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1.3 Graphs and Relations between Variables

1.3.1 Overview

In physical settings, we usually consider measurements of multiple quantities
at the same time. We do this because we are interested in the relationships
between these different quantities. We think of each quantity of interest as
a state variable; the collection of all such variables under consideration is
called the system. At any instant, the variables of the system will each have
a particular value and the collection of those values at that instant is called
the state of the system. Graphs are often used to reveal relationships between
different variables.

In this section, we explore graphs of data through scatter plots and graphs
of equations. An equation involving multiple variables represents a relation
between those variables. We consider the role of solving equations in the
context of these relations.

1.3.2 Systems, States and Variables

In the course of an experiment, or even just in observation, many different
quantities typically are covarying, or changing with one another. For example,
an object in motion has changing position, changing velocity, and changing
forces. In the course of a chemical reaction, there are changing concentrations
of the different reactants and products. Other quantities might also change,
such as temperature, pH, and volume. While observing a changing population,
there could be changing population numbers, total biomass, birth and death
rates, consumption of resources, and production of products and waste.

Mathematically, the system consists of all possible observable quantities
associated with the experiment or observed physical system. The state of the
system refers to the collection of instantaneous values of all such quantities
at a particular instant or configuration of the system. A state variable,
or more simply a variable, represents a single quantity that is or could be
observed in the system. Quantities that can be calculated in terms of state
variables are mathematically dependent variables and are also examples of
state variables, even if they can not be directly measured.

Example 1.3.1 Consider the following data about the population, births and
deaths in the United States. To conserve space, the data are given using
scientific notation expressed in the standard machine form where the power of
10 follows the letter E. so that 2.521 x 108 would be written 2.521ES8.

Year Population  Births Deaths Year Population  Births Deaths
1991 2.530E8 4.111E6  2.170E6 2001 2.850E8 4.026E6 2.416E6
1992 2.565E8 4.065E6 2.176E6 2002 2.876E8 4.022E6  2.443E6
1993 2.599E8 4.000E6  2.269E6 2003 2.901E8 4.090E6 2.448E6
1994 2.631E8 3.953E6 2.279E6 2004 2.928E8 4.112E6 2.397E6
1995 2.663E8 3.900E6 2.312E6 2005 2.955E8 4.138E6  2.448E6
1996 2.694E8 3.891E6 2.315E6 2006 2.984E8 4.266E6  2.426E6
1997 2.727E8 3.881E6 2.314E6 2007 3.012E8 4.316E6  2.424F6
1998 2.758E8 3.942E6 2.337E6 2008 3.041E8 4.248E6 2.472E6
1999 2.790E8 3.959E6 2.391E6 2009 3.068E8 4.131E6 2.437E6
2000 2.822E8 4.059E6  2.403E6 2010 3.094E8 3.999E6 2.468E6

Each row (corresponding to the population in a given year) represents a
distinct state of the system. The observed values in the state are the vari-
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ables: the year, the total population at the beginning of the year, the total
number of births in the year, and the total number of deaths in the year. The
year is included as one of the variables—an independent variable—in order to
distinguish the different states with respect to time. O

We often represent a variable by a symbol—a letter, a Greek letter, an
abbreviation, or even a word. That symbol becomes a name for the variable
to be used in sentences, expressions, and equations. Uppercase and lowercase
letters are different symbols and should not be interchanged with one another.
The choice of symbol should generally be related to the meaning of the variable.
An important part of communication in modeling is in stating clearly the
variables of a system and identifying the symbols that are chosen to represent
them.

Example 1.3.2 In the previous example, there were four variables. A common
strategy is to use the first letter of a word describing each variable. The
population variable might be represented by the symbol P. Births and deaths
might be represented by the symbols B and D, respectively. The year might
be represented by the symbol Y.

Note that the symbols p, b, d and y are not the same as the symbols above,
even though they have the same letter names. They should not be used for
this problem. (I

The next example illustrates how we might write a short explanation of a
system and the variables associated with it. Note how the physical explanation
of the system is described first, followed by an introduction of the measure-
ments taken and the symbols used to represent those variables. Any time you
have data and refer to the data by variables, you need a few sentences that
introduce the meaning of each variable along with the units of measurement.

Example 1.3.3 In biology, scientists run electrophoresis gels to determine
the size of polymers, such as proteins or DNA strands. The gel provides a
porous structure for the polymers to travel through while an electric potential
(voltage) creates a force that pulls the polymers through the gel. Different size
polymers travel at different speeds. The experiment is setup with all polymers
starting at one end of the gel, the voltage is turned on for a certain amount of
time and then disconnected. Clusters of similarly sized polymers are identified
visually as bands on the gel, with smaller polymers traveling a greater distance.

The image below represents an electrophoresis gel run on a standardized
collection of DNA of fixed sizes. Because the image does not show a length
scale, the distances traveled by the different lengths are measured in image
pixels and recorded in the table below. The variables for the experiment are
the length of DNA segments and the distance traveled through the gel. Let L
represent the length of the segment (in nucleotides) and let D represent the
distance traveled (in pixels), measured from the center of the starting well to
the center of the corresponding band in the image. Each row represents a single
state (L, D) of the system.
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L (nts) D (px)

100 342
200 327
300 312
400 299
500 288
600 278
700 270
800 263
900 256
1000 249

O

1.3.3 Scatter Plots and Relationships Between Variables

The primary motivation for collecting data regarding different variables in the
state of a system is to determine relationships between those variables. One of
the ways that we look for relationships is using a scatter plot. A scatter plot
is a graph showing the relationship between two variables. Suppose the two
variables use symbols x and y. For each state of the system, there will have
been observed values for both z and y. The graph will include points for each
pair (z,y).

Spreadsheets (like Microsoft Excel, Apple Numbers or Google Sheets) are
a common tool to generate scatter plots. The data are first put in a table.
The first column of data will correspond to the variable used for the horizontal
axis (z), and the second column of data will correspond to the variable for the
vertical axis (y). Select the two columns at the same time and add a chart to
your spreadsheet, choosing the scatter plot style of graph. You should become
familiar with how to create a scatter plot. Always be sure that you label your
axes, using the variables of the system rather than the generic names of x and
Y.

The following figure shows two different scatter plots for the electrophoresis
gel data above. One plot is based on the pairs (L, D) whereas the other is based
on the pairs (D, L). These graphs contains the same information but viewed
from a reverse perspective. When we switch the order of the variables, we call
the relationships inverse relations.
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Figure 1.3.4 Scatter plot of electrophoresis data, displacement vs size and the
inverse relation size vs displacement.

When a system has a state defined by more than two variables, scatter plots
can be defined for each pair of state variables. For example, the population
data has four state variables, (Y, P, B, D). Three scatter plots can be formed by
plotting the population, the total births and the total deaths versus the year,
giving graphs of points (Y, P), (Y, B), (Y, D). Because the births and deaths
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are on the same scale, we can combine the plots as one. The inverse relations
(P,Y), (B,Y) and (D,Y) contain the same information from a different view
and are not shown.
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Figure 1.3.5 Scatter plot of population, births and deaths with respect to
time.

We can also look at relationships between other pairs of variables. For
example, we can look at how the number of births or deaths relate to the pop-
ulation, plotting (P, B) and (P, D), or how the number of births relate to the
number of deaths with (B, D). The graph showing the relation between births
and deaths to time (above) is very similar to the graph showing the relation
between births and deaths to population (below). However, the relation be-
tween the births and deaths illustrates that sometimes variables do not show
a clear relation.
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Figure 1.3.6 Graphs showing the relations (P, B), (P, D), and (B, D).

1.3.4 Graphs of Equations

An equation gives an abstract representation of a relationship between vari-
ables by stating that two expressions are equal in value. Just as the state
of an experimental system is defined by the value of the variables defining the
state, an equation can be considered as a mathematical way to define relation-
ships between variables of an abstract system. A solution to the equation
is a state for the variables such that the equation is true. The graph of an
equation generalizes a scatter plot by including all solutions of the equation.
If we choose an ordering for the variables (e.g., alphabetical), the values for
the variables can be conveniently listed as an ordered list. When two variables
are involved in an equation, the ordered list is called an ordered pair, or point,
like (z,y), and the graph of the equation is typically a curve in the plane.
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Example 1.3.7 The equation
2 + 3y =12

involves two variables, x and y, and is the equation of a line. The expressions in
the equation are 2x + 3y and 12. The values x = 3 and y = 2, corresponding to
the ordered pair (x,y) = (3,2), provide one solution because for those values,

2z + 3y =2(3) + 3(2) = 12,

so that the equation is true. On the other hand, (x,y) = (4,1) is not a solution
because for that state,

2z + 3y =2(4) + 3(1) =11

and 11 # 12. Some other solutions include the points (6,0) and (0,4). The
line corresponding to this equation represents the set of all such solutions. The
points (3,2), (6,0) and (0,4) are on the line, while (4,1) is not.

T T T T

Example 1.3.8 The equation
u? 4+ v% =16 + 6u

also involves two variables, u and v. The expressions in the equation are
u? +v? and 16 + 6u. Using ordered pairs (u,v), the points (3,5) and (3, —5)
are solutions. That is, if (u,v) = (3,5), the expressions have the same value:

u? + 02 =32 4+52=9+25 =34,
16 + 6u = 16 + 6(3) = 16 + 18 = 34.

It is possible to show that the graph of solutions for this equation is a circle
centered at (3,0) with radius 5. Other points on this circle include such points
as (—2,0) and (6, —4). You should verify that these are also solutions, at least
for one or two points to reinforce the idea that a solution makes the statement
of the equation true.

5, |
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O

It is usually difficult to know how to sketch the graph of an arbitrary

equation. Computer utilities that support implicit plots can be used. For

example, the online graphing calculator at desmos.com allows you to enter an

equation involving variables z and y. We also could use computational systems,
such as SageMath shown below, to create an implicit plot.

# Declare the variables

var("u,v")

# Create a graphics object from an implicit plot

myplot = implicit_plot(u*2+v*2==16+6*u, (u,-5,10), (v,-5,5))
# Show the graph with axis labels

show(myplot, axes_labels=['u','v'])

When an equation is written as a dependent variable being equal to an ex-
pression involving an independent variable, we can easily generate points that
are in the solution set using a table with the independent variable in the first
column and the dependent variable in the second column. We choose conve-
nient values for the independent variable, compute the value of the expression
that depends on that variable, and then use that resulting value for the de-
pendent variable. All such points will be solutions to the equation. This is
precisely how a graphing calculator works internally; it computes many such
points very quickly and connects the points with line segments.

Example 1.3.9 Rewrite the equation 2z + 3y = 12 so that y is the dependent
variable. Use the new equation to find four points in the solution set.

Solution. We need to isolate the variable y using balanced operations.

2z + 3y =12
3y = —2z + 12

1

2
=—-z+4
Y=73
The final equation y = —%x + 4 should be recognized as a slope-intercept
equation of a line. The slope is m = —% while the y-intercept value is b = 4.

Having solved for y, we can finish the task by using four different values for x
to find corresponding values for y. We do this in a table.

r y=—2z+4  (z,y)
0 —2(0)+4=4 (0,4
I —2(1)+4=% (1,3
2 —-22)+4=% (2,%)
3 —2(3)+4=2 (3,2

1.3.5 Parametrized Models and Regression Curves

Suppose we have data that appear to show a relation between two variables
in a scatter plot. We would like to extend the relation to data that are not in
the table of known values. If we had a mathematical equation that described
our relation, we could use that equation to find the solution that would match
the desired values. As a practitioner, we choose a parametrized model and
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then use a computational tool to select the best model given our data. The
most common computational strategy is called regression.

A parametrized model is an equation relating state variables that in-
cludes additional variables representing model parameters. The model is
identified by choosing particular values for each of the parameters. Once the
parameters are known, the equation establishes a relation for the state vari-
ables. A given parametrized model describes an entire family of different rela-
tions, one relation for each choice of parameters.

The most common example in algebra of a parametrized model is a linear
equation

y=mx+b.

The symbols m and b are the model parameters, and x and y are the state
variables. The particular equation y = 2x — 5 is in this family of relations
based on the parameter values m = 2 and b = —5.

Another example of a parametrized model,

y=azx?+br+ec,

which has three parameters a, b, and ¢, can be used to create relations whose
graphs are parabolas. The simplest parabola, y = z2, corresponds to the
parameter values a = 1, b = 0, and ¢ = 0. Curiously, linear models are
contained in this family as well by choosing a = 0. Our earlier example y =
2z — 5 could have been obtained from this model using a = 0, b = 2, and
c= —b.

Notice that the symbols used for the parameters do not have universal
meaning. In the linear parametrized models, we had chosen b to represent the
y-intercept value. In the quadratic models, the parameter b was used for the
coefficient of z.

Regression is a strategy to select parameters for a parametrized model in
such a way that it “best” matches data for a given relation. Mathematical
equations are exact. Real data exhibit uncertainty and randomness. Conse-
quently, there usually aren’t parameter values that will match all of the data
simultaneously. The most common regression algorithms seek to the sum of
the squared errors and are called least-squares regression. Spreadsheets
and graphing calculators that find a trend line for data use this type of regres-
sion. We revisit finding parametrized model to match exact data in a later
section.

A trend line or a trend curve resulting from regression provides a model
that allows us to predict values where there are not observed data. When the
prediction occurs between observed data, such prediction is called interpo-
lation. If the prediction is occurring beyond the extremes of the data, such
prediction is called extrapolation. We can use the value for one variable and
the regression equation to solve for the predicted value of the related variable.
Often, a formula may not describe all of the data but provides a good ap-
proximation for a certain range of values. Interpolation is usually safer than
extrapolation.

Example 1.3.10 Consider the population example with the scatter plot of the
number of deaths plotted with respect to the total population size. Find the
linear regression model for these data and predict the number of deaths in a
year if the population were 300 million.

The easiest tool to find a regression model seems to be at the website
desmos.com/calculator. The site desmos.com does not support scientific no-
tation for data entry, we can make a modified model. Let P= P/10® be the
population in units of 100 million and let D=D /106 be the annual death rate
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in units of 1 million. We are going to enter the data shown in the table below.

P B P B P B P B
2.530  2.170 2.604 2.315 2.850 2.416 2.984 2.426
2.565 2.176 2.727 2.314 2.876  2.443 3.012 2.424
2.599  2.269 2.758  2.337 2.901 2.448 3.041 2.472
2.631 2.279 2.790 2.391 2.928 2.397 3.068 2.437
2.663 2.312 2.822  2.403 2.955 2.448 3.094 2.468

1. Create a table to enter the data. Either click the + menu and select table
or type table in the formula field.

2. Enter the population values P in the column z; and the corresponding
death rate values D in the column y;. The data are now plotted and you
should see they look roughly linear.

3. We now construct the parametrized model for the data. In Desmos, this
is done by creating an equation using the tilde symbol ~ in place of an
equals. If we want to use the parametrized model D = aP + b with
parameters a and b, we would type into the next formula y1 ~ a x1 + b.

4. Desmos will report values for the parameters a and b and draw the
trend line through the scatter plot. The parameters are identified as
a = 0.486666 and b = 0.992711 so that the model equation is

D = 0.486666P + 0.992711.

Specify static image with @preview attribute, -:
Or create and provide automatic screenshot as
images/interactive-1-preview.png via the mbx script

www. desmos . com/calculator/my9xzvkfea

-106

e Deaths
2.2 - —— Trend ||

1}
| | | |
2.6 28 3 3.2
Population 108

We can now use the model to predict the number of deaths per year for a
population of 300 million. This corresponds to P = 300 x 10 = 3 x 10® so
that P = 3. Using the parametrized model, we find

D = 0.486666(3) + 0.992711
= 2.452691
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Because D is the number of deaths in units of millions, the model predicts
2,452,691 deaths per year for a population of 300 million. Since the original
data only had four significant digits, we should not expect any more digits
accuracy in the model prediction. We would predict 2.453 million deaths. O

Example 1.3.11 Consider the electrophoresis gel data. Suppose we had an-
other DNA sample of unknown length that traveled a distance of D = 282
pixels. Use a model to estimate the length of the DNA sample.

Solution. Because we know the distance displaced in the gel and want to
predict the length of the polymer, we treat D as the independent variable and
L as the dependent variable. We will look at the scatter plot (D, L) with
the length of the DNA L graphed with respect to the distance traveled in the
gel D (Figure 1.3.4). The data appear smooth with a slight upward curve.
A nonlinear model will be required to model the bend, such as a quadratic
parametrized model,
L=aD?+bD +c.

We enter the data in a table and apply regression with our model. In
Desmos, we would create a table for (z1,y;) with values of D in z; and values
of L in y;. We then calculate model parameters using yl ~ a x1*2 + b x1
+ ¢. The resulting model parameters are a = 0.0573428, b = —43.381, and
c = 8241.57. Consequently, the trend curve is modeled by

L = 0.0573428D% — 43.381D + 8241.57.

The graph of the data with the trend curve is shown below.
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Using our value for D, we can find the value of L using the model,
L = 0.0573428(282)? — 43.381(282) + 8241.57 ~ 568.26.

Since our original data had 3 significant digits, we would estimate the length
of the DNA in question as L = 568 nucleotides. In this way, a regression of
known electrophoresis data allows us to estimate lengths of other molecules.

O

You should note that the number of significant digits reported is not the
same as the uncertainty in the prediction. The degree to which the original
data vary around the trend curve leads to uncertainty in the coefficients of the
regression model and subsequent uncertainty to the trend curve itself. In the
last example, rounding the model parameters themselves to 3 significant digits
would have changed the predicted length by 11 nucleotides. Analysis of this
uncertainty is a topic for statistics and is outside the scope of this text. For
simplicity, we use models to make predictions and then round to comparable
precision as the data.
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1.3.6 Summary

Quantities that can be measured correspond to state variables. A system
is the collection of all possible variables. The state of the system is the
collection of values measured for all of the variables simultaneously. An
important part of communication is describing all relevant variables and
introducing their names.

A relation between two variables can often be visualized graphically using
a scatterplot. An equation is the mathematical idealization of a relation.
The graph of an equation involving two variables, say = and y, shows all
solutions as points (z,y).

When the equation is written as a dependent variable equal to an ex-
pression of the dependent variable, points on the graph can be quickly
tabulated using the formula.

Using regression to find a trend line or regression curve can give an
approximate relation corresponding to observed data. Treating the re-
sulting equation as a model equation can give approximate predictions
of states of the system.

1.3.7 Exercises

Each problem has an equation involving two variables. Determine whether
each of the given states for those variables are in the solution set.
1. 3x—-2y=8
(a) (z,y) =(0,-4)
(b) ('T7 y) <1a _2)
(e) (z,y) = (4,2)
2. 2w+5z—3=w?+ 22
(a) (w,z) =(-2,2)
(b) (w,2) =(=1,3)
(c) (w,2) =(3,2)
Each problem has an equation involving multiple variables. Solve for the indi-
cated dependent variable.
3. Perimeter of Rectangle. Given 2L 4+ 2W = P, solve for W.
4. Volume of Rectangular Prism. Given V = LW H, solve for L.
5. Volume of Cylinder. Given V = 7r2h, solve for h.
6. Ideal Gas Law. Given PV = nRT, solve for P.

Given an equation relating two variables, solve for the indicated dependent
variable. Use your resulting expression to calculate the value for that variable
given the values of the indicated independent variable. Make note of any values
that are not defined. Plot the corresponding points in the solution set of the
equation on a graph.

7.
8.

Given the equation 4245y = 20, find y for each value z € {1,2,3,4,5}.

Given the equation np = 1000, find n for each value p € {10, 20, 25, 40, 50}.
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Graph two dependent variables representing the expressions on each side of the
equation. Use the points of intersection to identify solutions to the equation.
Verify that the values you identify are solutions by testing whether make the
equation true.

9. 3x—-5=x+2

10. =z+3
T

11. 423 - 922 =2—6

Additional DNA samples were run in the same electrophoresis gel as described
in Example 1.3.11. Using the data and regression curve from that example,
estimate the length of each sample. Indicate whether the approximation is
appropriate.

12. Estimate the length of a DNA sample that traveled 200 pixels.
13. Estimate the length of a DNA sample that traveled 335 pixels.
14. Estimate the length of a DNA sample that traveled 350 pixels.

A Voltage—Resistance—Current Relationship A simple electric circuit
has an applied voltage V' (volts) and a variable load resistance R (kilohms).
When the circuit is closed, current flows through the circuit, measured as the
current I (amperes). When the voltage was held constant at V' = 9 V, the
resistance and current were measured with values recorded in the table below.
The following group of problems are based on these data.

V (V)| R(kQ) | I(A)
9.0 0.84 | 0.0107

9.0 1.2 0.0073
9.0 1.8 0.0050
9.0 2.7 0.0033
9.0 3.4 0.0026

15. Create a scatter plot of (R, I). Would a trend line make sense for this
data? Explain.

16. Conductance G is the reciprocal of resistance, G = 1/R. Create a
scatter plot of (G,I). Would a trend line make sense for this data?
Explain.

17. One of the previous scatter plots should have had a meaningful trend
line. State an appropriate regression equation as a model and use it
to predict the current I when the resistance is R = 2.1 k).

Population-Growth Relationships The number of births and of deaths
in a population generally depends on the size of the population. The table
below gives population data for ten of the twelve highest population cities in
the state of Virginia for the year 2012. The data include the population P and
the total number of births B and deaths D for the year recorded for each city.
The following group of exercises are based on these data.
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City P B D
Virginia Beach | 447021 | 6270 | 2828
Norfolk 245782 | 3773 | 1827

Chesapeake 228417 | 2805 | 1582
Richmond 210309 | 2939 | 1849
Newport News | 180726 | 2905 | 1438
Alexandria 146294 | 2763 | 686

Roanoke 97469 | 1492 | 1172
Portsmouth 96470 | 1534 | 980
Suffolk 85181 | 1087 | 726

Lynchburg 77113 | 1062 | 779

18. Create a scatter plot of (P, B) and find the equation of the trend line.
The cities of Hampton and Harrisonburg were left off the list with
populations of P = 136836 and P = 50981, respectively. Use the
trend line regression model to predict the number of births in these
cities during 2012. Which calculation is an example of interpolation
and which is extrapolation?

19. Create a scatter plot of (P, D) and find the equation of the trend
line. Use the trend line regression model to predict the number of
deaths - in Hampton and Harrisonburg during 2012. (See the previous
problem for population values.) Which calculation is an example of
interpolation and which is extrapolation?

Which of the calculations were examples of interpolation and which were ex-
amples of extrapolation?



