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10.4 L’Hôpital’s Rule

Limits involving combinations of continuous functions are generally computed
by evaluating the values of the functions. Arithmetic involving infinity will
follow elementary rules. Suppose L > 0 is a positive number. Then when
performing arithmetic, the following rules will hold.

∞ ± L = ∞

∞ + ∞ = ∞

−∞ + −∞ = −∞

L · ∞ = ∞

−L · ∞ = −∞

∞ · ∞ = ∞

∞ · −∞ = −∞

−∞ · −∞ = ∞

However, when calculations would result that attempt to cancel away an
infinite quantity (or zero), the limit has an indeterminate form. That is, cal-
culations involving any of the following arithmetic are in an indeterminate
form,

∞

∞
∞ − ∞

0

0
0 · ∞.

The general strategy for evaluating indeterminate limits involves rewriting the
limit in a different form, or finding another limit that is known to be equivalent.

L’Hôpital’s rule is a theorem that allows us to rewrite a limit which has an
indeterminate form 0

0 or ∞

∞
using derivatives.

Theorem 10.4.1 L’Hôpital’s Rule. Suppose f(x) and g(x) are functions

so that

lim
x→a

f(x)

g(x)
→

0

0
or lim

x→a

f(x)

g(x)
→

∞

∞
.

If lim
x→a

f ′(x)

g′(x)
exists, then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Proof. Consider the case where f(x) → 0 and g(x) → 0 and g(x) 6= 0 as x → a.
If f or g is not continuous at x = a, consider the continuous extensions so that
f(a) = 0 and g(a) = 0. Similar to the proof of the Mean Value Theorem, define

h(z) = f(z)−
f(x)
g(x) ·g(z), treating x as constant. Note that h(z) is differentiable

and therefore continuous because f ′(x) and g′(x) must both exist for the limit
of the quotient to exist. In addition, h(a) = 0 and h(x) = 0.

Rolle’s theorem implies that h′(z) = 0 for some z between a and x,

h′(z) = f ′(z) −
f(x)

g(x)
g′(z) = 0,

so that
f ′(z)

g′(z)
=

f(x)

g(x)
.

Because z is between a and x, as x → a we must have z → a.

lim
x→a

f(x)

g(x)
= lim

z→a

f ′(z)

g′(z)
.

�
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It is essential that you verify that the hypotheses of L’Hôpital’s rule apply
before replacing the expressions with their derivatives. Limits and derivatives
are not the same. Computing a limit does not always mean we are computing
a derivative.

In addition, make note that changing the limit using L’Hôpital’s rule is not
computing the derivative of a quotient. It is replacing the limit of a quotient
with the limit of a new quotient involving two derivatives.

Our first few examples will illustrate that L’Hôpital’s rule gives the same
result as methods we learned earlier involving factoring.

Example 10.4.2 Evaluate the limit lim
x→2

x2 − 3x + 2

x2 + x − 6
using factoring and using

L’Hôpital’s rule.

Solution. If we try to use the value directly, we find an indeterminate form,

lim
x→2

x2 − 3x + 2

x2 + x − 6
→

22 − 3(2) + 2

22 + 2 − 6
=

0

0
.

We must find alternative representations of this limit to determine its value.
Using factoring, we rewrite the limit by canceling common factors.

lim
x→2

x2 − 3x + 2

x2 + x − 6
= lim

x→2

(x − 2)(x − 1)

(x + 3)(x − 2)

= lim
x→2

x − 1

x + 3
=

2 − 1

2 + 3
=

1

5

Because the original limit had indeterminate form 0
0 , L’Hôpital’s rule will

apply with f(x) = x2 − 3x + 2 and g(x) = x2 + x − 6. We replace the limit of
f(x)/g(x) with the limit of f ′(x)/g′(x), assuming that limit exists.

lim
x→2

x2 − 3x + 2

x2 + x − 6
= lim

x→2

2x − 3

2x + 1
=

2(2) − 3

2(2) + 1
=

1

5

We see that both approaches give the same limit, exactly as predicted by
L’Hôpital’s rule. �

Sometimes, we need to apply L’Hôpital’s rule more than once when the
modified limit is still in indeterminate form.

Example 10.4.3 Evaluate the limit lim
x→∞

2x2 + x − 3

x2 − x − 5
using factoring and us-

ing L’Hôpital’s rule.

Solution. Limits at infinity generally require factoring out the fastest grow-
ing terms.

lim
x→∞

2x2 + x − 3

x2 − x − 5
= lim

x→∞

x2(2 + 1
x

− 3
x2 )

x2(1 − 1
x

− 5
x2 )

In this form, we see that the limit has form ∞

∞
. By canceling the common

factor x2, we find

lim
x→∞

2x2 + x − 3

x2 − x − 5
= lim

x→∞

2 + 1
x

− 3
x2

1 − 1
x

− 5
x2

=
2 + 0 − 0

1 − 0 − 0
= 2.

Because the limit had form ∞

∞
, we can use L’Hôpital’s rule to rewrite the

limit in a new form,

lim
x→∞

2x2 + x − 3

x2 − x − 5
= lim

x→∞

4x + 1

2x − 1
.
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This limit is still of form ∞

∞
, so we can use L’Hôpital’s rule again to get yet

another equivalent form,

lim
x→∞

2x2 + x − 3

x2 − x − 5
= lim

x→∞

4

2
= 2.

Again, either approach will give the same value. �

One of the advantages of L’Hôpital’s rule is that it allows us to evaluate
limits where factoring does not help.

Example 10.4.4 Compute lim
x→3

2x − 8

x2 + x − 12
.

Solution. The first step is always to try evaluating directly.

lim
x→3

2x − 8

x2 + x − 12
→

23 − 8

32 + 3 − 12
=

0

0

The limit has indeterminate form 0
0 so that we can use L’Hôpital’s rule. In

this case, note that the numerator 2x − 8 does not factor. L’Hôpital’s rule is
the preferred approach.

A typical solution would be written as follows.

lim
x→3

2x − 8

x2 + x − 12
→

23 − 8

32 + 3 − 12
=

0

0

L’H
= lim

x→3

2x ln(2)

2x + 1
=

23 ln(2)

2(3) + 1
=

8 ln(2)

7

The first line shows that the original limit is an indeterminate form. Writing
“L’H” over the equal sign shows that we are using L’Hôpital’s rule to replace
the original limit with the modified limit involving derivatives. Also, we used
the derivative of an exponential, d

dx
[bx] = bx ln(b). �

Indeterminate limits that are not fractions of the form 0
0 or ∞

∞
do not

directly apply L’Hôpital’s rule. You must first use algebra to rewrite them in
a way that they do have the appropriate form.

Example 10.4.5 Evaluate lim
x→0+

x ln(x).

Solution. When x → 0+, we have ln(x) → −∞. As written, the limit has
the indeterminate form lim

x→0+
x ln(x) → 0 · −∞. This is indeterminate because

multiplying ∞ by zero would be a form of trying to cancel the infinite. Instead,
we need to rewrite the formula so that it is a fraction.

There are two approaches:

x ln(x) =
ln(x)

x−1
=

x

(ln(x))−1
.

When choosing which approach will be better, you should ask yourself which
formula will lead to simpler derivatives. For this problem, we use the first
expression, knowing that x−1 → +∞ as x → 0+.

lim
x→0+

x ln(x) = lim
x→0+

ln(x)

x−1
→

−∞

∞

L’H
= lim

x→0+

x−1

−1x−2
= lim

x→0+

x−1x2

−x−2x2

= lim
x→0+

−x = 0.

�
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Example 10.4.6 Evaluate lim
x→∞

x2e−3x.

Solution. We know limit values for the exponential: e∞ = ∞ and e−∞ = 0.
The given limit will be an indeterminate form ∞·0. So we rewrite it in quotient
form and then use L’Hôpital’s rule.

lim
x→∞

x2e−3x = lim
x→∞

x2

e3x
→

∞

∞

L’H
= lim

x→∞

2x

3e3x
→

∞

∞

L’H
= lim

x→∞

2

9e3x
→

2

∞
= 0

Notice that we used L’Hôpital’s rule twice when the first time resulted in
another indeterminate form. �

We end with an example involving powers. When both the base and the
exponent are variable, we must interpret a power in terms of composition with
the exponential function,

uv = exp(ln(uv)) = exp(v ln(u)) = ev ln(u).

Because the natural exponential function is continuous, we only need to eval-
uate the limit of v ln(u) and then evaluate the exponential function at the
corresponding limit. This is a consequence of Theorem Theorem 5.3.22.

Example 10.4.7 Evaluate lim
x→∞

(1 +
r

x
)xt, where r and t are constant values.

Solution. The function for which we compute a limit can be rewritten as a
composition with the natural exponential function:

f(x) = (1 +
r

x
)xt

= exp
(

ln
(

(1 + rx−1)xt
))

= exp
(

xt ln(1 + rx−1)
)

.

So we start by evaluating the limit of the expression inside the exponential.

lim
x→∞

xt ln(1 + rx−1) → ∞ · ln(1 + 0) = ∞ · 0

This limit has an indeterminate form.
We rewrite the indeterminate limit as a fraction so that we can use L’Hôpital’s

rule. From our earlier experience, we will leave the logarithm in the numerator.

lim
x→∞

xt ln(1 + rx−1) = lim
x→∞

t ln(1 + rx−1)

x−1
→

t · ln(1)

0
=

0

0

L’H
= lim

x→∞

t · 1
1+rx−1 · d

dx
[1 + rx−1]

−x−2

= lim
x→∞

t · 1
1+rx−1 · (−rx−2)

−x−2

= lim
x→∞

t ·
1

1 + rx−1
· (r) → t ·

1

1 + 0
· r = rt

Using the Limit of a Continuous Composition, we conclude

lim
x→∞

exp
(

xt ln(1 + rx−1)
)

= exp
(

lim
x→∞

xt ln(1 + rx−1)
)

= exp(rt) = ert.
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