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3.2 Rate of Accumulation and the Derivative

3.2.1 Overview

For functions which are defined as the accumulation of a given rate,

f(x) = f0 +

∫ x

x0

f ′(z) dz, (3.2.1)

we can describe their monotonicity and concavity using the signs and mono-
tonicity of their corresponding rates of accumulation f ′(x). Of course, most
functions are not written using an accumulation formula representation. For
polynomials, where we know simple accumulation formulas, we know how to
calculation the corresponding rate of accumulation f ′(x). What about other
functions?

This raises a central question of calculus: Which functions can be expressed
as an accumulation? And if a function can be expressed as an accumulation,
how do we find the formula for the rate of accumulation that will be the
integrand in that representation?

This question will be partially resolved through the definition of the deriva-
tive. The derivative will provide a new interpretation of the concept of rate of
change that is not directly connected to accumulation and definite integrals.
At that point, we will have two potential concepts of the rate—the rate of
accumulation and the derivative. The connection between these two rates as
representing the same thing will ultimately be established through the Fun-
damental Theorem of Calculus. Anticipating this eventual equality, we will
adopt the name derivative as being equivalent to the rate of accumulation.

In this section, we will use known elementary accumulation functions and
their corresponding rates to compute the rate of accumulation for simple poly-
nomials. The process of finding a rate of change inherits the linearity properties
of integration. Using elementary formulas and linearity, we will learn to iden-
tify its rate of change or derivative of any polynomial. Once we have a rate of
change, we can express the polynomial as an accumulation function. We can
also classify the monotonicity and concavity of the polynomial.

3.2.2 The Rate of Accumulation

When a function is defined as an accumulation function in terms of a definite
integral (3.2.1), it is easy enough to determine the rate of accumulation or
derivative by identifying the function in the integrand. We just need to express
the function as a constant (the initial value) plus an integral from the initial
point. The function inside the integral, called the integrand, will be the rate
of accumulation.

Example 3.2.1 If f(x) is defined as f(x) = 3 +

∫ x

1

z2
− 5z dz, then the

integrand z2
− 5z must be f ′(z). Changing variables means f ′(x) = x2

− 5x is
the rate of accumulation or derivative. �

Example 3.2.2 Find G′(x) for G(x) = 4 − 3

∫ x

1

1

z
dz.

Solution. Because G(x) is not yet written as a constant plus an integral, we
need to use properties of integrals to put it in the standard form of an ac-
cumulation function. The (((Unresolved xref, reference "thm-definite-integral-
constant-multiple"; check spelling or use "provisional" attribute)))constant mul-



3.2. RATE OF ACCUMULATION AND THE DERIVATIVE 183

tiple rule allows us to treat −3 as a constant multiplied inside the integral,

G(x) = 4 +

∫ x

1

−3

z
dz.

Now that G(x) is an accumulation function, we can find the rate to be

G′(x) =
−3

x
.

�

The elementary accumulation formulas for simple powers 3.4.3 can be in-
terpreted as complementary rules used to find the rate of accumulation or
derivative for simple powers. As an example, consider the known accumula-
tion formula ∫ x

0

z2 dz =
1

3
x3.

If we multiply both sides of the equation by 3 to clear the fraction and move
the constant inside the integral, we have an equivalent statement

x3 =

∫ x

0

3z2 dz.

That is, we have just found that for the function f(x) = x3 the derivative is
the rate of accumulation f ′(x) = 3x2. Every accumulation formula that we
know provides a corresponding rate of accumulation for simple powers.

Theorem 3.2.3 The Power Rule for the Rate of Accumulation. The
elementary accumulation formulas lead to the following elementary rates of
accumulation for powers of the independent variable.

• If f(x) = x, then f ′(x) = 1.

• If f(x) = x2, then f ′(x) = 2x.

• If f(x) = x3, then f ′(x) = 3x2.

• If f(x) = x4, then f ′(x) = 4x3.

Proof. Each formula follows by applying the same technique described above
for f(x) = x3 on the corresponding accumulation formula. �

You might have noticed a pattern in these formulas, that the rate of accu-
mulation involves a power that has been reduced by one from the accumulation
function and that the power for the accumulation has become a constant mul-
tiple. Without creating more accumulation formulas, we can not prove that
this pattern will always be true. In mathematics, we call a pattern that we
believe might be true a conjecture.

Conjecture 3.2.4 Power Rule for Rate of Accumulation. For any
constant power n, the function f(x) = xn has a rate of accumulation f ′(x) =
nxn−1.

This conjecture happens to be true, but we will need to wait to develop the
process of differentiation to prove it.

Example 3.2.5 For f(x) = x10, what does the conjecture about the power
rule predict will be f ′(x)?

Solution. The function f is an elementary power function with n = 10. The
power rule shown in the conjecture states that

f ′(x) = 10x9.
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The reason this is a conjecture right now is that we would currently need
to write x10 as an accumulation function

x10 =

∫ x

0

10z9,

but we don’t currently have a rule for a definite integral with a power that
high. That would require knowing the limit of a Riemann sum

∫ x

0

10z9 = lim
n→∞

n∑

k=1

10(
kx

n
)9 x

n
.

Without knowing a sum accumulation for

n∑

k=1

k9, we can’t justify this integral.

�

We will need one more simple rate of accumulation to deal with constant
terms. A constant function sees no change, so the accumulation must always
be zero, and that will come from a rate of accumulation that is zero.

Theorem 3.2.6 Rate of Accumulation for Constants. If f(x) = c for
some constant c (a constant function), then f ′(x) = 0.

Proof. Because

∫ b

a

0 dx = 0, we can write f(x) = c +

∫ x

a

0 dz for any value a.

Thus, the rate of accumulation f ′(x) = 0. �

The linearity properties of definite integrals imply that rates of accumula-
tion also satisfy the same linearity properties.

Theorem 3.2.7 Linearity of Rates of Accumulation. If f(x) has a
rate of accumulation f ′(x) and g(x) has a rate of accumulation g′(x), then
the function h(x) = c1f(x) + c2g(x) with constants c1 and c2 has a rate of
accumulation h′(x) = c1f ′(x) + c2g′(x).

Proof. Using a common initial point at x = a, we can write

f(x) = f(a) +

∫ x

a

f ′(z) dz,

g(x) = g(a) +

∫ x

a

g′(z) dz.

Because h(x) = c1f(x) + c2g(x), we can use the linearity properties of definite
integrals to rewrite

h(x) = c1

(

f(a) +

∫ x

a

f ′(z) dz
)

+ c2

(

g(a) +

∫ x

a

g′(z) dz
)

= c1f(a) + c2g(a) + c1

∫ x

a

f ′(z) dz + c2

∫ x

a

g′(z) dz

= (c1f(a) + c2g(a)) +

∫ x

a

(c1f ′(z) + c2g′(z)) dz

Since h(a) = c1f(a)+c2g(a), we can see that h(x) has been written in the form
of an accumulation with a rate of accumulation h′(x) = c1f ′(x) + c2g′(x). �

A polynomial is a linear combination of simple powers. Consequently, the
derivative of a polynomial will be the same linear combination of the derivatives
of those powers.
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Example 3.2.8 Find f ′(x) for f(x) = x2
− 6x + 5.

Solution. We look at f(x) as a sum of three terms:

f(x) = x2
︸︷︷︸

f1(x)

+ −6x
︸︷︷︸

f2(x)

+ 5
︸︷︷︸

f3(x)

.

First, f1(x) = x2 is an elementary power for which we know f ′

1(x) = 2x. Next,
f2(x) = −6x is a constant −6 times x, so f ′

2(x) is the same constant times
1, f ′

2(x) = −6 · 1 = −6. Finally, f3(x) = 5 is a constant function so that
f ′

3(x) = 0. The linearity for rates of accumulation implies

f ′(x) = 2x
︸︷︷︸

f ′

1
(x)

+ −6
︸︷︷︸

f ′

2
(x)

+ 0
︸︷︷︸

f ′

3
(x)

= 2x − 6.

�

3.2.3 Using the Rate of Accumulation

Now that we know how to find the rate of accumulation for simple polynomials,
we can express a polynomial as an accumulation with that rate. Although we
know the rate of accumulation, we also need to be careful that the initial value
matches the function of interest.

Example 3.2.9 Express f(x) = x3
− 6x2

− 4 as an accumulation from x = 1.

Solution. Start by finding the rate of accumulation.

f ′(x) = 3x2
− 6(2x) + 0 = 3x2

− 12x

The rate of accumulation becomes the integrand of the accumulation using
f ′(z). Because the integral will start at x = 1, the initial value will be

f(1) = 13
− 6 · 12

− 4 = −9.

We can now write f(x) as an accumulation from x = 1:

f(x) = f(1) +

∫ x

1

f ′(z) dz

= −9 +

∫ x

1

3z2
− 12z dz.

�

The sign of the rate of accumulation determines whether an accumulation
is increasing or decreasing. Furthermore, the monotonicity of the rate of accu-
mulation determines the concavity of the accumulation. If we determine the
rate of accumulation for a polynomial f(x), then we can use sign analysis on
the resulting formula f ′(x) to characterize monotonicity of f(x).

Because the rate of accumulation f ′(x) will itself be a new polynomial, we
can describe its monotonicity using the rate of accumulation for that rate of
accumulation. The rate of accumulation of the rate of accumulation is called
the second derivative and is named f ′′(x). Because the monotonicity of
the rate f ′(x) determines concavity of f , we can use sign analysis of f ′′(x) to
characterize the concavity f .

Example 3.2.10 We found that f(x) = x3
− 6x2

− 4 has corresponding rate
f ′(x) = 3x2

− 12x. Describe the monotonicity and concavity of f(x).

Solution. Sign analysis of the rate of accumulation f ′(x) will be used to
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describe the monotonicity of f(x). We factor

f ′(x) = 3x2
− 12x = 3x(x − 4).

The zeros (x-intercepts) occur at x = 0 and x = 4 and f ′(x) is continuous.
We need to test the sign of f ′(x) in the intervals (−∞, 0), (0, 4), and (4, ∞).
Only the sign matters, so using the factored formula, we can count how many
factors are positive and negative.

• f ′(−1) = 3(−1)(−5) = + (2 negative factors)

• f ′(1) = 3(1)(−3) = − (1 negative factors)

• f ′(5) = 3(5)(1) = + (0 negative factors)

When doing such a problem, we just use a sign analysis number line to record
our results.

f ′(x) = 3x(x − 4)

x0

0

4

0+ − +

We interpret the signs of f ′(x) to deduce the monotonicity of f(x). The
function f ′(x) is positive on the intervals (−∞, 0) and (4, ∞) and negative
on the interval (0, 4). Consequently, f(x) must be increasing on the intervals
(−∞, 0) and (4, ∞) and decreasing on the interval (0, 4). Because f(x) is con-
tinuous (all polynomials are continuous), we can extend each of these intervals
to include the end-points at x = 0 and x = 4.

Concavity of f(x) depends on the monotonicity of f ′(x). Because f ′(x) =
3x2

−12x is itself a polynomial, we can find its rate of accumulation f ′′(x) and
perform sign analysis to deduce that monotonicity.

f ′′(x) = 6x − 12 = 6(x − 2)

The only zero of f ′′(x) is at x = 2. We test the intervals (−∞, 2) and (2, ∞)
using the signs of f ′′(x), summarized by the following number line.

f ′′(x) = 6(x − 2)

x2

0− +

Because f ′′(x) < 0 on the interval (−∞, 2), we know that f ′(x) is decreas-
ing on (−∞, 2). Consequently, f(x) is concave down on (−∞, 2). Because
f ′′(x) > 0 on the interval (2, ∞), we know that f ′(x) is increasing on (2, ∞).
Consequently, f(x) is concave up on (2, ∞). Again, because f(x) is continuous,
intervals of concavity can be extended to include the end-point at x = 2.

Notice how the graph of y = f(x) reflects the monotonicity and concavity
that we have determined.



3.2. RATE OF ACCUMULATION AND THE DERIVATIVE 187
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Figure 3.2.11 Graph of y = f(x) = x3
− 6x2

− 4, including turning points at
x = 0 and x = 4 and an inflection point at x = 2.

�

3.2.4 Summary

• The rate of accumulation f ′(x) is the integrand function of an accumu-
lation function f(x),

f(x) = f(a) +

∫ x

a

f ′(z) dz

• The rate of accumulation for a function is equivalent to what we will later
define as the derivative of the function. Thus, we often just call the rate
of accumulation f ′(x) the derivative of f(x). Showing this equivalence
will be the goal of the Fundamental Theorem of Calculus.

• Our known accumulation formulas have a complementary interpretation
as derivatives:

◦ f(x) = x has derivative f ′(x) = 1

◦ f(x) = x2 has derivative f ′(x) = 2x

◦ f(x) = x3 has derivative f ′(x) = 3x2

◦ f(x) = x4 has derivative f ′(x) = 4x3

A pattern in these derivatives suggest a conjecture (which we later prove)
that any power f(x) = xn has derivative f ′(x) = nxn−1.

In addition, any constant function f(x) = c has derivative f ′(x) = 0.

• Rates of accumulation (derivatives) satisfy the linear properties of a sum
rule and a constant multiple rule.

• For simple polynomials f(x), we compute f ′(x) as a related polynomial
in order to answer questions about monotonicity. Because f ′(x) is a poly-
nomial, it also has its own derivative f ′′(x) (called the second derivative
of f(x)). The sign of f ′′(x) determines the monotonicity of f ′(x), which
in turn determines the concavity of f(x).
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3.2.5 Exercises

For each function defined in terms of an integral, identify the rate of accumu-
lation.

1. f(x) = −5 +

∫ x

1

ze−z dz

2. Q(x) =

∫ x

0

s

s2 + 1
ds

3. A(x) = 4

∫ x

−2

t + 3t3 dt

4. R(x) = 1 + 2

∫ x

1

sin(z) dz − 3

∫ x

1

cos(z) dz

Find the derivative of each polynomial.

5. p(x) = x2
− 5x

6. q(x) = x3
− 6x2

7. r(x) = x4 + 2x3
− 5

Write each polynomial as an accumulation function from the indicated starting
point.

8. p(x) = x2
− 5x from x = 1

9. p(x) = x2
− 5x from x = −2

10. q(x) = x3
− 6x2 from x = 2

11. q(x) = x3
− 6x2 from x = 0

12. r(x) = x4 + 2x3
− 5 from x = −1

13. r(x) = x4 + 2x3
− 5 from x = 2

Determine the monotonicity and concavity of each polynomial.

14. f(x) = 3x2
− 48x + 5

15. g(x) = 100 + 80x − 2x2

16. h(x) = 9x2
− x3

17. w(x) = x3
− 9x2 + 15x + 4

18. u(x) = x4
− 6x2 + 15

19. M(x) = 15 + 4x3
− x4


