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2.5 Transformations of Functions

Overview. As a final section in the chapter on functions, we turn our atten-
tion to transformations. We think of functions as a relation between variables,
x 7→ y. In general, a transformation maps the state (x, y) to another pair (u, v).
Sometimes, we will think of starting with a function x 7→ y and describe the
transformation by describing what happens to each of the coordinates, x 7→ u

and y 7→ v. This is how we might normally think about elementary transfor-
mations including translations or shifts, scaling or stretching, and reflections.

In modeling settings, on the other hand, we might think of (u, v) as being
physical variables which show a relationship similar to a well-known mathe-
matical relationship. That relationship might seen in a graph as a parabola,
as exponential growth or decay, or as periodic cycles that look like a sine wave.
Here, we might think of (x, y) as describing the mathematically simple function.
In order to understand the function u 7→ v based on the function x 7→ y, we
will more naturally think of the transformation as finding a way to map u 7→ x

and y 7→ v. Elementary transformations that include translations, scaling, and
reflections correspond to u 7→ x and y 7→ v that are linear functions.

2.5.1 Elementary Transformations

The elementary transformations of a graph include translation, scaling, and
reflection. In algebra courses, we are often given a summary of the equations
of such transformations.

Elementary Transformations of Graphs.

Suppose we know the graph of a function y = f(x). The following
equations define the specified transformations of that graph.

• Vertical translation, shifting the graph c units vertically,

y = f(x) + c.

• Horizontal translation, shifting the graph c units horizontally,

y = f(x − c).

• Vertical scaling, stretching or compressing all vertical coordinates
by a factor a,

y = af(x).

• Horizontal scaling, stretching or compressing all horizontal coor-
dinates by a factor a,

y = f(
x

a
).

• Vertical reflection across the horizontal axis,

y = −f(x).

• Horizontal reflection across the vertical axis,

y = f(−x).

There are some key patterns to these equations of transformation. All of the
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vertical transformations occur outside the function, while all of the horizontal
transformations occur on the input to the function. Vertical transformations
involve arithmetic consistent with the operation. For example, to move the
graph up 3 units, you add +3 to the output of the function. Horizontal trans-
formations involve arithmetic opposite of the desired operation. To move a
graph 3 units to the right, you add −3 to the independent variable.

The following interactive graphs allow you to explore transformations of
the graph y = sin(x) by dragging sliders.

Example 2.5.1 Explore horizontal and vertical translations using the equation

y = sin(x + a) + b

using parameters a and b. Notice that because the input to the sine function
is x+a = x−−a, the direction of translation is opposite the value of a chosen.
The values a = 0 and b = 0 correspond to no transformation.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.5.2

�

Example 2.5.3 Explore horizontal and vertical scaling using the equation

y = b sin(ax)

using parameters a and b. Notice that negative multiples result in reflections.
The values a = 1 and b = 1 correspond to no transformation.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 2.5.4

�

We will explore a new approach to understanding transformations that will
help us understand more complicated transformations. This approach will also
help us understand why horizontal transformations seem to be opposite of what
we want.

We start by thinking of the original graph y = f(x) as a relation between
two variables. The transformation will define a relation between two other
variables, which usually will have some physical interpretation that we want
to model. In this section, we will name the physical variables u and v. If our
physical variables should be named x and y, then we need a way to distinguish
between the original relation and the transformed relation representing physical
variables. We might use uppercase X and Y or decorate the variables x̃ and
ỹ.

In our general approach to transformations, we will describe the transfor-
mation as the composition of a chain of mappings. Because we ultimately want
a function u 7→ v, we start with the physical variable u and need to map it

to the mathematical variable x, u
d

7→ x. The original function f provides the

relation x
f
7→ y. Then we need to find a map from the mathematical dependent

variable y to the physical dependent variable v, y
r

7→ v. This is summarized by
the following notation:

u
d

7→ x
f
7→ y

r
7→ v.

That is, we are going to think of the original graph as some function rep-
resenting an operation. Our transformed graph is going to be a sequence of
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operations that includes that operation in addition to operations that trans-
form the values in the domain and range. All operations that occur before the
function operation represented by the original graph affect the domain values,
represented above by the function d : u 7→ x. All operations that occur af-
ter the function operation affect the range values, represented above by the
function r : y 7→ v.

Example 2.5.5 Consider the function f(x) = 2(x − 3)2 + 4. This is a trans-
formation of the squaring function y = x2. Identify the operations affecting
the domain and range in the transformation.

Solution. Let sq(x) = x2 represent the operation that squares the input
value. Then our function f(x) can be written as a composition of operations
that occur before squaring and after squaring as

f(x) = r ◦ sq ◦ d(x)

where r(y) = 2y + 4 and d(x) = x − 3. That is, the function f performs the
following operations:

• Take the input x,

• Subtract 3,

• Square the result,

• Multiply the result by 2 and add 4.

The function d describes steps before squaring, and the function r describes
the steps after squaring.

The physical meaning of the variables in the graph of y = f(x) are different
from the meaning of the variables in the graph of y = x2, even though we use
the same symbols. If we use the decorated variables (x̃, ỹ) for our transformed
graph, then we will think of f as a map x̃ 7→ ỹ. We have a chain:

d : x̃ → x = x̃ − 3

sq : x → y = x2

r : y → ỹ = 2y + 4

�

On the other hand, when we geometrically describe a transformation, we
usually describe how we take the original graph in (x, y)-coordinates in order
to find the graph for the physical relation in (u, v)-coordinates. Describing the
horizontal transformation corresponds to a mapping x 7→ u. Our composition
was stated in terms of the inverse operation d : u 7→ x. This means that the
geometric description of a transformation of the domain involves the inverse

of the function used in the actual composition. This explains why horizontal
transformations use operations that are the inverse of what we expect.

Example 2.5.6 Describe how the graph of the function y = f(x) = 2(x−3)2+4
is a transformation of the elementary parabola y = x2.

Solution. Based on the work in the previous example, we saw that f(x) =
r ◦ sq ◦ d(x). The transformation is geometrically described by taking a point
(x, y) on the parabola and mapping it to a new point (x̃, ỹ) on our transformed
parabola. The domain is transformed using the inverse function for d,

x = d(x̃) = x̃ − 3 ⇔ x̃ = d−1(x) = x + 3.
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That is, the graph is translated (shifted) to the right by +3 units. The range
is transformed by the function r,

ỹ = r(y) = 2y + 4.

That is, the y-value of every point is first multiplied by 2 and then increased
by adding 4.

To illustrate the transformation, (x̃, ỹ) = (x + 3, 2y + 4), consider some
actual points from y = x2.

(x, y) = (0, 0) 7→ (x̃, ỹ) = (0 + 3, 2(0) + 4) = (3, 4)

(x, y) = (1, 1) 7→ (x̃, ỹ) = (1 + 3, 2(1) + 4) = (4, 6)

(x, y) = (2, 4) 7→ (x̃, ỹ) = (2 + 3, 2(4) + 4) = (5, 12)

A graph that includes these points is shown below, in comparison with the
original parabola.
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We consider one more example of interpreting the transformation of a
known graph.

Example 2.5.7 Describe y = 2−3x+5 as a transformation of the graph y = 2x.

Solution. To make the distinction between variables more clear with two
equations, let (x̃, ỹ) be the variables in the new equation

ỹ = 2−3x̃ + 5

and y = 2x. The steps prior to the exponential base b = 2 identify x = −3x̃ and
the steps after the exponential give ỹ = y + 5. If we solve the first equation for
x̃ to obtain x̃ = − 1

3
x, we have our geometric description of the transformation:

(x, y) 7→ (x̃, ỹ) = (−
1

3
x, y + 5).

That is, the graph is horizontally compressed by a factor of 1

3
and reflected

across the y-axis. Vertically, the graph is shifted up by 5 units.
Examples of points on the original graph y = 2x include (0, 1), (1, 2), and

(2, 4). The transformed graph results in these points being mapped to point
(x̃, ỹ) given by (0, 6), (− 1

3
, 7), and (− 2

3
, 9). In addition, the original graph

includes a horizontal asymptote of y = 0. The transformation ỹ = y + 5 also
applies to the asymptote, which is mapped to ỹ = 5.
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2.5.2 Creating a Model by Transformations

The elementary transformations correspond to coordinates that are mapped
using linear functions for u 7→ x and y 7→ v. The slope affects scaling and reflec-
tion and a non-zero intercept corresponds affects translation. If we know where
corresponding points are found in the original and the transformed graphs, then
we can find linear functions that map the coordinates. We use these functions
to find the equation of the transformed graph.

Pay particular attention to the order of the mappings. The horizontal
transformation that will be used in the composition is u 7→ x. That is, we map
from our physical independent variable (what we model) to a corresponding
value of the independent variable in the elementary model. This is the inverse
map of the geometric description of the transformation. On the other hand,
the vertical transformation matches the geometric description, y 7→ v. We
map from the value of the dependent variable in the elementary model to our
dependent physical variable.

Example 2.5.8 Find the equation of a parabola whose vertex is at (2, 3) and
which has another point at (4, 5) by finding a transformation of y = x2 using
the points (0, 0) and (1, 1).

Solution. Our original graph uses coordinates (x, y). For our transformed
graph, we will use coordinates (u, v). Based on the description of the problem,
we need a geometric transformation of coordinates

(x, y) = (0, 0) 7→ (u, v) = (2, 3)

and
(x, y) = (1, 1) 7→ (u, v) = (4, 5).

We will work with one coordinate variable at a time.
The transformation of x-coordinates, u 7→ x, is illustrated in the following

map. The u-coordinate u = 2 of the vertex should map to the x-coordinate
x = 0, and the u-coordinate u = 4 of the second point should map to the x = 1.

u

2 4

x

0 1

This map is a linear function. To help reinforce what we are doing in this
map, we also illustrate the map using a graph. The input variable for the map
is u, which will be on the horizontal axis. The output variable of the map is x,
which will be on the vertical axis. From our map, we know that (u, x) = (2, 0)
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should be on our graph. We also know that (u, x) = (4, 1) should be on the
graph. Our linear function corresponds to the equation of the line in this graph.
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To find the equation of the function, we need the slope,

∆x

∆u
=

1 − 0

4 − 2
=

1

2
.

Using the given point (u, x) = (2, 0) and the point–slope equation, we find

x =
1

2
(u − 2) =

u − 2

2
.

The transformation of y-coordinates is similar, illustrated as another map
below. The given points correspond to y = 0 7→ v = 3 and y = 1 7→ v = 5.

y

0 1

v

3 5

We can create the equation of the linear function describing this map. We
don’t need to draw the graph so long as we recognize the points that would
be on the line. These two points are (y, v) = (0, 3) and (y, v) = (1, 5). The
equation for the map y 7→ v requires the slope,

∆v

∆y
=

5 − 3

1 − 0
= 2,

and the known point (y, v) = (0, 3). The transformation is given by

v = 2y + 3.

We find the equation of the transformation by finding the composition
represented by the chain,















x =
u − 2

2
,

y = f(x) = x2,

v = 2y + 3.

Simplifying this composition gives

v = 2
(u − 2

2

)2

+ 3.



2.5. TRANSFORMATIONS OF FUNCTIONS 161

If we wanted our transformed variables to be (x, y), then we just substitute
those variables and the resulting equation would be

y = 2
(x − 2

2

)2

+ 3.

A graph of y = x2 and the transformation are shown in the figure below.
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To find the equations used in the composition for a transformation, you
don’t need to use the same points for both maps. All that you need to do
is find the linear equation required to transform each coordinate separately.
Sometimes, it is more convenient to choose different features to describe u 7→ x

and y 7→ y. The following example illustrates this for a sinusoidal graph.

Example 2.5.9 The sine function y = sin(x) is a periodic function with a
period 2π and range [−1, 1]. Key points on the graph include (0, 0), ( π

2
, 1),

(π, 0), ( 3π
2

, −1), and (2π, 0). Any graph that is an elementary transformation
of the sine function is called sinusoidal.
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Use transformations of the sine function to model the height H (in cm) of a
mass bouncing on a spring as function of time t (in s). The mass completes one
cycle every 2 seconds and reaches a maximum height of 10 cm and minimum
height of 2 cm. The mass is known to be at its minimum at t = 0.

Solution. In order to find our model t 7→ H, we need to determine a compo-
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sition of maps

t 7→ x
sin
7→ y 7→ H.

We will need to find the functions relating the independent and dependent
variables separately.

We start by finding the map corresponding to the independent variables,
t 7→ x. Because our mass is at its minimum at t = 0 and the sine function is
at its minimum at x = 3π

2
, we can use the point (t, x) = (0, 3π

2
). We use the

period to find a second point. The mass will return to its minimum at t = 2.
The sine function returns to its minimum at x = 3π

2
+ 2π.

We use the points (t, x) = (0, 3π
2

) and (t, x) = (2, 3π
2

+ 2π) to find the
transformation t 7→ x. First, we find the slope or rate of change,

∆x

∆t
=

2π

2
= π.

Note that this is the ratio of the period of the elementary model 2π to the
period of the oscillating mass p = 2. We then write down the equation using
the point–slope form of a line,

x = π(t − 0) +
3π

2
= πt +

3π

2
= π(t + 3

2
).

To find the transformation for the dependent variables y 7→ H, we can use
the minimum and maximum values. The sine function has minimum y = −1
and maximum y = 1. The mass has minimum height H = 2 and maximum
height H = 10. Our map y 7→ H includes the points (y, H) = (−1, 2) and
(y, H) = (1, 10). The equation is based on the slope or rate of change

∆H

∆y
=

10 − 2

1 − −1
= 4

and the point–slope equation

H = 4(y − 1) + 10 = 4y + 6.

We put these together as a chain or composition,

t 7→ x 7→ y 7→ H,

using the individual relations found above,











x = π(t + 3

2
),

y = sin(x),

H = 4y + 6.

Combining these equations, we find our model equation

H = 4 sin
(

π(t + 3

2
)
)

+ 6.

A graph shows that this model matches the description given.
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In general, a sinusoidal graph can be characterized by a centerline v = c,
an amplitude A, a period p, and a phase shift u = φ. The standard period of
the elementary sine and cosine functions is 2π. The phase shift φ is the value
of the physical variable u = φ that corresponds to x = 0. These two pieces of
information completely determine the map u 7→ x, with slope ∆x

∆u
= 2π

p
, with

a point–slope equation

x =
2π

p
(u − φ).

The centerline v = c physically corresponds to the elementary centerline of
y = 0. The amplitude A corresponds to the elementary amplitude of 1. Con-
sequently, the slope of the transformation map y 7→ v is ∆v

∆y
= A so that the

point–slope equation of the map is

v = Ay + c.

The composition of the chain of mappings with the sine function results in

v = A sin

(

2π

p
(u − φ)

)

+ c,

while a composition with the cosine function results in

v = A cos

(

2π

p
(u − φ)

)

+ c.

We use the sine function when the phase shift corresponds to where the graph
crosses the centerline v = c; the cosine function is used when the phase shift
corresponds to the locations of maximum values at v = c + A.

2.5.3 Summary

• Elementary transformations of a graph of a function include translation,
scaling, and reflection.

• Vertical transformations are applied to the output of the function directly.

• Horizontal transformations are applied to the input of the function as
inverse operations.
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• Elementary transformations can be found using linear functions that map
the original coordinates (x, y) to the transformed coordinates (X, Y ) with

x
Tx7→ X and y

Ty

7→ Y using composition,

X
T −1

x7→ x 7→ y
Ty

7→ Y.

◦ Addition by a constant (intercept) corresponds to translation.

◦ Multiplication by a constant (slope) corresponds to rescaling.

◦ A negative multiple (slope) corresponds to reflection.

• Nonlinear transformations using invertible maps can also be useful. A
common transformation is the logarithm, corresponding to viewing a
graph with logarithmic scales.

• Data (x, y) that appear linear on a semi-log plot (with the y-axis in
logarithmic scale) means that (x, ln(y)) will have a linear relation. Sub-
sequently, x 7→ y will be an exponential model.

• Data (x, y) that appear linear on a log-log plot (with both axes in loga-
rithmic scale) means that (ln(x), ln(y)) will have a linear relation. Sub-
sequently, x 7→ y will be a power function model.

2.5.4 Exercises

1. Find the equation of a parabola with a vertex at (3, 2) and a second point
at (6, 0).

2. View a graph of y = |x|, which forms the shape of a “V”. Find the equation
of a transformation that moves the vertex to (−3, 2), opens downward, and
has a second point at (0, 0).

3. The function f(x) =
x

1 + x
is a simple increasing, concave down function

that passes through f(0) = 0 and has a horizontal asymptote y = 1 and
half-saturation constant x = 1. This basic function is often used to model
the reaction rate of enzyme-catalyzed reactions.

Suppose that C is the concentration of a reactant in an enzyme-
catalyzed reaction and V is the rate of reaction. Use transformations
of y = x

1+x
to find a model for C 7→ V such that the (C, V ) = (0, 0) is

a possible state, the saturating rate is V = 50, and the half-saturation
occurs at C = 80.

4. The Gaussian function f(x) = e−

1

2
x2

is symmetric about x = 0 with a
maximum f(0) = 1, has a horizontal asymptote y = 0 as x → ±∞, and
has inflection points at x = ±1. This function is often used in statistics
to describe normally distributed data.

The height of individuals in a population were recorded and observed
to have a normal distribution. A histogram plot showing the number of
individuals N with the same height H, rounded to the nearest centimeter,
could be modeled H 7→ N as a transformation of f . The maximum in
the histogram (line of symmetry) is at H = 152 cm with N = 250. The
inflection points were observed to be at H = 144 cm and H = 160 cm.
The horizontal asymptote is still N = 0. Find a Gaussian curve to model
the distribution.

5. Find an equation for a sinusoidal graph (x, y) with a period 10, a center
line (midpoint between the maximum and minimum) of y = 8, and has a
maximum at (x, y) = (2, 11).
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6. The number of hours of daylight H is a periodic function of the time D,
measured in days after the year begins. The cycle repeats every 365 days.
The longest day is on the summer solstice, which occurs at D = 172.25,
with H = 14.85. The shortest day is the winter solstice, which occurs
at D = 354.75, with H = 9.48. Find a sinusoidal model for D 7→ H.
Use your model to determine the number of hours of daylight on pi-day,
D = 72.

7. The cosine is another trigonometric function with period 2π and range
[−1, 1] and has the identical graph shape as sine. However, the maximum
for cosine occurs at cos(0) = 1 and the minimum occurs at cos(π) =
−1. Find the equation of cosine in terms of the sine function by using
transformations.

8. The square of the cosine function, cos2(x), has the same shape as the
sine and cosine graphs, except that the period is π and the minimum and
maximum values are 0 and 1, respectively. We know cos2(0) = 1 and
cos2( π

2
) = 0. Find the equation of cos2(x) in terms of the sine or cosine

function by using transformations.

9. The square of the sine function, sin2(x), has the same shape as the sine
and cosine graphs, except that the period is π and the minimum and
maximum values are 0 and 1, respectively. We know sin2(0) = 0 and
sin2( π

2
) = 1. Find the equation of sin2(x) in terms of the sine or cosine

function by using transformations.

10. A population P grows exponentially in time t such that P = 500 when
t = 2 and triples every 12 years. Use the semi-log transform to find a
linear model t 7→ ln(P ) and then find the model t 7→ P . What was the
population when t = 0?

11. In a simple electrical circuit, the voltage V on a capacitor decays expo-
nentially as a function of time t. After t = 5 seconds, we find V = 8
volts; after another 5 seconds, we find V = 6.4 volts. Use the semi-log
transform to find a linear model t 7→ ln(V ) and then find the exponential
model t 7→ V . When will the circuit reach V = 1 volt?

12. During childhood development, the head grows at a different rate than
the rest of the body. This is why the heads of young children look larger
proportional to their body than older children and adults. Such growth
is called allometry and is often observed to follow a power law.

According to the World Health Organization’s statistics for child de-
velopment, the median circumference C of the head for a one-year-old girl
is 45 cm and the median height H is 74.5 cm. For a five-year-old, the me-
dian head size is C = 50 cm and the median height is H = 109.5 cm. Use
a log-log transform to find a linear model ln(H) 7→ ln(C) and then find
the power function model H 7→ C. If this pattern continues, predict the
head circumference for a ten-year-old where the median height is H = 140
cm.

13. Chemical reactions generally occur at a rate R that is proportional to a
power of the reactant concentration C. Such a reaction will have a graph
(C, R) that appears linear in a log-log plot. Suppose you have a reaction
such that R = 0.5 when C = 0.2 and R = 1.5 when C = 0.4. Use a log-log
transform to find a linear model ln(C) 7→ ln(R) and then find the power
function model C 7→ R.
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