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10.3 Definite Integrals and Antiderivatives

An accumulation function with rate f(x) is a function A defined as the definite
integral of f(x) from a fixed lower limit c to the independent variable as the
upper limit,

A(x) =

∫ x

c

f(z) dz.

The motivation for such a function was that the definite integral computes the
total change of a quantity when the rate of change is given. By the splitting
property of integration, if A(x) is continuous then

∫ b

a

f(x) dx = A(b) − A(a).

The Fundamental Theorem of Calculus showed that if f(x) is continuous,
then A(x) is differentiable and A′(x) = f(x). That is, A(x) is an antiderivative
of f(x). This motivates another method for computing definite integrals.

In this section, we apply the Fundamental Theorem of Calculus to evaluate
definite integrals using any convenient antiderivative. This application is called
the Second Part of the Fundamental Theorem of Calculus. We demonstrate
these calculations with several examples.

10.3.1 The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus shows that an accumulation function
is an antiderivative of the integrand. The Mean Value Theorem implies that
any other antiderivative will differ from the accumulation function as an an-
tiderivative by some constant. The Second Part of the Fundamental Theorem
of Calculus will then allow us to calculate definite integrals by calculating the
change in any antiderivative.

Theorem 10.3.1 The Fundamental Theorem of Calculus, Part Two
(FTC2). Given any function f(x) that is continuous on an interval I, let

F (x) be an antiderivative so that F ′(x) = f(x) for all x ∈ I. Then for values

a, b ∈ I,
∫ b

a

f(x) dx =
[

F (x)
]b

a
= F (b) − F (a).

Proof. Because f(x) is continuous, we can define an accumulation function

A(x) =

∫ x

a

f(z) dz.

Because A(x) and F (x) are both antiderivatives, with A′(x) = F ′(x) = f(x)
for all x ∈ I, there is some constant C so that A(x) = F (x) + C. Because
A(a) = 0, we have F (a)+C = 0 so that C = −F (a). By the splitting property
of integrals, we have

∫ b

a

f(x) dx = A(b) = F (b) + C = F (b) − F (a).

�

When evaluating definite integrals using the Fundamental Theorem of Cal-
culus, we are substituting the evaluation of a definite integral, which is defined
as the limit of a Riemann sum, with the change in an antiderivative. To in-
dicate such a substitution, we should refer to the Fundamental Theorem of
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Calculus, perhaps using the abbreviation FTC. We can simultaneously make
the substitution and note the formula for the antiderivative by using bracket
evaluation notation.

Given any function F (x), the notation
[

F (x)
]b

a
means to evaluate the

change of the expression when x goes from a to b:

[

F (x)
]b

a
= F (b) − F (a).

When the formula for F (x) is simple, the brackets can be dropped and replaced
by a vertical bar on the right,

F (x)
∣

∣

b

a
= F (b) − F (a).

Example 10.3.2 Evaluate

∫ 4

1

x2 dx.

Solution. Let us consider the two steps separately. Then we will see how to
represent this more compactly using evaluation notation.

First, we need an antiderivative, computed as an indefinite integral

∫

x2 dx =
1

3
x3 + C.

This tells us that F (x) = 1
3 x3 is an antiderivative, as is F (x) = 1

3 x3 + 4 (or
any other constant). We’ll use the first, since it is simpler; we only need one
antiderivative, not all of them.

Second, the Fundamental Theorem of Calculus allows us to evaluate the
definite integral as the change in F (x).

∫ 4

1

x2 dx = F (4) − F (1)

=
1

3
(4)3 − 1

3
(1)3

=
64

3
− 1

3

=
63

3
= 21

This can be written more compactly by writing the formula of the an-
tiderivative inside the evaluation notation while simultaneously indicating the
use of the Fundamental Theorem of Calculus:

∫ 4

1

x2 dx
FTC
=

[1

3
x3

]4

1

=
1

3
(4)3 − 1

3
(1)3

=
64

3
− 1

3
= 21

Notice that we did not need the constant of integration because the Fundamen-
tal Theorem of Calculus only requires one antiderivative. We generally choose
the most convenient one with a zero constant. �

Evaluation of definite integrals involves recognizing antiderivatives and then
evaluating their change.
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Example 10.3.3

∫ 2

1

e3x dx
FTC
=

[1

3
e3x

]2

1

=
1

3
e6 − 1

3
e3

=
e6 − e3

3

�

Example 10.3.4 Find

∫ 3

1

x(3x2 + 1)4 dx.

Solution. The integrand has a product of x with u4 where u = 3x2 + 1. For
the chain rule to have been the source of this product, we would need du

dx = 6x

rather than x.

∫ 3

1

x(3x2 + 1)4 dx =

∫ 3

1

1

6
(6x)(3x2 + 1)4 dx

FTC
=

[1

6
· 1

5
u5

]x=3

x=1

=
[ 1

30
(3x2 + 1)5

]3

1

=
1

30
(3(32) + 1)5 − 1

30
(3(12) + 1)5

=
285

30
− 45

30

=
17, 210, 368

30
− 1, 024

30
=

17, 209, 344

30
= 573, 644.8

�

We have to be careful about satisfying the hypotheses. For example, if f(x)
is not continuous over the interval of integration, we can not use antiderivatives
to calculate the definite integral.

Example 10.3.5 Find

∫

1

2x − 1
dx. How can we use that result for the fol-

lowing definite integrals?

1.

∫ 2

0

1

2x − 1
dx

2.

∫ 3

1

1

2x − 1
dx

Solution. The integrand is of the form u−1 where u = 2x−1. The derivative
of u is u′ = 2. In order to antidifferentiate the chain rule, we rewrite

∫

1

2x − 1
dx =

∫

1

2

2

2x − 1
dx =

1

2
ln(|2x − 1|) + C.

To see if the antiderivative can be used in a definite integral, we need
to see where f(x) = 1

2x−1 is continuous. A discontinuity occurs at x = 1
2 .

Consequently, a definite integral using the antiderivative can only be used for

intervals that do not include 1
2 . Thus,

∫ 2

0

1

2x − 1
dx can not be computed. On
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the other hand,

∫ 3

1

1

2x − 1
dx

FTC
=

[

ln(|2x − 1|)
]3

1

= ln(|2(3) − 1|) − ln(|2(1) − 1|)
= ln(5) − ln(1) = ln(5).

�

10.3.2 Composition with Accumulation Functions

The First Part of the Fundamental Theorem of Calculus tells us the deriva-
tive of accumulation functions. Knowing the chain rule allows us to compute
derivatives of functions defined by integrals with expressions in the limits of
integration.

Example 10.3.6 Compute the following derivatives.

1.
d

dx

∫ x

1

e−z2

dz

2.
d

dx

∫ x2

x

e−z2

dz

3.
d

dx

∫

√
x

0

1√
z4 + 1

dz

Solution. When solving problems involving definite integrals, it is often help-
ful to explicitly remind yourself of the concept of accumulation functions and
the fundamental theorem of calculus’s conclusion.

1. Define A(x) =

∫ x

1

e−z2

dz, which is the accumulation function with in-

tegrand f(z) = e−z2

. The Fundamental Theorem of Calculus tells us

that A′(x) = f(x) = e−x2

. The following work would communicate these
results:

A(x) =

∫ x

1

e−z2

dz

A′(x)
FTC
= e−x2

d

dx

∫ x

1

e−z2

dz = A′(x) = e−x2

2. To compute
d

dx

∫ x2

x

e−z2

dz, we first need the accumulation function

A(x) =

∫ x

1

e−z2

dz with rate f(x) = e−x2

. The integral that defines

our function involves a composition by the splitting property,

∫ x2

x

e−z2

dz = A(x2) − A(x).

When we differentiate this, we must use the chain rule knowing

d

dx

[

A(u)
]

= A′(u)
du

dx

FTC
= f(u)

du

dx
.
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The following work would communicate these results:

A(x) =

∫ x

1

e−z2

dz

d

dx

∫ x2

x

e−z2

dz =
d

dx

[

A(x2) − A(x)
]

FTC
= f(x2) · d

dx
[x2] − f(x)

= e−(x2)2 · 2x − e−x2

= 2xe−x4 − e−x2

3. To compute
d

dx

[

∫

√
x

0

1√
z4 + 1

dz

]

, we will need to define an accumula-

tion function and then apply the Fundamental Theorem of Calculus to
find the derivative required.

A(x) =

∫ x

0

1√
z4 + 1

dz

A′(x)
FTC
=

1√
x4 + 1

d

dx

[

∫

√
x

0

1√
z4 + 1

dz

]

=
d

dx
[A(

√
x)]

= A′(
√

x)
d

dx
[
√

x]

=
1

√

(
√

x)4 + 1
· (

1

2
x−1/2)

=
1√

x2 + 1
· 1

2
√

x

=
1

2
√

x(x2 + 1)

�

10.3.3 Summary

1. The Fundamental Theorem of Calculus, Part 1, together with the Mean
Value Theorem, imply that for any continuous function f(x), an accu-
mulation function and any other antiderivative will differ by a constant
value.

2. The Fundamental Theorem of Calculus, Part 2, states that the definite
integral of a function that is continuous on the interval of integration can
be substituted for the change in any antiderivative of the rate. That is,
if F (x) is an antiderivative of f(x) and f(x) is continuous on the interval
containing a and b,

∫ b

a

f(x) dx
FTC
=

[

F (x)
]b

a
= F (b) − F (a).

3. The Fundamental Theorem of Calculus, Part 1, together with the chain
rule, allows us to compute the derivative of functions where the limits
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of integration are expressions involving the independent variable. Let u

and w be expressions involving x and suppose that f(x) is a continuous
function.

d

dx

[

∫ w

u

f(z) dz
]

FTC
= f(w)

dw

dx
− f(u)

du

dx

10.3.4 Exercises


