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2.2 Constructing Functions

Overview. We have learned that functions provide a map between two vari-
ables of a system. In modeling, the functions are almost always defined by
formulas, with the dependent variable being equal to an expression involving
only the independent variable. As we analyze these functions with calculus,
the rules of computation for limits, derivatives, and integrals will depend on
how a function is algebraically put together.

This section focuses on how expressions and functions are constructed. We
start by reviewing elementary functions that represent basic operations on the
independent variable. These will serve as the building blocks for our functions.
We will then consider the basic arithmetic operations of addition, subtraction,
multiplication, and division.

2.2.1 Elementary Functions

Every expression defining a function can be interpreted as a combination of
various operations. Operations that act on a single expression are functions.
Operations that combine multiple expressions include the binary arithmetic
operations, particularly addition and multiplication. In order to characterize
expressions, we first review the elementary operations that can be considered
as elementary functions. We will consider an elementary operation to be a
single operation on the variable.

The simplest operations are the constant functions and the identity func-
tion. As an operation, the constant function ignores the variable and always
gives the same value for the output. The identity function, on the other hand,
has no net change with the variable and returns an output that matches the
input.

Definition 2.2.1 A constant function is a function that has the same output
value for every input value, f(x) = c for some constant c. ♦

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.2.2 The constant function f(x) = 3 as a map x
f7→ 3.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.2.3 The graph of the constant function y = f(x) = 3 in the (x, y)
plane.

Definition 2.2.4 The identity function is a function where the output value
is the same as the input value, f(x) = x. ♦

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.2.5 The identity function f(x) = x as a map x
f7→ x.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.2.6 The graph of the identity function y = f(x) = x in the (x, y)
plane.

The four basic arithmetic operations of addition, subtraction, multiplica-
tion, and division can be used as functions. Because these binary operations
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require two operands (the expressions being acted on), the elementary arith-
metic operations will involve the variable and a particular constant.

For example, x 7→ x + 4 is an elementary operation that adds the constant
4 to the independent variable. Similarly, x 7→ 4x is an elementary operation
that multiplies the input by 4. Because subtraction is really addition with an
additive inverse (the negation) of a number, an operation like x 7→ x − 4 is
equivalent to x 7→ x + −4. Likewise, division is really multiplication with a
multiplicative inverse (the reciprocal) of a number, so an operation like x 7→
x ÷ 4 is equivalent to x 7→ 1

4 x.

This motivates two new elementary operations: the constant sum and the
constant multiple.

Definition 2.2.7 For every real number (constant) c, we can define the con-
stant sum operation

x 7→ x + c

and the constant multiple operation

x 7→ cx.

♦

A constant sum represents a mapping that maintains a constant offset be-
tween the input and output. For example, the function x 7→ x − 3 has an
output that is always 3 units to the left of the input. We can think of the con-
stant sum as a shift or translation. This mapping is illustrated in the following
interactive figure.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.2.8 The constant sum f(x) = x − 3 as a map x
f7→ x − 3.

A constant multiple represents a mapping that maintains a constant scaling
or ratio between the input and output. For example, the function x 7→ 2x
has an output that is always twice the value of the input. We can think of
the constant multiple as stretching or squeezing by a scale. This mapping is
illustrated in the following interactive figure.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.2.9 The constant multiple f(x) = 2x as a map x
f7→ 2x.

There are two more arithmetic operations possible with constants. Taking
a constant and subtracting the variable, as in x 7→ 4 − x, is not equivalent to
a constant sum because we are not adding something to x. Similarly, dividing
a constant by a variable, as in x 7→ 4 ÷ x, is not equivalent to a constant
multiple. These operations each involve two steps. The first step to each,
however, introduces a new elementary operation.

Definition 2.2.10 The negation or additive inverse operation is the function
x 7→ −x, defined for all x. The reciprocal or multiplicative inverse operation
is the function

x 7→ ÷x =
1

x
,

defined for all x 6= 0. ♦

The negation operation maps a value x to its opposite value. This corre-
sponds to a reflection on the numberline across zero.
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A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.2.11 The negation f(x) = −x as a map x
f7→ −x.

The reciprocal operation maps a value x to its multiplicative inverse. The
product of a number and its inverse always equals 1. We could think of this
operation as a multiplicative reflection across 1 for positive values and across
−1 for negative values.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.2.12 The reciprocal f(x) = ÷x = 1/x as a map x
f7→ ÷x.

The other elementary functions that we have studied can also be considered
to be elementary operations. These include the basic powers and roots and
exponentials and logarithms.

Definition 2.2.13 The elementary power function with power p is the
function that raises the variable to a constant power,

powp(x) = xp.

Because roots are also powers, roots are also elementary operations,

pow−1
p (x) = p

√
x = x(1/p).

♦

Definition 2.2.14 The elementary exponential function with base b,
where b > 0 and b 6= 1 is the function that raises a constant base to the
power of the variable,

expb(x) = bx.

Logarithms, as the inverses of exponentials, are included as elementary func-
tions as well,

exp−1
b (x) = logb(x).

♦

Additional elementary functions that we study later are the trigonometric
functions. Trigonometric functions are used in relation to triangles as well as
cyclic or periodic behavior. There are two fundamental trigonometric func-
tions, the sine and cosine functions, from which the others are defined. We
will study these functions in more depth later, but for the purpose of summary
include the following table here.

sin(x) sine

cos(x) cosine

tan(x) =
sin(x)

cos(x)
tangent

sec(x) =
1

cos(x)
secant

cot(x) =
cos(x)

sin(x)
cotangent

csc(x) =
1

sin(x)
cosecant

The trigonometric functions are periodic, which implies that they must not
be one-to-one. Inverse trigonometric functions are defined to solve equations
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for a limited interval and provide additional elementary functions for our use.

sin−1(x) = arcsin(x) arcsine

cos−1(x) = arccos(x) arccosine

tan−1(x) = arctan(x) arctangent

sec−1(x) = arcsec(x) arcsecant

The arccotangent and arccosecant functions can be defined but are not used
in practice.

2.2.2 Algebraic Combinations and Composition

Functions defined by a formula are generally formed by combining these oper-
ations and functions into more complicated expressions. One of the most valu-
able skills in calculus is the ability to recognize how a formula is constructed.
Many rules in calculus are named according to which operation forms the ex-
pression of interest. The basic operations of combination are the arithmetic
operations of addition (a sum), subtraction (a difference), multiplication (a
product), and division (a quotient) along with the operation of function
composition.

Composition occurs whenever we apply a function or operation to an ex-
pression rather than a simple variable. That is, x4 is a simple power operation,
but (2x+1)4 is a composition because the power acts on the expression 2x+1.
We use the arithmetic operations when we take two expressions and combine
them. We use composition when we apply a function or operation to a single
expression. The expression on which a composition acts is called the input
expression or inner expression.

Most formulas involve more than one operation. An expression is classified
by the last operation that would be applied. The order of operations deter-
mines the priority with which operations are applied. In algebra, you may
have learned the acronym PEMDAS, which stands for Parentheses, Exponents,
Multiplication, Division, Addition, and Subtraction. Subtraction is really the
addition of an inverse, so differences can be classified as sums. The same tech-
nically applies for division being multiplication, but this is less frequently used.
We will change the meaning of E to stand for Every function, including powers
and exponentials, as all functions have higher precedence than the arithmetic
operations.

Example 2.2.15 Classify each function by the last operation that is applied,
and then classify each component expression. Make note of when a binary
operation involves a constant instead of two variable expressions.

1. f(x) = x2 − 3x sin(x)

2. g(x) = (2x + 1)(x − 3)

3. h(x) = (x2 + 3)4

4. j(x) =
2xy√
3x − 1

5. k(x) = 5e2x

Solution.

1. The function f(x) = x2 − 3x sin(x) is a difference of the expressions x2

and 3x sin(x). The first component expression x2 is a power function
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(p = 2) of x; the second component expression 3x sin(x) is a product of
3x and sin(x). (We could also have used a sum of x2 and −3x sin(x).)

2. The function g(x) = (2x+1)(x−3) is a product of the expressions 2x+1
and x − 3. The first expression 2x + 1 is the constant sum of 2x and 1
while the second expression is the constant sum of x and −3.

3. The function h(x) = (x2 +3)4 has the power (p = 4) as its last operation.
Because we treat powers as functions, this is a composition. The inner
expression is u = x2 + 3, and the operation is the elementary power
pow4(u) = u4. The inner expression is a sum of x2 and the constant 3.

4. The function j(x) =
2xex

√
3x − 1

is a quotient of expressions 2xex and
√

3x − 1. The first expression 2xex is a product of 2x and ex; the sec-
ond expression

√
3x − 1 is a square root (a function) of the expression

u = 3x − 1, meaning this is a composition with the operation would
be

√
u. We could also think of the square root as an elementary power

function,
√

u = pow1/2(u) = u1/2.

5. The expression 5e2x is a constant multiple of 5 with e2x. the expression
e2x is a natural exponential function (base e) in composition, eu, with
the expression u = 2x.

�

Although binary operations like addition and multiplication are defined in
terms of two operands, we often see them in expressions involving more than
two terms, such as a+b+c or 3xy. By convention, the operations are performed
left to right as (a + b) + c or (3x)y. Because addition and multiplication are
commutative and associative, this order doesn’t matter; we act as if it were
one sum or one product. In calculus, however, all of the rules are based on the
binary nature of the operations. When classifying the structure of a formula,
we should identify exactly two operands.

One of the most common ways to combine expressions in mathematics is
to create a sum of constant multiples of those expressions. Such a combination
is called a linear combination. The calculus operations of limits, integrals,
and derivatives all satisfy a linearity in that they preserve linear combinations.
It is therefore useful to recognize them.

Definition 2.2.16 Given a finite set of expressions, u = (u1, u2, . . . , un), and
the same number of constants, c = (c1, c2, . . . , cn), the linear combination
of the expressions u with coefficients c is the sum of constant multiples of the
expressions

c1u1 + c2u2 + · · · + cnun.

♦

The non-negative integer powers of x are the powers x0 = 1, x1 = x, x2,
x3, etc. Linear combinations of non-negative integer powers establish a family
of functions called polynomials.

Definition 2.2.17 Let n be a non-negative integer. A polynomial of degree
n is a function that can be written in the form

f(x) = anxn + · · · + a2x2 + a1x + a0,

where a0, a1, . . . , an are constants called the coefficients. The term with the
highest power anxn is called the leading term and an is called the lead-
ing coefficient. A single term akxk is called a monomial of degree k. A
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polynomial with exactly two terms is called a binomial. ♦

Example 2.2.18 The polynomial f(x) = 3x3 + x2 − 5x + 8 is a linear com-
bination of the powers (1, x, x2, x3). The degree of the polynomial is n = 3,
and the coefficients are (c0, c1, c2, c3) = (8, −5, 1, 3). The leading coefficient is
c3 = 3. �

Example 2.2.19 Write down the polynomial f(x) of degree n = 4 with coef-
ficients (c0, c1, c2, c3, c4) = (16, 0, −8, 0, 1).

Solution. Because c1 = 0 and c3 = 0, we skip the terms with powers x1 = x
and x3. We usually write polynomials in decreasing powers, so we have

f(x) = 1x4 + 0x3 + −8x2 + 0x1 + 16x0

= x4 − 8x2 + 16.

�

2.2.3 Models From Arithmetic

Understanding how functions are constructed also helps us develop models.
When a quantity has contributions from multiple sources, we might create a
model for each source and then add the contributions. Multiplication often
combines factors that affect a single contribution. Division is used when the
quantity of interest is defined as a ratio.

Example 2.2.20 Suppose that a population of an diploid organism has a trait
characterized by a single gene. That gene has two alleles, a dominant allele
A and a recessive allele a. The dominant trait will be present in two possible
ways. Either the individual has two copies of the dominant allele (homozygous
dominant) or the individual has one copy of each allele (heterozygous). If
the population is subject to random mating that is independent of this trait,
then the probability that an individual in the next generation will exhibit the
dominant genotype can be calculated knowing the proportion of all alleles that
are dominant.

Because there are two distinct ways to exhibit the dominant genotype,
the probability of exhibiting the dominant genotype will be the sum of the
probabilities of being homozygous dominant and heterozygous. This is often
described as the sum rule of probability, which states that the probability of
some outcome that can be attained through multiple pathways is the sum of
the probabilities of each of the possible pathways. To calculate the probability
of each pathway, we use a product rule associated with sequential events. When
a pathway requires that a sequence of random outcomes occur, the probability
of that individual pathway is the product of the probabilities of the individual
outcomes along the pathway.

We can create a diagram showing all of the pathways by creating a decision
tree. An individual receives one allele from each parent. Our tree will consider
which allele is received from each parent. Let us call p the proportion of alleles
in the current generation with the dominant allele. The remaining alleles must
be recessive, and we call q = 1 − p the proportion of alleles that are recessive.
The probability associated with receiving an allele from a parent will be equal
to the proportion of that allele in the population.
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a

a −→ aaq

A −→ aA

p
q

A

a −→ Aaq

A −→ AA

p

p

Figure 2.2.21 Tree showing inheritance of alleles from two parents.

There are three pathways that result in the dominant trait: AA, Aa, and
aA. The probabilities associated with each pathway are p2, pq = p(1 − p), and
qp = (1−p)p, respectively. Consequently, the probability that an offspring will
have the dominant trait will be

f(p) = p2 + p(1 − p) + (1 − p)p.

The structure of this unsimplified formula reveals a direct relation to the tree.
A slightly simplified version,

f(p) = p2 + 2pq = p2 + 2p(1 − p),

combines the two pathways resulting in a heterozygous genotype. �

Example 2.2.22 Suppose a population of plants reproduces annually and is
subject to density dependence. Density dependence typically results from the
effects of competition and crowding with other individuals. The number of
seeds each plant can produce is likely to depend on the population density.
In addition, the probability that individual seeds will germinate and grow to
maturity in the subsequent generation also depends on the population density.
If we could characterize these dependencies as functions, then we could create
a function that would predict the population size in a subsequent generation.

Let P0 represent the population size of the current generation. The sub-
script 0 refers to the number of generations in the future. We wish to create a
function f : P0 7→ P1, where P1 is the population one generation in the future.
Suppose that S0 measures the average number of seeds produced by each plant
in the current generation. The function s : P0 7→ S0 characterizes the depen-
dence of seed production on the population size so that s(P0) gives the average
number of seeds per plant in a population of size P0. Now suppose that σ(P0)
is another function that gives the success probability for an individual seed to
survive to maturity coming from a population of size P0.

We can use these elements to construct our function f(P0). The total
number of seeds produced will be the current population size P0 times the
average number of seeds produced per plant. This means that P0s(P0) gives
the total number of seeds produced. Not all seeds survive to maturity, so we
multiply this by the success probability to give

f(P0) = P0 s(P0) σ(P0).

Thus, the function used to project the subsequent generation’s population size
is constructed as a product of terms. If there were other ways that seeds could
mature to new plants, we would add similar models for those other terms. �

Example 2.2.23 At the beginning of 2018, the US national debt was 20.493
trillion dollars. At the end of the year, the debt had risen to 21.974 trillion
dollars. At the beginning of 2018, the US population was 326.2 million. A year
later, the population was 328.2 million.

Develop a model for the per capita debt as a function of time, where per
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capita debt is calculated as the ratio of the total debt to the total population
size.

Solution. The per capita debt will be the total debt D (trillions of dollars)
divided by the total population P (millions of individuals). To create a model,
we need to make some modeling choices for t 7→ D and t 7→ P , where t measures
the year.

The simplest model might be to use linear functions for both. For a change
in time ∆t = 1 (year), we can see that

∆D = 21.974 − 20.493 = 1.481

∆P = 328.2 − 326.2 = 2.0

which are also slopes (dividing by ∆t = 1 year). Consequently, our linear
models for D and P are given by

D = 20.493 + 1.481(t − 2018)

P = 326.2 + 2.0(t − 2018)

The per capita debt according to this model will be approximated by

f(t) =
D

P
=

20.493 + 1.481(t − 2018)

326.2 + 2.0(t − 2018)
.

We expect that populations and debt grow exponentially. Consequently,
an exponential model for our functions might be more appropriate. Using
exponential models, D = A bt and P = B at, we use our data to find equations
for the model parameters.

t = 2018 ⇒ 20.493 = A b2018

⇒ 326.2 = B a2018

t = 2019 ⇒ 21.974 = A b2019

⇒ 328.2 = B a2019

We might use the 2018 equations to solve for A and B,

A =
20.493

b2018

B =
326.2

a2018

Then we substitute our results into the 2019 equations:

21.974 =
20.493

b2018
b2019 = 20.493b

b =
21.974

20.493

328.2 =
326.2

a2018
a2019 = 326.2a

a =
328.2

326.2

Our models can now be written down:

D = A bt =
20.493

b2018
bt = 20.493 bt−2018

= 20.493

(

21.974

20.493

)(t−2018)
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P = B at =
326.2

a2018
at = 326.2 at−2018

= 326.2

(

328.2

326.2

)(t−2018)

The function for the per capita debt is then calculated as a ratio,

f(t) =
D

P
=

20.493 bt−2018

326.2 at−2018

=
20.493

326.2

(

21.974(326.2)

20.493(328.2)

)t−2018

≈ 6.2823 × 10−2 (1.0657)t−2018

Because we modeled the units of the debt as trillions of dollars and of the
population as millions of individuals, the units for the per capita debt is in
trillions of dollars per millions of individuals. To make sense of the units, it
would help to go back to simple units of dollars and individuals. We would
need to multiply D by 1012 to account for each debt unit representing a trillion
dollars. Similarly, we multiply P by 106 to account for each population unit
representing a million individuals. The per capita debt is the ratio, so we
multiply the numerator by 1012 and the denominator by 106, with a net effect
of multiplying by 106.

2015 2016 2017 2018 2019 2020 2021
0

20,000

40,000

60,000

80,000

linear
exponential

Figure 2.2.24 Models of US Per Capita Debt around 2018 in dollars per
person.

�

2.2.4 Piecewise-Defined Functions

It is often the case that we use different models for different parts of the
domain. When we introduced restricted domains, we defined functions by
stating an inequality that specified the domain. For example, the equation

f(x) = x2, x ≥ 0

defines a function with a domain [0, ∞) based on the restriction x ≥ 0. If we
wanted a different rule for x < 0, say

f(x) = −x, x < 0,

then the function now has domain (−∞, 0).
Functions that do this are called piecewise-defined functions. A piecewise-

defined function allows us to specify rules on different parts of the domain. The
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notation is similar to restricted domains, but we group all of the rules with a
curly brace. The function

f(x) =

{

x2, x ≥ 0,

−x, x < 0

is defined for all values x so that the domain is (−∞, ∞).

−3 −2 −1 1 2 3

2

4

(a) f(x) = x2, x ≥ 0

−3 −2 −1 1 2 3

2

4

(b) f(x) = −x, x < 0

−3 −2 −1 1 2 3

2

4

(c) f(x) =

{

x2, x ≥ 0,

−x, x < 0

Figure 2.2.25 Comparison of functions with restricted domains and a piecewise-
defined function.

Piecewise functions appear when there is a sudden change in behavior. The
income tax structure in the United States is called a graduated tax because
the tax rate increases as the amount of taxable income increases.

Example 2.2.26 For 2019, the first three IRS tax brackets for single individ-
uals are as follows:

1. If taxable income is not over $9700, then the tax is 10% of the taxable
income.

2. If taxable income is over $9700 but not over $39475, then the tax is $970
plus 12% of the excess over $9700.

3. If taxable income is over $39475 but not over $84200, then the tax is
$4543 plus 22% of the excess over $39475.

Create a piecewise function that calculates the tax given the taxable income.

Solution. The taxable income I is the independent variable. The “if” state-
ments describing the taxable income levels describe the intervals of the do-
main. The first tax bracket is for 0 ≤ I ≤ 9700, the second bracket is for
9700 < I ≤ 39475, and the third bracket is for 39475 < I ≤ 84200. Notice
how the phrase “not over” is interpreted as including the stated value. The
description of the tax amount uses percentages, which we will need to trans-
late as a decimal multiplication. In addition, the phrase “excess over” will be
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interpreted as subtraction. Putting the pieces together, we create the function

f(I) =











0.10I, 0 ≤ I ≤ 9700,

970 + 0.12(I − 9700), 9700 < I ≤ 39475,

4543 + 0.22(I − 39475), 39475 < I ≤ 84200.

The function could be extended further if we had additional information for
the remaining tax brackets. �

The absolute value function is a particularly important mathematical func-
tion defined piecewise. For values that are negative, the absolute value returns
the opposite (positive) value. For zero or for values that are already positive,
the absolute value returns the original value.

Definition 2.2.27 The absolute value function is defined as

abs(x) = |x| =

{

−x, x < 0,

x, x ≥ 0.

♦

2.2.5 Summary

• Functions defined by formulas are typically constructed from elementary
functions: constant functions, the identity function, power functions,
exponential functions, logarithms, and trigonometric functions.

• Combinations of expressions can be arithmetic (sum, difference, product,
or quotient) or the composition of functions.

• An expression is classified by the last operation used to construct that
expression.

• Binary operations involving a constant operand are special cases. They
can be constructed using only constant sums, constant multiples, and
reciprocals.

• A parametrized family of functions is a set of functions that have the
same structure with different constants. The constants that can change
are called parameters.

• Common parametrized families of functions are linear, exponential, and
power functions.

Parametric Formula Description

f(x) = mx + b linear, slope-intercept

f(x) = A xp power

f(x) = A bx exponential, general base b

f(x) = A ekx exponential, natural base e

• A polynomial is a linear combination of simple powers (1, x, x2, . . . , xn),
or, in other words, a sum of constant multiples of these powers,

f(x) = anxn + · · · + a2x2 + a1x + a0.

The constant multiples (a0, a1, . . . , an) are called the coefficients. The
term anxn is called the leading term.

• A piecewise-defined function uses different rules for different portions of
the domain.
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2.2.6 Exercises

1. Classify each elementary function.

(a) f(x) = π

(b) g(x) = x

(c) h(x) = xπ

(d) j(x) = πx

(e) k(x) = sin(x)

2. Classify each function according to the last operation. Then classify the
component expressions. Make note if the operation involves a constant
expression.

(a) f(x) = 4x4

(b) g(x) = 23x + 5

(c) h(x) = 35x−1

(d) j(x) = 3
√

x +
1

x2

(e) k(x) = 4x2e3x

(f) m(x) =
x2(3x − 1)

(x2 + 1)4

3. For each polynomial, determine the degree and list the coefficients.

(a) f(x) = 3x2 + 5x − 1

(b) f(x) = x3 − 2x + 8

(c) f(x) = x4 − 1

(d) f(x) = x4 + 4x3 + 6x2 + 4x + 1

Find the equation of the function x 7→ y, if possible, for each of the following
parametric models satisfying the states (x, y) = (0, 3) and (x, y) = (5, 9).

4. linear function

5. power function

6. exponential function

7. quadratic function of the form y = a + bx2

8. quadratic function of the form y = ax + bx2

Find the equation of the function x 7→ y, if possible, for each of the following
parametric models satisfying the states (x, y) = (1, 3) and (x, y) = (4, 6).

9. linear function

10. power function

11. exponential function

12. quadratic function of the form y = a + bx2

13. quadratic function of the form y = ax + bx2

14. a function the form y =
ax

x + b
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Use the description of each relation to create a corresponding piecewise-defined
function.

15. The marginal tax rate is the percentage rate applied to the amount of
taxable income that falls in the tax bracket. Based on the example, we
see the marginal tax rate is 10% for income no greater than $9700, 12%
for income greater than $9700 and no greater than $39475, and 22%
for income greater than $39475 and no greater than $84200. Define
the function that takes the taxable income and returns the marginal
tax rate for these three brackets.

16. Many bulk supplies are sold at a discount when enough items are pur-
chased at once. An online gem store sells packages with two amethyst
beads. If you purchase fewer than 15 packages, each package costs
$10.89. If you purchase at least 15 packages but fewer than 50, each
package costs $8.57. If you purchase at least 50 packages but fewer
than 100, each package costs $6.42. If you purchase at least 100 pack-
ages, each package costs $5.87. Define the function that takes the
number of packages ordered and returns the per package cost. Be
clear about the domain.

17. For the gem example in Exercise 2.2.6.16, define the function that
takes the number of packages ordered and returns the total cost of
the order.

18. An electronic scooter can be unlocked for $1.00 and then you are
charged $0.15 per minute of use. Partial minutes are rounded up
to the next minute, so a rental of two minutes and fifteen seconds
would be charged for three minutes or $1.45 total. Define a piecewise
function that gives the cost for rental times up to five minutes. What
is the domain?

19. A car has a gas tank that holds 12 gallons and drives 35 miles per
gallon. The owner starts with a full tank of gas, drives 300 miles,
refills the tank, and then drives another 200 miles. Define a piecewise
function that gives the amount of gas in the tank as a function of total
distance traveled. What is the domain? Are there any ambiguities?


