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3.1 Describing the Behavior of Functions

Overview. We have been learning about how functions are constructed and
how they are defined. In many instances, before we construct a formula for
a function, we need to identify what behavior we are attempting to model.
At other times, we have a formula and we need to know what behavior that
predicts. We need specific language that we can use to describe behavior.

In this section, we will focus on three types of behavior: monotonicity,
concavity, and end behavior. Monotonicity will describe where a function is
increasing or decreasing. Concavity will describe where the slope ro rate of
change of a function is increasing or decreasing. In a graph, concavity describes
whether the curve is bending up or bending down. We also discuss simple
end behavior including unbounded growth (tending to infinity) and horizontal
asymptotes.

Our emphasis is in learning the language of behavior, describing graphs
using this language, and creating graphs based on a description of a function.
As our study of calculus develops, we will learn mathematical tools that will
allow us to determine function behavior more precisely.

3.1.1 Functions Have Shapes

We often describe functions according to the shape of their graphs. The dif-
ferent possible shapes we see in graphs correspond to specific behaviors of the
functions. We will focus on two aspects of a graph: monotonicity and concav-
ity.

3.1.1.1 Monotonicity

The monotonicity of a function deals with whether the function is increasing
or decreasing. We start with the mathematical definitions of increasing and
decreasing functions. We will explore the ideas graphically in terms of maps
and then graphs.

Definition 3.1.1 Monotonicity. A function f is increasing on a subset S

of the domain (usually an interval) if for every x1, x2 ∈ S,

x1 < x2 implies f(x1) < f(x2).

A function f is decreasing on a subset S of the domain (usually an interval)
if for every x1, x2 ∈ S,

x1 < x2 implies f(x1) > f(x2).

♦

One way to think of monotonicity is that the function retains an ordering
of the sets. An increasing function preserves the order, so that if two inputs are
in a particular order, x1 < x2, then the resulting outputs have the same order,
f(x1) < f(x2). A decreasing function reverses the order, so that if inputs have
an order, x1 < x2, then the outputs must have the opposite order f(x1) >

f(x2). A function that is not monotone (neither increasing or decreasing) does
not maintain a sense of order uniformly over the set. Sometimes the outputs
might have the same order as the inputs, and sometimes the outputs might
have the opposite order.
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Example 3.1.2 The function f(x) = 2x + 1 is a linear function with positive
slope m = 2. We can show that f is an increasing function. Suppose x0 < x1.
Multiplying both sides of an inequality by a positive number preserves the
ordering, as does adding the same value to both sides:

x0 < x1

2x0 < 2x1

2x0 + 1 < 2x1 + 1

f(x0) < f(x1)

This is visualized in the following figure.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 3.1.3 Dynamic illustration of the function f(x) = 2x + 1 as a map
x 7→ y showing that f is increasing.

Thinking of the map dynamically, we see that as we increase the input,
the output also increases. This is captured in the graph of the function in the
(x, y) plane. The graph shows y-values increasing as viewed from left to right,
which is corresponding to x-values increasing.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 3.1.4 The graph of the function y = f(x) = 2x + 1 in the (x, y) plane.

�

Example 3.1.5 The function f(x) = −2x+3 is a linear function with negative
slope m = −2. We can show that f is an decreasing function. Suppose x0 < x1.
Multiplying both sides of an inequality by a negative number reverses the
ordering, while adding the same value to both sides preserves the order:

x0 < x1

−2x0 > −2x1

−2x0 + 3 > −2x1 + 3

f(x0) > f(x1)

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 3.1.6 Dynamic illustration of the function f(x) = −2x + 3 as a map
x 7→ y showing that f is decreasing.

The map shows that the order of outputs is always opposite to the order
of the inputs. Thinking of the map dynamically, we see that as we increase
the input, the output decreases. The graph of the function in the (x, y) plane
captures the same information. Viewing the graph from left to right (as x

increases), the y-values decrease.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 3.1.7 The graph of the function y = f(x) = −2x + 3 in the (x, y)
plane.

�

Some functions are not monotone because the map does not retain the
ordering of the sets. Dynamically, this is because the output will sometimes
increase and sometimes decrease as the input is increased.
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Example 3.1.8 The function f(x) = x2 is not a linear function and is not
monotone. We can show this by illustrating that the function is inconsistent
in ordering the output values relative to the input values. Consider x0 = −2
and x1 = −1. We have f(x0) = 4 > f(x1) = 1, so for these inputs the order is
reversed. However, for x0 = 1 and x1 = 2, we have f(x0) = 1 > f(x1) = 4 and
the order is preserved. This function is not increasing or decreasing, but is a
combination.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 3.1.9 Dynamic illustration of the function f(x) = x2 as a map x 7→ y

showing that f is not monotone.

We can see graphically that f is decreasing on (−∞, 0] because for any
two inputs in this interval, the order of the outputs is reversed. We can also
see that f is increasing on [0, ∞) because for any two inputs in that interval,
the order of the outputs is preserved. This point where monotonicity switches
corresponds to the vertex of the parabola y = x2.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 3.1.10 Dynamic illustration of the function f(x) = x2 as a map x 7→ y

showing that f is not monotone.

�

One of our goals in calculus will be to develop a method to determine the
intervals on which a function is increasing or decreasing. When we motivated
monotonicity with linear functions, we saw that a positive slope implied an in-
creasing function and a negative slope implied a decreasing function. Calculus
will develop a more general sense of the slope of a function using the derivative
such that we will describe monotonicity based on the signs of the derivative.

Note 3.1.11 When listing intervals on which a function is increasing or de-
creasing, it is important not to use a union of the intervals. The reason is
that we are saying that the function is increasing on each of the intervals indi-
vidually and not on the set formed by the union. If listing multiple intervals,
simply form a comma-separated list.

3.1.1.2 Concavity

Concavity describes how the graph of a function in the (x, y) plane bends. If
the graph bends upward, we say the function is concave up. If the graph
bends downward, we say the function is concave down.

(a) Concave up (b) Concave down

Figure 3.1.12 Comparison of concave up and concave down graphs

As with monotonicity, these attributes of functions apply over intervals
rather than at individual points. When a graph changes concavity at a point,
for example switching from bending up to bending down, the function has an
inflection point. A technical definition of concavity that depends on the
concept of a derivative will be provided later.
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However, we can capture the essential idea by thinking about how the slope
is changing between points. A function that has an increasing slope or rate
of change over an interval is concave up on the interval. A function that has
decreasing slope or rate of change is concave down.

Definition 3.1.13 Concavity. A function f is concave up on a subset S

of the domain (usually an interval) if for every x1, x2, x3 ∈ S, the slope or rate
of change is increasing,

x1 < x2 < x3 implies
f(x2) − f(x1)

x2 − x1

<
f(x3) − f(x2)

x3 − x2

.

A function f is concave down on a subset S of the domain (usually an
interval) if for every x1, x2, x3 ∈ S, the slope or rate of change is decreasing,

x1 < x2 < x3 implies
f(x2) − f(x1)

x2 − x1

>
f(x3) − f(x2)

x3 − x2

.

♦

This definition is not very easy to use directly. When we learn more about
derivatives to describe the slope at individual points, we will have a much
better method known as the second derivative test for concavity. However, the
following examples will illustrate what is happening.

Example 3.1.14 The function f(x) = x2 is concave up on (−∞, ∞) (the
entire domain). We will not prove that this is true because this is too difficult
without derivatives. But we can illustrate the idea.

Consider the graph y = f(x) = x2 and the particular values x1 = −4,
x2 = −2, and x3 = −1. We will calculate the slope or rate of change between
(x1, y1) = (−4, 16) and (x2, y2) = (−2, 4) and between (x2, y2) and (x3, y3) =
(−1, 1).

m12 =
y2 − y1

x2 − x1

=
4 − 16

−2 − −4
=

−12

2
= −6

m23 =
y3 − y2

x3 − x2

=
1 − 4

−1 − −2
=

−3

1
= −3

We can see that the slope or rate of change is increasing, m12 < m23. These
slopes are illustrated in the following figure.

−4 −2 0 2 4

0

5

10

15

20

(x1, y1)

(x2, y2)

(x3, y3)

m12 = −6

m23 = −3

This is not a proof of concavity because we only illustrated the order for
three specific points. Use the following dynamic figure to convince yourself that
for any three points we might choose, the slopes increase from left to right.
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A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 3.1.15

The reason that f has an inflection point at x = 0 is that point is where f

has the steepest negative slope. To the left, x < 0, the slope decreases; to the
right, x > 0, the slope increases. �

Example 3.1.16 The function f(x) = x3 − 3x changes concavity at x = 0.
f is concave down on (−∞, 0] and concave up on [0, ∞). When three points
are chosen with x ∈ (−∞, 0], the slope is decreasing. When the three points
are chosen with x ∈ [0, ∞), the slope is increasing. This can be verified in
the following dynamic figure. However, the three points must all be in either
(−∞, 0] or in [0, ∞).

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 3.1.17

�

3.1.1.3 Combining Monotonicity and Concavity

The shape of a graph of a function is often defined in terms of the monotonicity
and concavity combined. There are four basic shapes that correspond to the
four quadrants of a circle, illustrated in the figure below. A curve that has
a positive and increasing slope is increasing and concave up. A curve that
has a positive but decreasing slope is increasing and concave down. A curve
that has a negative but increasing (becoming less negative) slope is decreasing
and concave up. A curve that has a negative and decreasing (becoming more
negative) slope is decreasing and concave down.

(a) Increasing,
Concave up

(b) Increasing,
Concave Down

(c) Decreasing,
Concave up

(d) Decreasing,
Concave Down

Figure 3.1.18 Basic shapes defined by monotonicity and concavity.

We can describe the shape of a graph by stating intervals on which the
function satisfies each of the possible behaviors. The intervals are separated by
points where the graph reaches either a maximum or minimum value (changes
in monotonicity) or where the slope of the graph reaches an extreme and begins
to bend the other direction (changes in concavity or points of inflection).

Example 3.1.19 The graph of a function y = f(x) is shown below, with
labeled extreme points and inflection points. Describe the shape of the graph
by giving intervals of monotonicity and concavity.
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Solution. Intervals for monotonicity are based on the function increasing or
decreasing. The end-points of these intervals are the extreme points for the
function. When the graph extends beyond the frame of the figure, we assume
the function behavior continues as shown. Intervals always are read from left to
right. The end-point of an interval is included (closed) if the behavior extends
up to and including that point.

The function f is decreasing on (−∞, −3], increasing on [−3, 3], and de-
creasing on [3, ∞). Notice that the extremes at x = −3 and x = 3 are included
in two intervals. The continuous function is decreasing on (−∞, −3) as an
open interval. Because f decreases up to and including x = −3, we include the
end-point.

Intervals for concavity are based on where the slope is increasing or decreas-
ing. Intervals on which the graph bends upward, f is concave up. Intervals on
which the graph bends downward, f is concave down. Notice our graph has
inflection points (where the concavity changes) at x = −1, x = 0, and x = 1.
At these points, the graph starts to bend in the opposite direction.

The function f is concave up on (−∞, −1], concave down on [−1, 0], concave
up on [0, 1], and concave down on [1, ∞). We include the inflection points as the
end points of the intervals (closed) because the slope is increasing or decreasing
up to and including those points. �

3.1.2 End Behavior

End-behavior of a function describes what happens to a function as the size
of the input grows. Consider the possibilities of a linear function, y = f(x) =
mx + b. So long as the slope is non-zero, the function is unbounded, meaning
that the graph eventually goes above every level and eventually goes below
every level (on opposite sides of the graph).

If the slope is positive, m > 0, then the function is increasing. We say
f(x) → +∞ as x → +∞, which we read as “the value of f(x) tends to positive
infinity as the value of x goes to positive infinity”. This is because the y-values
will eventually rise above any level on the right side of the graph (for sufficiently
large positive values x). We also say f(x) → −∞ as x → −∞ because the y-
values are below any specified value on the left side of the graph (for sufficiently
large negative values x). When the slope is negative, m < 0, the unbounded
behavior is reversed.
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f(x) → −∞
x→−∞

f(x) → +∞
x→+∞

(a) Positive slope (m > 0)

f(x) → +∞
x→−∞

f(x) → −∞
x→+∞

(b) Negative slope (m < 0)

Figure 3.1.20 Unbounded behavior of linear functions with positive and neg-
ative slopes.

For consistency in notation to describe the tendency of a function (as op-
posed to the value of a function), we use limits to describe unbounded behavior.

lim
x→−∞

f(x) = −∞ means f(x) → −∞ as x → −∞

lim
x→−∞

f(x) = ∞ means f(x) → +∞ as x → −∞

lim
x→∞

f(x) = −∞ means f(x) → −∞ as x → +∞

lim
x→∞

f(x) = ∞ means f(x) → +∞ as x → +∞

When the graph of a function f behaves more and more like a constant
function (horizontal line) for larger and larger values of the independent vari-
able, we say f has a horizontal asymptote. A horizontal asymptote y = L

on the right side (large, positive values for x) uses the limit statement

lim
x→∞

f(x) = L,

which means that the value of f(x) approaches the constant value L as x →
+∞. When f has a horizontal asymptote y = L on the left side (large, negative
values of x), we use the limit statement

lim
x→−∞

f(x) = L.

Example 3.1.21 The graph of a function y = f(x) is shown below. This
function has two horizontal asymptotes: y = −2 as x → −∞ and y = 1 as
x → +∞. We write

lim
x→−∞

f(x) = −2,

lim
x→+∞

f(x) = 1.



3.1. DESCRIBING THE BEHAVIOR OF FUNCTIONS 175

−6 −4 −2 2 4 6

−4

−2

2

4

y = 1

y = −2

�

A function can also have unbounded behavior near a particular input value,
say at x = a. Using limit notation, this means that at least one of the following
must be true.

lim
x→a−

f(x) = +∞

lim
x→a−

f(x) = −∞

lim
x→a+

f(x) = +∞

lim
x→a+

f(x) = −∞

The graph has a vertical asymptote at x = a, meaning that the graph of
the function approaches closer and closer to this vertical line.

Example 3.1.22 The graph of a function y = f(x) is shown below with two
vertical asymptotes. The vertical asymptote at x = 0 corresponds to left- and
right-limits

lim
x→0−

f(x) = −∞,

lim
x→0+

f(x) = +∞,

The vertical asymptote at x = 2 only corresponds to the right-limit

lim
x→2+

f(x) = +∞.

−6 −4 −2 2 4 6

−4

−2

2
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It is hard to tell from a graph alone where a vertical asymptote occurs. Us-
ing only the limited graph window, it is not obvious that the vertical asymptote
is at exactly x = 0 since the graph is still fairly far away from that vertical line
from this perspective. �

Note 3.1.23 A common false impression about horizontal asymptotes is that
the graph of a function can not cross the asymptote. A function can not cross
a vertical asymptote, but that is only because a function can not intersect a
vertical line at more than one point. An asymptote only requires that the
graph behaves more and more like the line.

When a function physically relates two variables, x 7→ y, a horizontal
asymptote indicates that for sufficiently large values of the independent vari-
able, the dependent variable is essentially a constant. A common description
in physical settings for this constant is a saturation value. We think of the
quantity measured by the independent variable as a control variable. The de-
pendent variable can be thought of as a response. As the control variable is
increased, the response will pass through some of its range of values. However,
there will come a point where even though you continue to increase the control
variable, the response is no longer able to change very much at all. That is,
the response has saturated.

Example 3.1.24 An enzyme is a protein that helps catalyze a chemical re-
action. The rate or velocity of reaction V depends on the concentration of
the reactant C. Commonly, the function C 7→ V is increasing, concave down,
and has a horizontal asymptote, known as Michaelis–Menten reaction kinetics.
The physical domain is C ∈ [0, ∞). Because the relation is increasing, we know
that adding more reactants will raise the reaction rate. Because the relation
is concave down, we know that the degree to which the rate increases slows
down as more reactants are added. The horizontal asymptote means that this
increase in the reaction rate saturates to some maximum rate Vmax,

lim
C→∞

V = Vmax.

The reactant concentration where the reaction rate is halfway to the maximum
value is called the half-saturation value, and is usually represented with a
constant K.

K

Vmax

C

V

Figure 3.1.25 Michaelis–Menten reaction kinetics with saturating rate Vmax

and half-saturation constant K.

�
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Example 3.1.26 Imagine a crop of plants growing in a field. The total biomass
harvested B depends on the number of seeds S that are sown. If very few seeds
are sown, the biomass harvested will be small. For more seeds sown, we expect
the biomass would increase. However, if too many seeds are sown, then the crop
will be overcrowded, resulting in a lower harvest. We expect that there might
be an optimal number of seeds S∗ for which the biomass is at a maximum.

Describe the behavior of the function S 7→ B and sketch a possible graph.

Solution. The function S 7→ B will have a physical domain of S ∈ [0, ∞).
Because B is a maximum at S = S∗, the function is increasing on [0, S∗] and
decreasing on [S∗, ∞). The simplest assumption for concavity would be that
the function starts concave down. However, a concave down and decreasing
function will eventually approach −∞, which is not physically possible for
our physical scenario. Therefore, the function must change concavity at some
inflection point after S∗, say at S = S†. Our function would be concave down
on [0, S†] and concave up on [S†, ∞). Continuing to increase the number of
seeds will result in ever smaller biomass due to overcrowding until it approaches
some saturating biomass B∞,

lim
S→∞

B = B∞.

S∗
S†

B∞

S

B

Figure 3.1.27 Possible graph of (S, B) with maximum at S = S∗ and inflection
point at S = S†.

Note: The asterisk and dagger are decorations so that the symbols S∗ and
S† represent general constants. We don’t know actual values for the maximum
and inflection point, so we can’t use numbers. The symbols are place-holders
for values that would be determined experimentally. Similarly, the symbol B∞

represents the value for the biomass harvested when the number of seeds sown
saturates the system. �

3.1.3 Summary

• Describing the monotonicity of a function is determining intervals on
which the function is increasing or decreasing.

• A function f is increasing on a set S if the function is order preserving:
For all x1, x2 ∈ S, we must have

x1 < x2 ⇒ f(x1) < f(x2).
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This corresponds to a graph that is rising left to right (positive slopes).

A function f is decreasing on a set S if the function is order reversing:
For all x1, x2 ∈ S, we must have

x1 < x2 ⇒ f(x1) > f(x2).

This corresponds to a graph that is falling left to right (negative slopes).

• Describing the concavity of a function is determining intervals on which
the function is concave up or concave down.

• A function f is concave up on a set S if the slope or rate of change is
increasing on S: For all x1, x2, x3 ∈ S, we must have

x1 < x2 < x2 ⇒
f(x2) − f(x1)

x2 − x1

<
f(x3) − f(x2)

x3 − x2

.

The graph will be bending upward.

A function f is concave down on a set S if the slope or rate of change
is decreasing on S: For all x1, x2, x3 ∈ S, we must have

x1 < x2 < x2 ⇒
f(x2) − f(x1)

x2 − x1

>
f(x3) − f(x2)

x3 − x2

.

The graph will be bending downward.

• A point of inflection is a point where a function is continuous and
changes concavity.

• Lists of intervals of monotonicity and concavity should be separated by
commas and not joined by unions.

• Limits as x → ±∞ describe end behavior.

◦ To say f(x) → +∞ means values of f(x) eventually rise above any

possible value.

◦ To say f(x) → −∞ means values of f(x) eventually fall below any

possible value.

◦ To say f(x) → L means values of f(x) eventually approaches a
horizontal asymptote y = L.

3.1.4 Exercises

Each of the following problems asks you to prove that the given function is
either increasing or decreasing on a particular interval.

1. Prove that f(x) = 5x − 12 is an increasing function by showing that
whenever x1 < x2, we have f(x1) < f(x2).

2. Prove that f(x) = −3x − 2 is a decreasing function by showing that
whenever x1 < x2, we have f(x1) > f(x2).

3. Prove that f(x) = x2 is an increasing function on [0, ∞) by showing
that whenever 0 < x1 < x2, we have f(x1) > f(x2).

Hint: Show that f(x2) − f(x1) > 0 by factoring and determining
the signs of the factors.

4. Prove that f(x) = x2 is a decreasing function on (−∞, 0] by showing
that whenever x1 < x2 < 0, we have f(x1) > f(x2) or f(x2)−f(x1) <
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0.
Hint: Show that f(x2) − f(x1) < 0 by factoring and determining

the signs of the factors.

Consider each of the following graphs of functions. Use the graph to determine
the intervals of monotonicity for that function.

5.

−4 −2 2 4
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x

y = f(x)

6.
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7.
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10

x

y = f(x)

Each of the following problems asks you to illustrate the concavity of the given
function.

8. Illustrate that f(x) =
1

x
is concave up on (0, ∞) by showing that

the slope is increasing for the sequential points x1 = 1

2
, x2 = 1, and

x3 = 2.

9. Illustrate that f(x) =
1

x
is concave down on (−∞, 0) by showing that

the slope is decreasing for the sequential points x1 = −2, x2 = −1,
and x3 = − 1

2
.

10. Illustrate that f(x) = 2x is concave up on (−∞, ∞) by showing that
the slope is increasing for the sequential points x1 = −1, x2 = 0, and
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x3 = 1.

11. Illustrate that f(x) = 2−x is concave up on (−∞, ∞) by showing that
the slope is increasing for the sequential points x1 = −1, x2 = 0, and
x3 = 1.

Consider each of the following graphs of functions, which includes turning
points and inflection points. Use the graph to determine the intervals of mono-
tonicity and concavity for that function.

12.
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14.
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Use the graphs to answer the questions about limits. Assume that the behavior
of the graph shown in the window continues outside the window.

15.
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(a) lim
x→−∞

f(x)

(b) lim
x→+∞

f(x)

16.
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(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→−∞

f(x)

(d) lim
x→+∞

f(x)


