half that length. Now use the Pythagorean theorem to find
the length of the other leg $b$ which bisected the triangle:

(1
2)2 + b2 = 12

1
4 + b2 = 1

b2 = 3
4

b =
√

3
2

Once you have the triangles drawn with lengths identified, you can use the
triangles to find the proportions that define the trigonometric values. I strongly
discourage trying to memorize this table. Learn how the table was created,
and that will reinforce the more general principles and ultimately require less
mental effort to recall.

θ 30◦ 45◦ 60◦

sin θ = opp
hyp sin 30◦ = 1

2 sin 45◦ = 1√
2 =

√
2

2 sin 60◦ =
√

3
2

cos θ = adj
hyp cos 30◦ =

√
3

2 cos 45◦ = 1√
2 =

√
2

2 cos 60◦ = 1
2

tan θ = opp
adj tan 30◦ =

1
2√
3

2
= 1√

3 tan 45◦ = 1 tan 60◦ =
√

3
2
1
2

=
√

3

B.1.3 Examples
The first example illustates how you can use two known lengths for a triangle
to find the trigonometric values for the angle.
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Example B.1.5 Suppose a right triangle with a base angle θ has a base of
length 3 and a height of length 5. What are the trigonometric values associated
with θ?
Solution. Start by drawing a diagram, labeling the unknown side (the hy-
potenuse) with a variable, say c.

c 5

3
θ

Using the Pythagorean theorem, we can find the length of the hypotenuse.

32 + 52 = c2

9 + 25 = 34 = c2

c =
√

34

Now that we know the lengths of all three sides, we can compute the trigono-
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metric values for our angle.

sin θ = opp
hyp = 5√

34

cos θ = adj
hyp = 3√

34

tan θ = opp
adj = 5

3

sec θ = hyp
adj =

√
34
3

cot θ = adj
opp = 3

5

csc θ = hyp
opp =

√
34
5

�
Our second example illustrates how knowing the trigonometric values as-

sociated with an angle allow us to determine the lengths of sides. This occurs
a lot in physics in the context of decomposing a force or velocity into two
perpendicular components.

Example B.1.6 A golf ball is launched at a speed of 80 m
s and at an angle

of \(40^\circ\) from the ground. What are the horizontal and vertical compo-
nents of the ball’s velocity?
Solution. My preferred method of solution begins with a figure of a right tri-
angle, where the angle θ = 40◦ is the base angle, the hypotenuse is labeled with
length 80, and the legs are labeled with variables representing the horizontal
velocity vx and the vertical velocity vy.

80 vy

vx

40◦

The trigonometric values for θ = 40◦ can be easily found using a calculator.
(These once were found by looking up the angles in a table.) We can setup
equations relating the ratios of lengths and the corresponding trigonometric
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values.

sin 40◦ = opp
hyp = vy

80

cos 40◦ = adj
hyp = vx

80

From the first equation, we can solve for vy:

vy = 80 · sin 40◦ ≈ 80 · 0.6248 = 51.42.

We find the horizontal velocity vx by solving the second equation

vx = 80 · cos 40◦ ≈ 80 · 0.7660 = 61.28.

So the ball is traveling with a vertical velocity approximately 51.42 m
s and a

horizontal velocity approximately 61.28 m
s . �
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B.2 Measuring Arbitrary Angles

B.2.1 Angles and Rotation
In the previous section, we focused on the trigonometry of right triangles, which
involve angles smaller than a right angle. The more significant use of measuring
angles involve angles of rotation which can be significantly greater than 90
degrees. Before we proceed, we need to discuss how angles are measured.

Have you ever considered why we measure angles in degrees? What is so
special about a degree? One thing nice about the number 360 is that it has
so many factors, including 2, 3, 4, 5, 6, 8, 9, 10 and 12. (That only misses 7
and 11!) This makes it easy to divide into fractions that simplify cleanly with
integers. Having an easily divisible number that is so close to the number of
days in the year, so that 1 degree is close to the change in the daily position
of stars in the sky, would have been convenient to ancient astronomers.

What other ways are there to measure rotations?
If a right angle is considered the fundamental unit, then we might consider

measuring an angle as a percentage of a right angle, so that 90 degrees counts
as 100 percent. This idea led to the development of what is called a gradian.
So an angle of 1 gradian is exactly 1 percent of a right angle, and there are
400 gradians in a circle.

Alternatively, if we think of a full rotation as the fundamental unit, then
we might measure an angle as a fraction of a rotation. I especially like this
perspective when dealing with trigonometry on the unit circle. We will let τ
(the Greek letter tau) be the unit of a complete rotation (1τ = 360◦). Since 90
degrees is one quarter rotation and 60 degrees is one sixth rotation, we have
90◦ = 1

4τ and 60◦ = 1
6τ . Other conversions can be determined using standard

techniques.
All of the preceding methods for measuring angles are based on natural

activity of counting. And none of these methods are mathematically superior
to one another. Curiously, the mathematically best way to measure an angle
is not based on counting integer divisions of a rotation but is based on a unit
called the radian which involves measuring arc length in terms of the radius.

B.2.2 Arc Length and Radian Measure of Angles
An arc is a path traced along the circumference of a circle. We can describe
an arc by either measuring the length of the path (arc length) or by measuring
the angle subtended by the arc. It should be obvious that the arc length is
proportional to the angle.

Let s represent the arc length and let θ represent the angle of the arc. To
say that s ∝ θ is to say that there is a proportionality constant so that s = kθ.
Because s is a measure of length, by geometric similarity, the arc length must
also be proportional to the radius of the circle r (or k ∝ r). This means that
there is a constant α so that

s = αθr.

The value of the constant α depends on how we measure angles. To see
this, we will use an arc of a complete rotation which has an arc length equal
to the circumference of the circle s = 2πr. If the angle is measured in degrees,
θ = 360, then the proportionality constant will be αdeg defined by

2πr = αdeg(360)r ⇔ αdeg = 2π
360 .
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If the angle is measured in gradians, θ = 400, then the proportionality constant
αgrad satisfies

2πr = αgrad(400)r ⇔ αgrad = 2π
400 .

In a similar way, if the angle is measured in rotations τ , then

ατ = 2π
1 = 2π.

The mathematically defined measure of angle called the radian is deter-
mined by choosing the proportionality constant α as being convenient instead
of choosing the measurement of the angle as being convenient. If we choose
α = 1, then this requires that we measure a full rotation θ to satisfy

2πr = 1θr ⇔ θ = 2π.

That is, a full rotation is defined as 2π radians.
With radians as the measure of angle, the arc length formula simplifies to

s = θr.

In other words, the angle θ is determined by measuring the length of a sub-
tended arc using the radius as the unit of length. An angle θ = 1 radian has an
arc length equal to the radius of the arc. When angles are measured in radians,
no units are used; so we would just say θ = 1. We also have, for example,

1
4τ = π

2 , (B.2.1)
1
2τ = π, (B.2.2)

1τ = 2π. (B.2.3)

How did you read that last sentence? Did you visualize and interpret what
it says, and not just read the symbols? What does each equation mean? Below
is a figure illustrating the examples θ = 1, θ = 1

4τ and θ = 1
2τ . Could you

draw a similar figure showing angles corresponding to 30, 45 and 60 degrees?
What is the radian measure of those angles?

r

s = r

θ = 1

r

s = 2πr
4 = π

2 r

θ = π
2 = 1

4τ

r

s = 2πr
2 = πr

θ = π = 1
2τ

Figure B.2.1 Important arcs measured in radians.

B.2.3 Unit Circle and Standard Position
In order to have a universal reference for an angle, we introduce the standard
position of an angle in terms of a unit circle. The equation for a circle with
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radius r = 1 and a center at the origin (0, 0) is x2 + y2 = 1. Standard position
for an angle always forms an arc on the unit circle that starts on the x-axis at
(1, 0) and moves along the circle in the counter clockwise direction for positive
angles (clockwise for negative angles).

An angle greater than 2π will wrap completely around the circle and con-
tinue. Multiples of 2π (0,±2π,±4π, . . .) all end at the same point (1, 0) on
the unit circle but correspond to a different number of rotations. In fact, ev-
ery point on the unit circle has infinitely many different angles (that differ by
multiples of 2π) that end at that point when in standard position.

Example B.2.2 Find all angles that terminate at the point (0, 1).
Solution. The point (0, 1) is a quarter turn in the positive direction or three
quarters turn in the negative direction. So the angles θ = 1

4τ = 1
4 (2π) = π

2
and θ = − 3

4τ = − 3
4 (2π) = − 3π

2 are two of the angles desired.
Notice that these angles are 2π apart. In fact, we can add any integer

multiple of 2π and end at the same spot. One of writing this is to say

θ = π

2 + 2πk, k = 0,±1,±2, . . . .

�

Example B.2.3 Where does the angle θ = 28π
3 terminate?

Solution. This is the same as dealing with improper fractions or division with
remainders. First, recognize that 2π = 6π

3 . Second, determine how many times
6 goes into 28 using division, to find 4 with a remainder of 4 (28 = 4 · 6 + 4).
Rewrite the fraction:

θ = 28π
3 = 4 · 2π + 4π

3 .

To interpret this angle, recognize that the integer multiple of 2π corre-
sponds to 4 complete rotations. Next, determine what fraction of a rotation
corresponds to 4π

3 :
4π
3 = 2

3(2π).

So we continue another two-thirds of a rotation, which is 60 degrees past a half
rotation and 30 degrees short of vertical.
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Figure B.2.4 Terminal position of θ = 28π
3 .

�
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B.3 Unit Circle Trigonometry

B.3.1 Unit Circle Trigonometry
When we first introduced the trigonometric functions of an angle, we did it
for acute angles. What will we do for larger angles, or negative angles? We
will use the unit circle standard position of an angle and choose a method that
agrees with what we would expect for acute angles.

So consider a positive, acute angle 0 < θ < π
2 (notice that we continue to

use radians) that has been placed in standard position on the unit circle. We
have also drawn the corresponding right triangle in standard position. Because
the unit circle has radius r = 1, the hypotenuse of our triangle has length 1,
so that the legs are the cosine (adjacent) and the sine (opposite) of the angle.

(x, y)

θ

1 sin θ

cos θ

Figure B.3.1 An acute angle on the unit circle and with an associated right
triangle in standard position.

By noticing that the length of the legs also corresponds to the x- and y-
coordinates, this gives us our desired generalization. For any angle θ, we will
define the cosine and sine of the angle as the x- and y-coordinates of the point
on the unit circle for the terminal edge of the arc in standard position.

Definition B.3.2 If an angle θ is put in standard position and terminates at a
point (x, y) on the unit circle, then the trigonometric functions of θ are defined
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by

cos θ = x

sin θ = y

tan θ = sin θ
cos θ = y

x

sec θ = 1
cos θ = 1

x

cot θ = cos θ
sin θ = x

y

csc θ = 1
sin θ = 1

y

♦
I suggest remembering the definitions of cosine and sine in terms of the x-

and y-coordinates, and the other functions in terms of the ratios involving sine
and cosine. One exception to this general principle is that it can sometimes
be helpful to think of the tangent, which is the ratio y/x, as the slope of the
terminal edge.

B.3.2 Periodic Behavior of Trigonometric Functions
Because the terminal edge of an arc repeatedly passes through the same points,
the unit circle definitions of trigonometric functions create periodic functions.
Most of the functions have a period of 2π corresponding to the rotation neces-
sary to return to the same point. However, the tangent and cotangent functions
each have a period of π. This is a consequence of the definition involving both
x and y in their definitions. The ratio will be the same if both values change
sign, which is precisely what happens for a half-rotation in the angle.

How can you remember the graphs of the functions? You can do this while
also reinforcing your understanding of the unit-circle definitions by imagining
rotating around the unit circle in a counter-clockwise direction. Draw the
cosine (x-coordinate), sine (y-coordinate) and tangent (slope) functions as you
go.

• Start at angle θ = 0 with a terminal point (1, 0). Using the coordinates
and slope of the terminal edge gives:

cos 0 = 1 sin 0 = 0 tan 0 = 0

• Go half a right angle to θ = π
4 with a terminal point where x = y at

( 1√
2 ,

1√
2 ). Using the coordinates and slope of the terminal edge gives:

cos π4 = 1√
2

sin π4 = 1√
2

tan π4 = 1

• Finish the right angle at θ = π
2 with a terminal point at (0, 1). Using the

coordinates and slope of the terminal edge gives:

cos π2 = 0 sin π2 = 1 tan π4 = undef.

In general, you should remember that cosine and sine oscillate between
peak values of -1 and 1. Paying attention to the unit circle, you will be able
to identify the actual points where these are reached. The tangent, which
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measures a slope, goes through all possible values with negative values when
the angle is in the second or fourth quadrants and positive when the angle is
in the first or third quadrants.

θ

y

1

-1

−π −π2
π
2 π

3π
2 2π

5π
2 3π

7π
2 4π

y = cos θ
y = sin θ

y = tan θ

θ

y

4

3

2

1

-1

-2

-3

-4

−π −π2
π
2 π

3π
2 2π

5π
2 3π

7π
2 4π

Figure B.3.3 Periodic graphs of the cosine, sine and tangent functions.
When thinking about the tangent function, if you will remember that it

involves division by the cosine, then the breaks (vertical asymptotes) occur at
every point where the cosine is zero. This exactly corresponds to where the
terminal edge of the angle on the unit circle is vertical.
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B.4 Inverse Trigonometric Functions
Trigonometric functions are periodic functions defined in terms of the unit
circle. A function must be one-to-one in order to have an inverse function.
Periodic functions obviously fail the horizontal line test and are not one-to-one.
However, we can restrict the function to a domain on which it is one-to-one.
For functions defined in terms of the unit circle, we will restrict each domain
to include the first quadrant, corresponding to angles from 0 to π

2 , as well as
adjacent angles that will guarantee the restricted function is one-to-one and
includes the full range of output values.

Recall that the sine function represents the y-coordinate of the point on
the unit circle of an angle’s terminal edge. The range consists of all numbers
in the interval [−1, 1]. The first quadrant of angles 0 to π

2 leads to points on
the unit circle with y-values from 0 to 1. Angles just beyond π

2 repeat the
same y-values. We instead use angles in the fourth quadrant from −π2 to 0.
Altogether, the restricted domain will be [−π2 ,

π
2 ].

Figure B.4.1 The restricted domain for sine is the interval [−π2 ,
π
2 ].
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−π −π2 0 π
2

π 2π

−1

0

1

θ

y

y = sin(θ)

Figure B.4.2 The sine function restricted to the domain [−π2 ,
π
2 ].

The inverse function for the restricted sine function is called the arcsine
function or inverse sine function. Because $\sin$ takes an angle θ in radians as
the input and gives the y-coordinate on the unit circle as the output, we have
sin : θ 7→ y. The inverse takes a y-coordinate on the unit circle as the input
and gives an angle θ in the interval [−π2 ,

π
2 ] as output, we have sin−1 : y 7→ θ.

The graph of the arcsine is shown below.
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−1 0 1

−π2

0

π
2

y

θ

θ = sin−1(y)

Figure B.4.3 The arcsine function, which is the inverse of the restricted sine.
The cosine function takes an angle θ as the input and returns the x-

coordinate of the corresponding point on the unit circle. The first quadrant
angles between θ = 0 and θ = π

2 have x-coordinates between 0 and 1. To
obtain the x-coordinates between −1 and 0 come from angles in the second
quadrant. The restricted domain will be the interval [0, π].
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Figure B.4.4 The restricted domain for cosine is the interval [0, π].

−π −π2 0 π
2

π 2π

−1

0

1

θ

x

x = cos(θ)

Figure B.4.5 The cosine function restricted to the domain [0, π].
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The inverse function for the restricted cosine function is called the arccosine
function or inverse cosine function. Because $\cos$ takes an angle θ in radians
as the input and gives the x-coordinate on the unit circle as the output, we have
cos : θ 7→ x. The inverse takes an x-coordinate on the unit circle as the input
and gives an angle θ in the interval [0, π] as output, so we have cos−1 : x 7→ θ.
The graph of the arccosine is shown below.

−1 0 1

0

π
2

y

θ
θ = cos−1(y)

Figure B.4.6 The arccosine function, which is the inverse of the restricted
cosine.

The tangent function takes an angle θ as the input and returns the ratio y
x

for the coordinates (x, y) of the corresponding point on the unit circle. This
ratio is exactly the slope m = y

x of the line joining (0, 0) and (x, y). The first
quadrant angles between θ = 0 and θ = π

2 correspond to all of the possible
positive slopes. To obtain negative slopes, we could use either the second or
fourth quadrant. So that the function will be continuous, the restricted domain
is chosen as the interval (−π2 ,

π
2 ). The end-points are not included because the

tangent is not defined at those angles.
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Figure B.4.7 The restricted domain for tangent is the interval (−π2 ,
π
2 ).
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−π −π2 0 π
2

π 2π

−1
0
1

θ

m

m = tan(θ)

Figure B.4.8 The tangent function restricted to the domain (−π2 ,
π
2 ).

The inverse function for the restricted tangent function is called the arct-
angent function or inverse tangent function. Because $\tan$ takes an angle θ
in radians as the input and gives the slope m of the angle, tan : θ 7→ m. The
inverse takes a slopem as the input and gives an angle θ in the interval (−π2 ,

π
2 )

the has this slope, so we have tan−1 : m 7→ θ. The graph of the arctangent is
shown below.
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−8 −6 −4 −2 0 2 4 6 8

−π2

0

π
2

m

θ

θ = tan−1(m)

Figure B.4.9 The arctangent function, which is the inverse of the restricted
tangent.

The secant, cosecant, and cotangent functions also have restricted domains
and corresponding inverse functions. The table below summarizes the re-
stricted domains and ranges for each of the trigonometric functions.

Restricted Function Domain Range
sin(x) [−π2 ,

π
2 ] [−1, 1]

cos(x) [0, π] [−1, 1]
tan(x) (−π2 ,

π
2 ) (−∞,∞)

cot(x) (0, π) (−∞,∞)
sec(x) [0, π2 ) ∪ (π2 , π] (−∞,−1] ∪ [1,∞)
csc(x) [−π2 , 0) ∪ (0, π2 ] (−∞,−1] ∪ [1,∞)

The domain and range for the inverse functions are exactly the reverse of the
restricted trigonometric functions. The inverse trigonometric functions have
multiple representations. For example, the arcsine is sometimes written sin−1

but is also written either arcsin or asin. The table summarizes the information
about the inverse trigonometric functions.

Inverse Functions Domain Range
sin−1(x) = arcsin(x) [−1, 1] [−π2 ,

π
2 ]

cos−1(x) = arccos(x) [−1, 1] [0, π]
tan−1(x) = arctan(x) (−∞,∞) (−π2 ,

π
2 )

cot−1(x) = arccot(x) (−∞,∞) (0, π)
sec−1(x) = arcsec(x) (−∞,−1] ∪ [1,∞) [0, π2 ) ∪ (π2 , π]
csc−1(x) = arccsc(x) (−∞,−1] ∪ [1,∞) [−π2 , 0) ∪ (0, π2 ]
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