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1.2 Numbers, Measurements and Relations

1.2.1 Overview

Numbers play a fundamental role in science because they allow us to quan-
tify observations. That is, instead of saying things are big or small, we can
assign numbers to measurements. Science in large part has progressed be-
cause of our ability to determine mathematical relationships between different
measurements that make prediction possible.

Mathematics admittedly views numbers themselves as objects worthy of
study. A number is an exact entity—other numbers, regardless of how close
they might be, are different. Consequently, a mathematical result has an exact
value. Sometimes we can only approximate the value, but we should give
an exact expression for that value when possible. Mathematicians classify
numbers according to the complexity of their definition. Historical conventions
often suggest ways in which we can simplify an expression, often so that the
classification can be more easily recognized.

Measurements allow us to assign numerical values to physical attributes,
such as length, temperature, mass, and speed. Instruments need to be designed
so that repeated measurements will result in the same values using standard
units. Measurement error results from the limited accuracy intrinsic in reading
a measurement from an instrument’s scale. Most often, we measure more than
one attribute of an object or system under a given condition. The collection
of all such measurements is called the state of the system. We generally wish
to understand the relationships between these different quantities.

1.2.2 Numbers in Mathematics

In mathematics, numbers have precise meanings and classifications. Here, we
review the basic sets of numbers. The natural numbers are the positive
integers

N = {1, 2, 3, . . .}.

Including the number zero gives us all counting numbers

N0 = {0, 1, 2, 3, . . .}.

The set of all integers is written

Z = {. . . , −3, −2, −1, 0, 1, 2, 3, . . .}.

The rational numbers are all numbers that can be represented as a ratio of
integers

Q = {p

q
: p ∈ Z, q ∈ N}.

This set-builder notation indicates that Q is a set of numbers that can be
written in the form p/q where p is some integer and q is some natural number.

We often visualize numbers geometrically using a number line. First, the
origin of the line is specified with a value of zero. The integers are then equally
spaced by a unit length counting from zero. (See Figure A.1.1.) Subdividing
the unit length into a whole number of equal parts generates additional points
that are rational numbers. (See Figure A.1.2.) However, even when all rational
numbers are included, there are infinitely many points on the line that are never
covered. These are the irrational numbers, which include algebraic numbers
like

√
2 or

√
3, as well as transcendental numbers like π and e. The set of real

numbers is written R and consists of both rational and irrational numbers.
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Figure 1.2.1 The number line graphically represents real numbers, both ra-
tional and irrational.

Every mathematical value represents a single point on the number line.
Two values are equal only when they refer to the very same point on the
line. Calculators give decimal approximations for numbers using a limited
number of digits and so they can actually only represent a finite collection
of the infinitely many possible numbers. In particular, irrational numbers
can never be represented exactly using decimals. Thus, we usually represent
mathematical values by their mathematical expression rather than decimals.
When a decimal approximation is useful, we should indicate we are making an
approximation using the approximation symbol (≈) rather than an equals sign
(=).

Simplification of numbers corresponds to finding a new representation of a
number in a reduced form. For example, a rational number has many different
representations of the form p/q with p ∈ Z and q ∈ N. But there is only one
representation where p and q have no common factors. Canceling any common
factors to find this representation would be simplification. Other examples of
simplification include simplifying a root or rationalizing a denominator.

Example 1.2.2 The fraction 126

24
is not simplified. If we find the prime fac-

torization of the numerator and denominator, we find

126 = 6 · 21 = 2 · 32 · 7,

24 = 3 · 8 = 23 · 3.

The fraction simplifies by canceling all common factors:

126

24
=

2 · 32 · 7

23 · 3
=

3 · 7

22
=

21

4
.

In practice, we don’t always have to find the prime factorization. Instead,
we can find one common factor at a time until no common factors remain. For
example, since 126 and 24 are both even, we could write

126

24
=

63

12
.

Then, we look at 63 and 12 and recognize that they are both divisible by 3,
allowing us to rewrite the fraction as

126

24
=

63

12
=

21

4
.

Because 21 = 3 · 7 and 4 = 22 do not have common factors, we know this is
simplified. �

A square root is not simplified if there is a factor inside the root that is
a perfect square. Similarly, a cube root is not simplified if there is a factor
inside that is a perfect cube. We use the factors of the value inside a root to
determine if we can simplify it.

Example 1.2.3 The square root
√

126 is not simplified. A square root is
the inverse operation of squaring numbers (for non-negative numbers) so that
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√
32 = 3. Because

√
a · b =

√
a ·

√
b (for a, b ≥ 0), we can simplify as

√
126 =

√
2 · 32 · 7 =

√
9 ·

√
14 = 3

√
14.

�

Example 1.2.4 The cube root 3
√

48 is not simplified. We start by factoring:

48 = 2 · 24 = 2 · 3 · 8 = 24 · 3.

A cube root is the inverse operation of cubing numbers so that for every perfect
cube, we can simplify

3
√

a3 = a. We have

3
√

48 =
3
√

24 · 3 =
3
√

23 · 2 · 3 = 2
3
√

6.

�

Some additional rules of simplification you may have learned were created
before fast calculators and computers were available. These rules were taught
so that scientists and engineers could express an answer that would be in a
form where it would be faster to use the tables and slide rules available at
the time. We no longer need such rules for efficiency, but they often illustrate
important algebra rules.

One example of such a rule is the simplification of fractions with square
roots, called rationalizing a fraction. It was much more costly to use a table or
slide rule if the root was in the denominator. The practice was developed to
rewrite such an answer so that the root was in the numerator. This could be
accomplished by multiplying the fraction on top and bottom by a factor that
would eliminate the undesired root.

Example 1.2.5 Simplify
4

3
√

2
by rationalizing the denominator.

Solution. A square root can simplify if there is a perfect square inside. The
square root in this denominator

√
2 would need another 2 inside to have a

perfect square. Multiply numerator and denominator by the extra
√

2 to get
a square in the denominator.

4

3
√

2
=

4
√

2

3
√

2
√

2
=

4
√

2

3 · 2

Now we can finish simplifying the fraction by canceling common factors:

4

3
√

2
=

4
√

2

6
=

2
√

2

3
.

�

In the previous example, the two expressions
4

3
√

2
and

2
√

2

3
are equally

simplified. The first expression has a rationalized numerator. The second
expression has a rationalized denominator. You should ask your instructor
whether they expect a preferred simplified form.

Although we usually use simplification for aesthetic reasons, having a stan-
dard way to write numbers can be useful to prove mathematical results. Thanks
to Pythagorus, the ancient Greeks knew that

√
2 was a number that repre-

sented the hypotenuse of an isosceles right triangle with legs of unit length.
The Greeks also originally thought that all numbers would ultimately be ratio-
nal numbers. Realizing that

√
2 was irrational was so shocking that, according

to legend, the discoverer of this fact was drowned at sea.
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Example 1.2.6 The proof of the irrationality of
√

2 uses the idea that ra-
tional numbers have a simplified form. The basic argument is to consider a
rational number that might represent

√
2 and then proceed to show that such

a representation doesn’t make sense. The detailed argument is shown below.

Solution. Suppose that
√

2 is a rational number. Then it can be written as
the ratio of two integers

√
2 = p

q
in reduced form, meaning p and q do not have

common factors. By definition of square roots, we must have p
2

q2 = 2 which
implies

p2 = 2q2

so that p2 is an even number. The only way that p2 can be even is if p itself is
even, since the product of two odd numbers is always odd.

Once we know p is even, we can factor out 2 and write p = 2k where k is
also an integer. Now p2 = 4k2 which implies 4k2 = 2q2 or

q2 = 2k2.

This means q would also be an even number. This is where the contradiction
occurs—since p and q were to have had no common factors, they couldn’t both
be even. This means that

√
2 can not be written as a reduced fraction, which

in turn means that
√

2 is not a rational number. �

1.2.3 Numbers as Measurements

In science, numbers often arise from measurements. When counting objects,
measurements use integers and are exact. Most measurements, however, are
not exact and require the use of a scale. An instrument for measurement
provides a physical tool that allows us to identify a number of units associated
with the physical quantity.

The most elementary physical measurement of this type is a measurement
of length. The instrument of measurement, a ruler, uses a constructed number
line such that the spacing between numbers on the ruler represents distance.
The standard unit for the ruler, such as an inch or centimeter, sets the spacing
between integer distances. The designer of a ruler also chooses the number of
subdivisions per unit. For example, many rulers with inches use either 8 or 16
subdivisions per inch while metric rulers use 10 subdivisions per centimeter.
You should see a similarity between the construction of the ruler and the
development of rational numbers, except that the set of rational numbers allows
for all possible integer number of subdivisions of the unit.

Measured quantities generally occur between two values that an instrument
can measure. Given a ruler, the observer must choose a length based on the
existing rulings. Even a length that appears to be exactly on a ruling might
be found to be slightly off when examined under magnification. The observer
might also make judgment errors in reading off a measurement. Consequently,
a measurement represents an approximation of the value of a quantity. The
difference between the true and measured values of a quantity is called an
error.

Definition 1.2.7 Given any quantity with an actual value Q and a measured
value Q̂, the error or residual is a value, say E, that measures the difference
between the actual and measured values,

E = Q − Q̂.

Equivalently, E is that quantity such that the actual value is equal to the
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measured value plus the error,

Q = Q̂ + E.

♦

Definition 1.2.8 Given any quantity with an actual value Q and a measured
value Q̂, the absolute error measures the absolute value of the error:

|E| = |Q − Q̂|.

♦

Note 1.2.9 Symbols that represent variables correspond to the entire symbol
being used. In the previous definitions, Q and Q̂ are different symbols and
represent different numbers even though they both use the letter “Q”. Similarly,
the case of a letter matters so that R and r are different symbols. Avoid the
trap of thinking that the letter’s name is the symbol.

In science, the error in a measurement is not known precisely but is rep-
resented by a bound. There are a variety of techniques used to indicate the
bound for an error. We will briefly discuss how the use of significant digits or
a margin of error represent error bounds.

One way that the accuracy of measurements are described is using a number
of significant digits. The idea is that the last digit reported represents the
smallest subdivision the instrument can distinguish.

Example 1.2.10 Imagine that an object has a length of 15.2772 cm, measured
to the nearest micron (micrometer). (We never really know exact lengths of
physical objects.) How would the length be reported with different numbers of
significant digits?

If that object was measured using a ruler showing only centimeters, we
would see that the length was between 15 and 16 cm but closer to 15. Our
measurement would be written as 15 cm, or Q̂ = 15, and we would have two
significant digits. However, if we did not know about details of the original
measurement and only saw the recorded value of 15 cm, then we would have
to assume that the true length was somewhere between 14.5 cm and 15.5 cm,

14.5 ≤ Q ≤ 15.5

Subtracting Q̂ = 15 from each term, we find

−0.5 ≤ Q − Q̂ ≤ 0.5.

The absolute error is therefore bounded by 0.5 cm.
If the ruler showed millimeters, then our measurement would be 15.3 cm

with three significant digits. Knowing only the measurement Q̂ = 15.3 and
that there are three significant digits, we can infer

15.25 ≤ Q ≤ 15.35

so that the error is bounded between

−0.05 ≤ Q − Q̂ ≤ 0.05.

The absolute error based on the measurement is bounded by 0.05 cm. �

An alternative to using significant digits is to state explicitly a margin of

error. The margin of error is equivalent to providing a bound for the error.
We saw that a measurement 15.3 cm with three significant digits corresponds
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to an inequality

15.25 ≤ Q ≤ 15.35

such that the absolute error is bounded by 0.05,

|Q − Q̂| ≤ 0.05.

Using a margin of error, we write Q = 15.3 ± 0.05 cm. The margin of error
±0.05 is interpreted as −0.05 ≤ Q − Q̂ ≤ 0.05.

A margin of error is more precise than significant digits. For example, if
we wanted to say that a measurement was somewhere between 15.2 cm and
15.4 cm, then we would write 15.3 ± 0.1 cm. The value 15.3 was used as a
central value and the margin of error gives a distance in either direction to
reach the extreme values. The true value must be between the extremes.

Example 1.2.11 The length of the hypotenuse of a right triangle with legs
of lengths 4 cm and 6 cm is H =

√
42 + 62 =

√
52 = 2

√
13 cm. A calculator

shows the decimal approximation is H ≈ 7.211103 cm.
Now, suppose we use a ruler using centimeters but showing millimeters

to measure the length. Different ways of describing the measurement with a
margin of error give different information about the length.

H

6 7 8

• Write H using a margin of error to state that the measurement to the
nearest millimeter is 7.2 cm.

• Write H using a margin of error to state that the measurement is between
7.2 and 7.3 cm.

• Write H using a margin of error to state that the measurement is between
7.2 and 7.25 cm.

Solution. First, we consider the nearest tick mark on the ruler. The mea-
surement Ĥ = 7.2 cm will be the nearest value for any actual length satisfying
7.15 ≤ H ≤ 7.25.

H

Ĥ = 7.2
7

The spacing from Ĥ and the edge of this interval is

ǫ = |7.25 − 7.2| = |7.15 − 7.2| = 0.05.

This value ǫ is the largest margin of error so that

|H − 7.2| ≤ 0.05.

We write H = 7.2 ± 0.05 cm.
Next, we work with the range 7.2 ≤ H ≤ 7.3. We find the mid-point of this

interval as our recorded measurement

Ĥ =
7.2 + 7.3

2
= 7.25.
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H

Ĥ = 7.25
7

Then we measure the distance from the center to the edge,

ǫ = |7.3 − 7.25| = |7.2 − 7.25| = 0.05

to find the margin of error 0.05 cm. We can then express our measurement
with a margin of error as H = 7.25 ± 0.05 cm corresponding to a bounded
error

|H − 7.25| ≤ 0.05.

Finally, we repeat this process to indicate that H is in the range 7.2 ≤ H ≤
7.25. The mid-point gives

Ĥ =
7.2 + 7.25

2
= 7.225.

H

Ĥ = 7.225
7

The margin of error is 0.025 so that our new approximate measurement
with a margin of error is written H = 7.25 ± 0.025 cm. Using an inequality
involving absolute values, we could write

|H − 7.225| ≤ 0.025.

�

In general, a margin of error establishes a symmetric interval of possible
values around the measurement. If we symbolically represent the margin of
error by ǫ > 0 (the Greek letter epsilon), then the statement Q = Q̂ ± ǫ is a
statement that the absolute error is bounded by ǫ,

|Q − Q̂| ≤ ǫ.

In other words, we know from the measurement that the true value Q is in the
interval

Q̂ − ǫ ≤ Q ≤ Q̂ + ǫ.

1.2.4 Summary

• In mathematics, numbers represent specific points on the number line.
Real numbers (R) can be classified as natural numbers (N), integers (Z),
rational numbers (Q), and irrational numbers.

• To simplify an expression is to find an expression representing the same
value in a simpler form. For fractions, there should be no common factors.
For roots, the power of prime factors inside should be less than the root.

• In a physical context, numbers represent measurements that have limited
precision. This precision might be characterized by significant digits or
by a margin of error.
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• The error of approximation E for a quantity Q and an approximation Q̂
is defined by

E = Q − Q̂.

A symmetrical error bound −ǫ ≤ E ≤ ǫ corresponds to the absolute
value inequality |Q − Q̂| ≤ ǫ for a range of values

Q̂ − ǫ ≤ Q ≤ Q̂ + ǫ.

1.2.5 Exercises

Simplify the following values.

1. 42

12

2. 210

28

3.
√

75

4.
√

160

5.
3
√

160

6.
4
√

160

7.
√

72

4

8.
√

864

15

Simplify the following values by rationalizing the denominator.

9.
6

5
√

3

10.
10
3
√

2

11.
4
√

2√
3

Simplify the following values by rationalizing the numerator.

12.
4
√

2√
3

13.
5 3

√
4

3
√

3

14. One of your colleagues has recorded the mass of a specimen in your lab’s
notebook. The recording is given as 35.8 g. How much uncertainty is
in this measurement? What are the possible actual masses that might
correspond to that measurement?

15. One of your colleagues has recorded the mass of a specimen in your lab’s
notebook. The recording is given as 35.8 g. Suppose you also know that
the lab instrument that was used always rounds measurements to the
nearest 0.2 g. How should the recording have been written to indicate
this additional information? What are the possible actual masses that
might correspond to that measurement?

16. A thermometer’s scale shows every 5 degrees. You observe the current
temperature registers on the thermometer as being between 75 and 80
but clearly closer to 75 degrees. How would you report the temperature
in order to reflect both your measurement and your uncertainty?
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17. A right triangle is formed with legs measuring 5 cm and 8 cm. Express the
length of the hypotenuse H to the nearest tenth of a centimeter, stating
the margin of error based on a ruler showing millimeters. Rewrite your
statement about margin of error as an inequality involving absolute values.

18. A right triangle is formed with one leg measuring 10 cm and the hy-
potenuse measuring 18 cm. Express the length of the other leg L to the
nearest tenth of a centimeter, stating the margin of error based on a ruler
showing millimeters. Rewrite your statement about margin of error as an
inequality involving absolute values.


