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10.1 Antiderivatives

We have previously studied the differentiation operator. Given a function

relationship between two variables x
f
7→ Q, the derivative f ′ is the function

relating x to the rate of change dQ
dx

. Differentiation is the operation that goes

maps f
d

dx7→ f ′. Because f ′ is itself a function, we can apply differentiation again

f ′

d

dx7→ f ′′. This process can repeat indefinitely.
Consider as an example f(x) = x4 + 2x2 − 3x. There is a sequence of

functions corresponding to the derivatives:

f(x) = x4 + 2x2 − 3x,

f ′(x) = 4x3 + 4x − 3,

f ′′(x) = 12x2 + 4,

f (3)(x) = 24x,

f (4)(x) = 24,

f (5)(x) = 0,

f (6)(x) = 0.

This pattern continues with f (n)(x) = 0 for n = 5, 6, 7, . . ..
As the example above illustrates, given a function we can find its derivative.

One of the major themes of mathematics is the idea of inverse operations. Is
there an inverse operation to differentiation? That is, given f(x), instead of

computing f ′(x), can we find a function F (x) so that F (x)
d

dx7→ f(x)? This
inverse operation, using f(x) to find F (x), is called antidifferentiation.

In this section, we define antiderivatives. We discuss why a function has
infinitely many different antiderivatives. Based on the First Part of the Fun-
damental Theorem of Calculus, we recognize that accumulation functions are
special examples of antiderivatives for continuous rates of accumulation. Mo-
tivated by this observation, we introduce the indefinite integral as the notation
for antidifferentiation. Examples will illustrate how we use our known differ-
entiation rules to develop corresponding antidifferentiation rules.

10.1.1 Terminology

Definition 10.1.1 Antiderivatives. Given a function f(x), we say that
F (x) is an antiderivative of f(x) if f(x) is the derivative of F (x). That is,
F ′(x) = f(x). ♦

The derivative of any constant is zero, so adding a constant to a function
creates a new function that has the same derivative as the original. This means
that differentiation is not one-to-one.

Example 10.1.2 Compare the following derivatives:

d

dx
[x2 + 3x] = 2x + 3,

d

dx
[x2 + 3x − 1] = 2x + 3,

d

dx
[x2 + 3x + 4] = 2x + 3.

Each of the functions have the same derivative. We say that x2+3x, x2+3x−1,
and x2 + 3x + 4 are all antiderivatives of 2x + 3. More generally, we know
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x2 + 3x + C will be an antiderivative for any constant value C. �

If we know that a function F (x) is an antiderivative of f(x), then we know
that all functions of the form F (x) + C, where C is a constant, are also an-
tiderivatives. This shows that infinitely many different functions have the same
derivative. We call all such functions antiderivatives.

We will later prove the following theorem. It states that the only way that
two antiderivatives can be different is that they differ by a constant. The proof
of the theorem will use a Mean Value Theorem for derivatives.

Theorem 10.1.3 Suppose that F (x) and G(x) are both antiderivatives of f(x)
on an interval I. That is, for all x ∈ I we have

F ′(x) = G′(x) = f(x).

Then there is a constant C so that for all x ∈ I, G(x) = F (x) + C.

Consequently, knowing just one antiderivative allows us to determine all
possible antiderivatives by adding some constant. Suppose F (x) is an an-
tiderivative of f(x). Then any other antiderivative must be F (x) + C for some
constant C. If we leave the constant as an unspecified parameter, we call this
the general antiderivative. Graphically, different antiderivatives correspond
to a vertical translation of the graph. That is, all antiderivatives have the same
graph shifted up or down relative to one another.

In the case that f(x) is continuous on some interval I, we can define an
accumulation function starting at any convenient point a ∈ I,

A(x) =

∫ x

a

f(z) dz.

By the Part One of the Fundamental Theorem of Calculus, we know that
A′(x) = f(x). That is, A(x) is itself an antiderivative of f(x) and any other
antiderivative could be written F (x) =

∫ x

a
f(z) dz + C.

Owing to this close connection between antiderivatives and integrals, the
standard notation for finding antiderivatives is with the integral symbol using
an indefinite integral. An indefinite integral will not have any limits of inte-
gration, uses the same variable of integration as the independent variable, and
refers to antiderivatives rather than definite integrals.

Definition 10.1.4 Indefinite Integrals. Given a function f(x), the in-

definite integral of f(x) with respect to x, written

∫

f(x) dx, is the gen-

eral antiderivative of f(x). That is, if F (x) is any antiderivative such that
F ′(x) = f(x), then

∫

f(x) dx = F (x) + C.

♦

Using our earlier example, we can write the indefinite integral of 2x + 3 as
∫

2x + 3 dx = x2 + 3x + C.

The indefinite integral represents the infinite family of all antiderivatives of
2x + 3.

10.1.2 Examples

For the most part, finding antiderivatives corresponds to recognizing how a
function might have been computed as a derivative. Every statement about
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differentiation has an equivalent statement about integrals. To check whether a
proposed function is an antiderivative, we calculate its derivative and compare
that with the function inside the integral.

Example 10.1.5 Find
d

dx

[

(3x + 5)4
]

and then write down the equivalent

statement as an integral.

Solution. The last operation in the expression (3x + 5)4 is the power acting
on the expression u = 3x + 5. The derivative requires a chain rule:

d

dx

[

(3x + 5)4
]

= 4u3 du

dx

= 4(3x + 5)3(3)

= 12(3x + 5)3.

Once we know the derivative, we can write the equivalent integral

∫

12(3x + 5)3 dx = (3x + 5)4 + C.

This says that (3x + 5)4 is an antiderivative of 12(3x + 5)3, along with that
same formula plus any constant. �

We must learn to recognize which differentiation rules would result in a
particular formula for a given function. Because differentiation is a linear
operator, antidifferentiation is as well.

Theorem 10.1.6 If F (x) is an antiderivative of f(x) and G(x) is an an-

tiderivative of g(x), then for any constants c1 and c2, c1F (x) + c2G(x) is an

antiderivative of c1f(x) + c2g(x). We write

∫

[c1f(x) + c2g(x)]dx = c1

∫

f(x) dx + c2

∫

g(x) dx.

If the integrand f(x) is expressed as a sum of terms, we typically first try
to find antiderivatives of each term.

Example 10.1.7 Find

∫

4x3 − 2e2x dx.

Solution. We are looking for a function F (x) for which F ′(x) = 4x3 − 2e2x.
From experience computing derivatives, we know

d

dx
[x4] = 4x3,

d

dx
[e2x] = 2e2x.

This suggests we should use the difference F (x) = x4 − e2x. We verify by
differentiation:

F ′(x) =
d

dx
[x4 − e2x] = 4x3 − 2e2x.

This verifies that F (x) is an antiderivative of 4x3 − 2e2x. The general an-
tiderivative is written as the indefinite integral,

∫

4x3 − 2e2x dx = x4 − e2x + C.

�

Most derivative rules do not result in a product of expressions. The product



10.1. ANTIDERIVATIVES 473

rule for derivatives results in the sum of two products. The quotient rule
results in in difference of quotients. Only the chain rule creates a derivative by
multiplying two expresions together. Consequently, if we see an integrand with
expressions multiplied together, we should consider whether we would benefit
from expanding the product as a sum.

Example 10.1.8 Find

∫

x2(x2 − 3) dx.

Solution. The function f(x) = x2(x2 −3) is a product that can be expanded
to a sum using the distributive property.

f(x) = x4 − 3x2.

Our experience with the power rule suggests that we should be able to integrate
this expression. We know

d

dx
[x5] = 5x4.

To eliminate the unwanted constant multiple of 5, we can multiply both sides
by 1

5 to get
d

dx

[1

5
x5

]

= x4.

This suggests an antiderivative

F (x) =
1

5
x5 − x3.

We verify using regular differentiation rules:

F ′(x) =
d

dx
[
1

5
x5 − x3]

=
1

5
(5x4) − 3x2

= x4 − 3x2 = f(x).

We have found
∫

x2(x2 − 3) dx =
1

5
x5 − x3 + C.

�

Just as it is useful to collect and learn the basic building blocks for differ-
entiation, we can collect and learn basic building blocks for integration. Each
derivative rule has its equivalent statement about antiderivatives. If we incor-
porate the chain rule, we extend each of the elementary rules to generalized
rules.

1. Power Rule: For any power n 6= −1,

∫

xn dx =
1

n + 1
xn+1 + C.

2. Generalized Power Rule: For any power n 6= −1 and expression
u,

∫

un ·
du

dx
dx =

1

n + 1
un+1 + C.
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3. Logarithm Rule:
∫

1

x
dx = ln(|x|) + C.

4. Generalized Logarithm Rule: For any expression u,

∫

u′

u
dx = ln(|u|) + C.

5. Elementary Exponential Rule: For any real value k 6= 0,

∫

ekx dx =
1

k
ekx + C.

6. Generalized Exponential Rule: For any expression u,

∫

eu ·
du

dx
dx = eu + C.

Example 10.1.9

∫

x2ex3

dx

Solution. Because the integrand has a product of expressions, we should
begin by looking to see if the problem involves the chain rule. The exponential
term ex3

involves the expression u = x3 which has a derivative u′ = 3x2. Notice
that the other factor in the problem, x2, differs from u′ only by a constant
multiple. That is, we can recognize our problem as a generalized exponential

∫

x2ex3

dx =

∫

1

3
(3x2)ex3

dx

=
u=x3

∫

1

3
eu ·

du

dx
dx

=
u=x3

1

3
eu + C

=
1

3
ex3

+ C.

�

10.1.3 Finding a Particular Antiderivative

Adding a constant to a function represents a graphical transformation of a ver-
tical shift. Consequently, different antiderivatives have the same graph shifted
vertically from one another. Consider the function f(x) = x2 −4x. Integration
gives us

∫

x2 − 4x dx =
1

3
x3 − 2x2 + C.

The function F (x) = 1
3 x3 − 2x2 has the derivative F ′(x) = x2 − 4x, as does

every function F (x) + C.

The following dynamic graph has a slider for the integration constant C.
Notice that changing the value of C shifts the graph up or down. See if you
can find a value so that the graph y = F (x) + C goes through (x, y) = (3, 2).
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A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 10.1.10 y = F (x) + C

We can solve for the integration constant to find a particular antiderivative
passing through a given point.

Example 10.1.11 Find the constant C so that F (x) = 1
3 x3 −2x2 +C satisfies

F (3) = 2.

Solution. Substitute the value x = 3 into the equation for F (x).

F (3) =
1

3
(33) − 2(32) + C

= 9 − 18 + C

= −9 + C

Because we want F (3) = 2, we create the equation

−9 + C = 2

so that we can solve for C to get C = 11. �

Example 10.1.12 Find a function P (t) so that P ′(t) = 20e−2t + 3t and
P (0) = 50.

Solution. Start by finding the general antiderivative.

∫

[20e−2t + 3t]dt = −10e−2t +
3

2
t2 + C

We therefore see that P (t) = −10e−2t + 3
2 t2 + C. Now we substitute t = 0 and

P (0) = 50 to solve for C.

P (0) = −10e0 +
3

2
(02) + C

50 = −10 + C

60 = C

Having found C = 60, we can conclude

P (t) = −10e−2t +
3

2
t2 + 60.

�

Because the derivative represents a rate of change, finding particular an-
tiderivatives is equivalent to finding a quantity as a function of an independent
variable when we know the rate of change as a function and we know an initial
value.

Example 10.1.13 A cup of coffee starts at a temperature of 160 degrees
Fahrenheit. The temperature changes at a rate of change (degrees per minute)
modeled by the formula −3.6e−0.04t where t is the time in minutes. Find the
temperature as a function of time.

Solution. Let T represent the temperature of the cup of coffee in degrees
Fahrenheit. Our given information shows that

dT

dt
= −3.6e−0.04t.
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The temperature T must be an antiderivative of this formula,

T =

∫

−3.6e−0.04t dt

=
−3.6

−0.04
e−0.04t + C

= 90e−0.04t + C.

To find the value of C, substitute t = 0 and T = 160.

T = 90e−0.04t + C

160 = 90e0 + C

160 = 90 + C

70 = C

Consequently, we have T = 90e−0.04t + 70. �

10.1.4 Summary

1. An antiderivative of f(x) is any function F (x) so that d
dx

[F (x)] = f(x).
If F (x) is an antiderivative of f(x), then so is F (x) + C for any value of
C.

2. The Fundamental Theorem of Calculus guarantees that every continuous
function has an antiderivative. In particular, if f(x) is continuous on an
interval I with a ∈ I, then the accumulation function

A(x) =

∫ x

a

f(z) dz

is an antiderivative on the interval I.

3. We use the indefinite integral as the operator for antidifferentiation.
For a function f(x) with antiderivative F (x), we write

∫

[f(x)] dx = F (x) + C

where C (or any other chosen symbol) represents an arbitrary constant

of integration.

4. The constant of integration graphically represents an arbitrary vertical
shift of the graph of a function. Given any point representing an initial
value, we can solve for the constant of integration so that there is the
graph of an antiderivative which passes through the given point.

10.1.5 Exercises

Calculate the specified derivative and then write the equivalent indefinite in-
tegral.

1.
d

dx

[

2x4
]

2.
d

dx

[

(2x + 3)5
]
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3.
d

dx

[

√

x2 + 3
]

4.
d

dx

[

ln(|x2 − 4x|)
]

5.
d

dx

[

e3x4
]

6.
d

dx

[

x2e−3x
]

7.
d

dx

[

x ln(|x|)
]

8.
d

dx

[x − 1

x − 3

]

Compute the indefinite integral by finding the general antiderivative. Some
integrands need to be rewritten before integration.

9.

∫

−3x5 + 2x2 + 3 dx

10.

∫

2x − 4x−1 + 5x−3 dx

11.

∫

x3(3x2 − 4x + 7) dx

12.

∫

(x + 4)(x − 8) dx

13.

∫

x2 + 4x − 5

3x2
dx

14.

∫

e2x dx

15.

∫

4e−3x dx

16.

∫

xex2

dx

17.

∫

2x3e−x4

dx

18.

∫

1

x + 3
dx

19.

∫

3

2x + 1
dx

20.

∫

x

x2 + 4
dx

21.

∫

e2x

e2x + 1
dx

22.

∫

−xe−x + e−x dx

23.

∫

2xe2x − e2x

x2
dx

Use the given information to find the particular function.
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24. Find f(x) if f ′(x) = 2x − 5 with f(1) = 4.

25. Find g(x) if g′(x) = 3e−3x with g(0) = 2.

26. The velocity of a vehicle on track that runs left to right is v(t) =
1
2 t2 − 8t + 24. If the vehicle is at a position s = 0 when t = 1, find the
position s(t) as a function of time.

27. A population changes at a rate defined by R(t) = 0.24t2 − 24t + 216,
where t is measured in years. If the population is P = 120000 when
t = 0, find the population as a function of time.

28. A radiation detector absorbs radiation at a rate of R(t) = 5e−0.1t

(grays per minute). Find the total amount of radiation absorbed by
the detector as a function of time t (minutes) since t = 0.


