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2.3 Chains and Function Composition

Overview. When we studied how formulas are constructed, we introduced the
idea of function composition. Composition occurs whenever a function uses an
expression rather than a simple variable as its input. In this section, we study
the application of composition in terms of creating a chain of relationships
between dependent variables. Given a complex formula that involves composi-
tion, we will learn to identify these chains. We will also consider applications
of chains using formulas, graphs, and tables.

2.3.1 Composition and Chains of Relationships

An algebraic formula typically contains many different operations. If the for-
mula involves a single variable, then that formula could be used to define a
function. The function is the map that takes a value for the variable as its
input and returns the value of the expression as the output. We could think of
the function as a new operation; the formula provides the detailed instructions
on how to perform that operation.

Composition occurs whenever the output of one function acts as the input
to another function. For example, f(x) = (ln(x))2 takes the value of x, uses
that as the input to ln, the natural logarithm, and then squares the result.
This is a composition of the logarithm function with the squaring function. If
we introduced the power function pow2(x) = x2, then the expression could be
rewritten

(ln(x))2 = pow2

(

ln(x)
)

.

The parentheses of function notation illustrate that the expression ln(x) acts
as input to the pow2 function.

Because a function should be interpreted as a map between an independent
variable and a dependent variable, we can think of function composition as
a chain of relationships between more than two variables. In our working
example, suppose we introduce the dependent variable y = (ln(x))2. The
calculation involves two steps: first we compute the logarithm, then we square
the result. The result of that first operation is an intermediate variable, most
commonly chosen as u, and we say u = ln(x). The final operation is an action
applied to u, namely y = u2. The chain of relationships could be expressed as
the system of equations

{

u = ln(x),

y = u2.

The logarithm is used as the map x
ln
7→ u while the squaring function is the

map u
pow

27→ y. The overall calculation f(x) = (ln(x))2 provides the map x
f
7→ y.

When functions used in a composition are named, a composition operation
is represented by a small circle between their names. For our example, we
would have f(x) = pow2 ◦ ln(x). Because the convention for function notation
places the input on the right of the function name (and inside parentheses),
the function name on the right of the circle is the inner function that defines
the intermediate variable. The function name on the left of the circle is the
outer function that completes the calculation.

Many formulas can be interpreted as compositions. To identify a composi-
tion, you need to be able to identify that the calculation performs some action
on the result of an intermediate expression. However, you need to be careful
that you are not using the original independent variable except in the inter-
mediate expression. The intermediate expression itself can appear multiple
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times. It is often helpful to try to write down a chain of variables to represent
the composition. Start by identifying the intermediate expression and assign
it to some intermediate variable, such as u. This defines the inner function.
Then try to write the original expression only in terms of the new variable,
substituting every instance of the intermediate expression by your variable.
The resulting expression is the outer function.

Example 2.3.1 Express y =
2

3(x − 2)2 + 1
as a composition.

Solution. There are multiple ways we could express our relation as a com-
position. We can interpret the order of operations as a sequence of operations
acting on the original input x.

1. Take x.

2. Take the value and subtract 2.

3. Square the result.

4. Multiply the result by 3.

5. Take the result and add 1.

6. Divide 2 by the result.

Because each step in the operation takes the result of all prior steps, we could
define the intermediate expression after any of the operations.

Suppose we define the intermediate operation to be all of the steps through
squaring the result. Our intermediate variable defines our inner function,

u = g(x) = (x − 2)2.

The remaining steps in our description describe the outer function.

1. Take u.

2. Multiply the value by 3.

3. Take the result and add 1.

4. Divide 2 by the result.

As an equation, this becomes

y = h(u) =
2

3u + 1
,

which exactly corresponds to replacing the expression (x − 2)2 in the origi-
nal equation with the intermediate variable u. The composition defines the
equation

y = h ◦ g(x).

Choosing a different expression for our intermediate variable results in a
different choice for the composition. For example, if we had chosen an inner
function to be

u = p(x) = x − 2,

then the outer function would need to be

y = r(u) =
2

3u2 + 1
.
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Thus, we also have y = r ◦ p(x). Similarly, if we had chosen

u = Q(x) = 3(x − 2)2 + 1

then our outer function would be

y = S(u) =
2

u

to give y = S ◦ Q(x). �

Did you ever have to learn about an algebra topic completing the square?
If so, did you find yourself asking the question “Why are we doing this?” One
answer could be that a quadratic expression is not written in a way that it can
be interpreted as a composition, but after completing the square it is.

Example 2.3.2 Consider the expression x2 + 6x − 3. The expression is not a
composition because it involves addition of two unrelated terms that involve the
variable x. Completing the square is a strategy where the expression involving
only the x2 and x terms is recognized as matching the corresponding terms of a
squared binomial term. In this case, because 6 ÷ 2 = 3, we see that x2 + 6x − 3
has the same x2 and x terms as (x + 3)2 = x2 + 6x + 9. Consequently, because
we now know that

x2 + 6x = (x + 3)2 − 9,

we can write
x2 + 6x − 3 = (x + 3)2 − 12.

This new representation expresses our quadratic as the composition of three
simple operations: adding 3, squaring, and subtracting 12. �

When we are given two functions and compute their composition, we use
substitution to simplify our work. It is important to think about inputs and
outputs of functions. Function notation is about substitution, using whatever
expression appears as the input in place of the independent variable. Be careful
that you don’t think about multiplying by a function—we apply a function.
Otherwise, you are liable to make algebra errors.

Example 2.3.3 Suppose f(x) = 2x2 − 1 and g(x) = 2x + 5. Compute f ◦ g(x)
and g ◦ f(x).

Solution. Because function notation has the input on the right, composition
places the inner function to the right and the outer function to the left. We
start with f ◦ g(x) = f

(

g(x)
)

. Using the idea of a chain, we have an interme-
diate variable u = g(x) = 2x + 5. The composition asks for f(u) = 2u2 − 1,
substituting the independent variable with u. When we substitute the inner
function in place of u, we get

f ◦ g(x) = f(u) = 2(2x + 5)2 − 1.

Notice how the expression replacing u is placed inside parentheses.
Next, we find g ◦ f(x). We now have an intermediate variable u = f(x) =

2x2 − 1. The outer function then compute g(u) = 2u + 5. Using substitution,
this gives

g ◦ f(x) = g(u) = 2(2x2 − 1) + 5.

Once we have our expression using substitution, we could expand and sim-
plify the results:

f ◦ g(x) = 2(2x + 5)2 − 1 = 8x2 + 40x + 49

g ◦ f(x) = 2(2x2 − 1) + 5 = 4x2 + 1
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This example should make it clear that the order of composition is important.
�

2.3.2 Linking Maps through Chains

Composition corresponds to linking functions together, with the output of one
function becoming the input to another function. In the context of a physical
system, we are considering where the state involves multiple variables, say
(A, B, C, . . .). Suppose we know one function, f : A 7→ B, that determines
the value of B knowing the value of A. Then suppose know another function,
g : B 7→ C, that predicts the value of C from the value of B. If we link
these together in a chain, we can start with a value of A, compute the value
of B = f(A), and then use that value of B to compute the value of C = g(B).
Together, this composition creates a map g ◦ f : A 7→ C. Using substitution,
we have C = g

(

f(A)
)

, the output of f becoming the input to g.

A
a

B
b

f

C
c

g

The following dynamic figure allows us to explore how composition links
two functions together in a chain. The first (inner) function or map is g : x 7→
u = x + 3. The second (outer) function is f : u 7→ y = u2. As you change
the value of the input x, you can see where the functions map. The combined
action f ◦ g(x) = (x + 3)2 represents a single function that is the composition
of the steps.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.3.4 f ◦ g(x) = (x + 3)2

In the preceding subsection, we looked at composition in terms of formulas.
Maps between variables can also be represented in tables and graphs. We can
interpret composition by thinking through the relations between variables as
we work through the linked maps.

Example 2.3.5 Suppose f and g are functions defined (at least partially)
according to the following table. Find each of the following values.

1. f ◦ g(2)

2. g ◦ f(2)

3. f ◦ f(4)

4. g ◦ g(0)
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x f(x) g(x)

-4 2 4

-3 3 1

-2 2 -1

-1 1 -2

0 0 -3

1 -1 0

2 -2 2

3 -3 3

4 -2 4

Solution. When evaluating a function with the table, notice that the columns
for f(x) and g(x) use an independent variable x. This means that we will find
the input value in the x column and then find the corresponding out value in
the function’s column.

1. To find f ◦ g(2), we expand the substitution f ◦ g(2) = f
(

g(2)
)

. The
inner function is evaluated first to find g(2) = 2. That is, we find 2 in
the column for x (placeholder for the input), and looking in the column
of g(x) we find 2 as the output. This output is used in the chain linking
the function as the input for f ,

f
(

g(2)
)

= f(2) = −2.

2. To find g ◦ f(2), we will expand g ◦ f(2) = g
(

f(2)
)

. We start with the
inner function f(2) = −2. We then use the output as the input of the
outer function, g(−2) = −1. Consequently,

g
(

f(2)
)

= g(−2) = −1.

3. Continuing this pattern, we have

f ◦ f(4) = f
(

f(4)
)

= f(−2) = 2.

4. Similarly, we have

g ◦ g(0) = g
(

g(0)
)

= g(−3) = 1.

�

Example 2.3.6 Suppose f and g are functions with graphs as shown below.
Find each of the following values.

1. f ◦ g(2)

2. g ◦ f(2)

3. f ◦ f(2)

4. f ◦ g ◦ g(0)
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−4 −2 2 4

−4

−2

2

4

x

y = f(x)

−4 −2 2 4

−4

−2

2

4

x

y = g(x)

Solution. To evaluate a function when given a graph, we find the value of
the input along the x-axis. This is analogous to looking in the column of x

in a function’s table. Once we find the x-value, we imagine a vertical line at
that point and find the point that is included in the graph that intersects our
line. If there is no point included in the graph, then the value of x is not in
the domain. For composition, we will use the original input to evaluate the
inner function. Once we know the output value, we will use that result when
we evalute the outer function.

1. To evaluate f ◦ g(2) = f
(

g(2)
)

, we evaluate g(2) using the graph on the
right. The vertical line at x = 2 intersects our graph at the point (2, −1),
so we have g(2) = −1. Using that output as the input of f , we find
x = −1 on the x-axis of the graph on the left. The vertical line intersects
that graph at (−1, 3) so that f(−1) = 3. Putting this together gives

f
(

g(2)
)

= f(−1) = 3.

2. When we evaluate g ◦ f(2), we repeat the process but with f as the inner
function and g as the outer function.

g ◦ f(2) = g
(

f(2)
)

= g(−3) = 3.

3. When we evaluate f ◦ f(2), the same function is used as the inner and
outer function. This means that when we find the output f(2) = −3, we
use the same function to evaluate f(−3) = −3. Consequently, we have

f ◦ f(2) = f
(

f(2)
)

= f(−3) = −3.

4. When an expression has more than one composition, we proceed through
the chain from the inside out. The expression f ◦g◦g(0) has an innermost
function g. The vertical line x = 0 intersections the graph of g at the
point (0, 1). The open points at (0, 0) and (0, 2) represent end-points of
the graph segments immediately to the left and to the right of the point
but are not included as actual points. Consequently, g(0) = 1 which is
now the input of the next g operation. We have

f ◦ g ◦ g(0) = f ◦ g(1) = f(2) = −3.

�

2.3.3 Applications of Composition

In modeling settings, composition arises in the context of chains of related
variables. Whenever we model relationships between variables, we ideally cre-
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ate functions to describe these relations. A chain occurs when we know a
relation between, say, A and B and another relation between B and C. Each
of these relations might be based on observations or experiments. The chain
allows us to identify a relation between A and C, even if a direct observation
or experiment is not possible or convenient.

Example 2.3.7 The radius r, circumference C, and area A of a circle are all
related. The equation C = 2πr defines C as a function of r and the equation
A = πr2 defines A as a function of r. Use composition to define the function
C 7→ A.

Solution. The final output should be area A, which we can compute if we
know r. We can use the relation between C and r to solve for r as a function
of C. That is, we want to create a composition of C 7→ r and r 7→ A.

C = 2πr

C

2π
= r

This equation defines C 7→ r, so that we have a chain

r =
C

2π
,

A = πr2.

Composition corresponds to substitution of r by its formula,

A = πr2 = π
( C

2π

)2

=
πC2

22π2
=

C2

4π
.

�

Example 2.3.8 Suppose you are blowing up a balloon with air. What is the
radius of the balloon as a function of time?

Solution. The question is intentionally somewhat vague in order to illustrate
the modeling process. Without more information, the question is ill-posed and
there is not a clear answer. What simplifying assumptions could we make that
will allow us to create a reasonable answer?

1. What shape is the balloon? We could make a simplifying assumption
that it is approximately a sphere.

2. How fast is air being added? If we pretend to blow air in a balloon, we
can time how long each breath takes. With a quick internet search, we
can discover the typical amount of air blown per breath.

3. Keep things steady. It adds complications to the process if we try to
account for inhaling between breaths or slowing down because we are
tired. Let us replace human breaths blowing up the balloon with a model
that would correspond to steady airflow that matches the average rate of
filling.

With our assumptions identified, we can start to establish our model using
equations. A sphere has a relationship between volume and radius according
to the equation V = 4

3
πr3. Because we want the radius r as the final output

variable, we need V 7→ r which we find by solving for r.

r =
3

√

3V

4π
=

(

3V

4π

)1/3

.
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Our information about filling the balloon will give us a model for t 7→ V . I
found a result showing that there is about 1/2 liter of air exhaled in a breath,
which corresponds to 500 cm3. With a timer, I approximated that each steady
blow takes about 5 seconds, including inhalation to prepare for the next breath.

This means that the balloon is gaining 100 cm3

s
. If air flows at a steady rate,

the relation t 7→ V is linear and starts at V = 0 when t = 0. This gives us our
second function in the chain,

V = 100t.

The composition of the chain t 7→ V 7→ r will give us a model for t 7→ r, which
we create using substitution:

r =
3

√

300t

4π
.

�

Our examples have included questions where a function was composed with
itself. This actually occurs in practical settings, such as where a function maps
from the value of some quantity to the value of the same quantity at a later
time.

Example 2.3.9 A population’s growth and decline depend on how the popula-
tion size relates to its carrying capacity. If the population is below its capacity,
then abundance of resources will lead the population to grow. If the popula-
tion is too large, then physical constraints will cause the population to decline.
Mathematical ecologists study possible behaviors for populations through the
use of projection functions. A projection function maps the value of the
population size at one time to the next observed population size. That is,
knowing the size of the population this year, a projection function allows us to
predict the population size next year. Composition of the function with itself
then allows us to predict two years away.

Suppose the size of a population (in thousands) has been modeled by an
annual projection function f(x) = 1.6x − 0.32x2. If the population is currently
400, what will it be next year? in two years? What is the function that projects
the population size two years from the present?

Solution. A population of 400 corresponds to a current population value
x = 0.4 (thousands). The projection function uses this value to predict one
year into the future. When we evaluate the function, we find

f(0.4) = 1.6(0.4) − 0.32(0.4)2 = 0.5888,

corresponding to a population prediction of 588.8. If we use the function again
with an input x = 0.5888, the function will predict one year from next year, or
two years away. This gives

f(0.5888) = 1.6(0.5888) − 0.32(0.5888)2 ≈ 0.83114.

The model therefore predicts approximately 589 individuals in one year and
831 individuals the next year. (The calculation stays exact; the interpretation
rounds.)

We found the projected population in two years through composition f ◦
f(0.4) ≈ 0.83114. The process of computation would be the same for any cur-
rent population value x. Consequently, we can create a function that projects
the population size in two years by computing the composition f ◦ f(x) using
substitution.

f ◦ f(x) = f
(

f(x)
)



2.3. CHAINS AND FUNCTION COMPOSITION 139

= f(1.6x − 0.32x2)

= 1.6(1.6x − 0.32x2) − 0.32(1.6x − 0.32x2)2

We have replaced each x in the formula 1.6x − 0.32x2 with the expression
1.6x−0.32x2. We can use a computer to help expand and simplify this algebraic
formula,

f ◦ f(x) = 2.56x − 1.3312x2 + 0.32768x3 − 0.032768x4.

f(x) = 1.6*x - 0.32*x^2

show( f(f(x)).expand ().simplify () )

�

2.3.4 Summary

• A chain of related variables is where knowing A you can predict B, and
knowing B you can predict C, and so on. Composition is using A and
the chain to find C.

• Composition f ◦ g is evaluation of the outer function f with an input
using the output of the inner function g,

f ◦ g(x) = f
(

g(x)
)

.

As maps, if g : x 7→ u and f : u 7→ y, then

x
f◦g
7→ y = x

g
7→ u

f
7→ y.

2.3.5 Exercises

Rewrite each function as a nontrivial composition of two functions. (Nontrivial
means that neither function should be the identify function x 7→ x.)

1. f(x) = (x2 − 4x)5

2. f(x) =
√

3x + 1

3. f(x) = 4e−x2

4. f(x) = 2 sin(3x) + 1

5. f(x) =
2

(ex + 1)2

6. f(x) =
√

x −
3

√
x

7. f(x) = sin2(x) + 4 sin(x) + 3

8. f(x) =
ex − e−x

ex + e−x

Using the given functions, compute and simplify the expressions listed.

9. Given p(x) = x2 − 1 and r(x) = 2x + 1.

(a) p ◦ r(x)

(b) r ◦ p(x)

(c) p ◦ p(x)
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(d) r ◦ r(x)

10. Given k(x) = ex and h(x) = 1 − x2.

(a) k ◦ h(x)

(b) h ◦ k(x)

(c) k ◦ k(x)

11. Given C(x) =
2

x − 3
and D(x) = e1/x.

(a) C ◦ D(x)

(b) D ◦ C(x)

(c) D ◦ D(x)

12. Given f and g defined by the table below and h(x) = 2x − 1.
x −4 −3 −2 −1 0 1 2 3 4

f(x) 4 1 2 0 −2 3 −1 −3 −4

g(x) 2 −2 4 3 −3 −1 0 1 −4

(a) f ◦ g(2)

(b) g ◦ f(−2)

(c) f ◦ f(−2)

(d) f ◦ h(2)

(e) h ◦ g(1)

13. Given f and g defined by the graphs below.

−4 −2 2 4

−4

−2

2

4

x

y = f(x)

−4 −2 2 4

−4

−2

2

4

x

y = g(x)

(a) f ◦ g(3)

(b) g ◦ f(3)

(c) f ◦ g(1)

(d) g ◦ f(1)

(e) f ◦ g(−3.25)

(f) g ◦ f(−1.25)

Applications

14. The perimeter P and area A of a square are each functions of the
length of the sides s by P = 4s and A = s2. Find perimeter as a
function of area, P 7→ A.

15. The volume of a sphere is related to the radius of the sphere by the
equation V = 4

3
πr3. Suppose the radius is a function of time defined
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by r = 1 + 2t. Find the volume as a function of time, t 7→ V .

16. The cost C of materials for a project depends on the required area
A of materials needed. The unit price is $3.50 per m2. The project
involves making two squares, each of them having sides with length s

(meters).

(a) Find A
f
7→ C.

(b) Find s
g

7→ A.

(c) Use composition to find s 7→ C. Is this f ◦ g or g ◦ f?

(d) How much would a project with s = 4 cost? How much area
of materials will be required? What function is used for each
calculation?

17. The density of plants (number of plants per square meter) on a plot
of land from year to year has been modeled by the projection function
f(x) = 2.8x−0.18x2. The plot in the current year is observed to have
3.50 plants per square meter.

(a) What is the predicted density of plants in one year?

(b) What is the predicted density of plants in two years?

(c) What is the predicted density of plants in three years?

(d) Find the function that predicts the density of plants two years
from the present.


