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4.4 Summation Formulas

4.4.1 Overview

In the previous section, we learned that accumulation sequences could be writ-
ten using summation notation. Consequently, summations can always be in-
terpreted in the context of a sequence. We have seen some examples where
we could show that an accumulation sequence representing a summation was
equivalent to a sequence defined explicitly. Unfortunately, that process is only
useful if we can somehow discover the explicit formula to compare. We seek
for computational methods that will allow us to find the explicit values for
summations.

This section studies the properties of summation and their application. We
will learn that any summation can be interpreted as a net change in an accumu-
lation sequence. We will also learn about algebraic properties of summation,
particularly a property known as linearity. Once we know summation formulas
for elementary building blocks, these properties will allow us to combine them
for more complicated formulas.

4.4.2 Summation of as Net Accumulated Change

In the previous section, we learned that every accumulation sequence can be
written using summation notation. The reverse is true. For every summa-
tion, we can define a corresponding accumulation sequence. Suppose we are
interested in a summation

S =

n
∑

k=m

xk,

where m > 0 and n ≥ m and x = (xk) is the sequence whose terms are being
added. Let u be any accumulation sequence with increments x and initial value
u0. Then we know we can write

uk = u0 +

k
∑

i=1

xi.

We want to find the relation between the summation S and the accumulation
sequence.

First, we observe that the equation defining the accumulation sequence can
be rewritten with the summation isolated:

k
∑

i=1

xi = uk − u0.

The summation is equal to the difference between the initial value and the
final value of the accumulation sequence. This observation can be generalized
to other index ranges, but to explain it we first need the splitting property of
summation.

Theorem 4.4.1 Summation Splitting Property. For any summation
n

∑

i=m

xi and intermediate index k with m < k < n, we can split the sum at k as

n
∑

i=m

xi =
k

∑

i=m

xi +
n

∑

i=k+1

xi.
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Proof. The property is simply a generalization of the associative properties of
addition. The basic idea is to group terms,

n
∑

i=m

xi = xm + xm+1 + · · · + xk + xk+1 + · · · + xn

=
(

xm + xm+1 + · · · + xk

)

+
(

xk+1 + · · · + xn

)

=

k
∑

i=m

xi +
n

∑

i=k+1

xi

�

This splitting property allows us to rewrite a summation as a change in an
associated accumulation sequence.

Theorem 4.4.2 Summation as Net Accumulated Change. Given any

sequence of terms xk and an accumulation sequence u with ∇uk = xk,

n
∑

k=m

xk = un − um−1.

Proof. The accumulation sequence can be written

un = u0 +
n

∑

k=1

xk.

By the Summation Splitting Property, if we split the sum at index k = m − 1,
we have

un = u0 +
m−1
∑

k=1

xk +
n

∑

k=m

xk.

However, once we recognize

um−1 = u0 +

m−1
∑

k=1

xk,

we have

un = um−1 +
n

∑

k=m

xk.

Solving for the summation gives the stated conclusion,

n
∑

k=m

xk = un − um−1.

�

In this theorem, notice that which accumulation sequence is used does not
matter. The initial value is irrelevant. In addition, notice that the accumu-
lated change represented by the sum is equal to the change from one before

the lower limit to the upper limit. This extra index step corresponds to in-
crements matching backward differences. Finally, notice that the difference in
accumulations can also be written

n
∑

k=m

xk =

n
∑

k=1

xk −

m−1
∑

k=1

xk.
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Example 4.4.3 In a previous example, we showed that the accumulation of
odd integers was the sequence of squares. Use this to compute the sum of all
odd three digit numbers.

Solution. The question is asking us to compute

101 + 103 + 105 + · · · + 997 + 999.

In order to apply summation properties and accumulation sequences, we need
the explicit formula for the sequence of terms as well as the lower limit and
upper limit of the sum.

The sequence of odd integers x = (1, 3, 5, . . .) has an explicit formula xk =
2k − 1, k = 1, 2, 3, . . .. It was for this sequence that we had 4.3.12

un =
n

∑

k=1

2k − 1 = n2.

We want to write the sum of odd three digit numbers in terms of the sequence of
increments. Then we will be able to use the explicit formula of the accumulation
sequence to compute the sum.

To find the limits of summation, we need to find the value of the index k

such that xk = 101 (lower limit) and xk = 999 (upper limit). For the lower
limit, we have

2k − 1 = 101

2k = 102

k = 51,

and for the upper limit we have

2k − 1 = 999

2k = 1000

k = 500.

Consequently, the sum of interest is

S =
500
∑

k=51

2k − 1 = 101 + 103 + 105 + · · · + 997 + 999.

We are finally ready to apply the Summation as Net Accumulated Change.
The summation is equal to the change in the accumulation sequence from 50
(index prior to first increment) to 500 (index of last increment),

S =

500
∑

k=51

2k − 1 = u500 − u50

= 5002 − 502

= 250000 − 2500

= 247500.

�
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4.4.3 Algebraic Properties of Summation

Now that we know that we can write a summation as the change of an accu-
mulation sequence, we have a tool to compute summations once we are able
to identify the accumulation. However, it can be tedious to find the accumu-
lation sequence for every problem. We benefit from properties of summation
that allow us to use elementary building blocks to compute the summation for
a variety of different problems. These properties of summation correspond to
the basic properties of addition.

Suppose we have a sequence x and a constant α. We can create a new se-
quence αx, called a constant multiple, by multiplying every term of x by the
same constant α. Using the constant multiple as an increment sequence, every
term will have a common factor of α. This leads to a property of summation
called the constant multiple rule—constant multiples factor out of summation.

Theorem 4.4.4 Constant Multiple Rule of Summation. Let x be a

sequence and α a constant. Then for any lower and upper limits,

n
∑

k=m

αxk = α

n
∑

k=m

xk.

The next property considers a sequence that is itself formed by adding two
sequences together. Suppose we have two sequences u and w and we form a
new sequence u + w with values that are the sum of the corresponding values,
(u + w)n = un + wn. Because addition is both commutative and associative,
any sum of a finite number of terms can be regrouped in any convenient way.
A summation of terms u + w can therefore be grouped in a way that we add
only the terms from u and then add only the terms from v and then add the
results. This leads to a property of summation called the sum rule.

Theorem 4.4.5 Sum Rule of Summation. Let u and w be any two

sequences defined for the range k = m, . . . , n. Then

n
∑

k=m

[uk + wk] =

n
∑

k=m

uk +

n
∑

k=m

wk.

Using the rules together creates a new rule called linearity involving two
sequences x and y. The idea for this rule is that an individual term in the
increment sequence is the sum of a constant multiple of each, αx + βy. Such a
sum is called a linear combination of x and y with coefficients α and β. This
name results from the general equation of a line being of the form ax + by = c.
Linearity applies the sum rule and the constant multiple as if in a single step.

Theorem 4.4.6 Linearity of Summation. Let x and y be any two sequences

with common domain and let α and β be any two constants. Then for any lower

and upper limits,

n
∑

k=m

[αxk + βyk] = α

n
∑

k=m

xk + β

n
∑

k=m

yk.

Using α = 1 and β = −1, the linear combination becomes a difference,
αx + βy = x − y. So the difference rule is a special case of linearity.

Theorem 4.4.7 Difference Rule of Summation. Let x and y be any two

sequences with common domain. Then for any lower and upper limits,

n
∑

k=m

[xk − yk] =

n
∑

k=m

xk −

n
∑

k=m

yk.
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There are no corresponding rules for multiplication or division. This is
really no different than emphasizing the importance of multiplying all terms
using the distributive property, such as occurs with the FOIL method for mul-

tiplying binomials. For example,

3
∑

k=1

[k] = 1 + 2 + 3 = 6. The product of the

sum gives one result:

3
∑

k=1

[k] ·

3
∑

k=1

[k] = (1 + 2 + 3) · (1 + 2 + 3) = 6 · 6 = 36.

But the sum of the products gives a different result:

3
∑

k=1

[k · k] = (12 + 22 + 32) = 1 + 4 + 9 = 14.

In general,
n

∑

k=m

[xk · yk] 6=

n
∑

k=m

xk ·

n
∑

k=m

yk.

4.4.4 Elementary Summation Formulas

There are some elementary increment sequences for which we can find an ex-
plicit formula for the accumulation sequence. We will state the results and
prove them using the uniqueness criteria for accumulation sequences 4.3.3.
The simplest accumulation sequence, and that used in each of the elementary
summation formulas, use an initial value s0 = 0. Thus, where we normally
would have sn − s0 as the accumulated change, we only have sn.

Theorem 4.4.8 Sum of Constant Sequence.

n
∑

k=1

c = cn

Proof. The accumulation sequence of interest is

un =

n
∑

k=1

c.

The increment sequence x is a sequence of constants, ck = c. The proposed
explicit sequence is

wn = cn.

The initial value of u is u0 = 0 which matches the initial value of the explicit
sequence w0 = c(0) = 0. To show that w = u, we need to show that w has the
same increments.

(∇w)n = wn − wn−1 = cn − c(n − 1) = cn − cn + c = c

Since (∇w)n = c is the same increment as xk, u and w are the same sequence.
�

Theorem 4.4.9 Sum of Natural Numbers.

n
∑

k=1

k =
n(n + 1)

2
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Proof. The accumulation sequence of interest is

un =

n
∑

k=1

k.

The increment sequence x is defined by xk = k. The proposed explicit sequence
is

wn =
n(n + 1)

2
.

The initial values agree:

u0 = 0,

w0 =
0(1)

2
= 0.

The increment for w is given by:

(∇w)n = wn − wn−1 =
n(n + 1)

2
−

(n − 1)n

2

=
n

2

(

(n + 1) − (n − 1)
)

=
n

2
· 2 = n

Since (∇w)n = n = xn, u and w have the same increments and same initial
value. By Theorem 4.3.3, u and w are equivalent. �

Theorem 4.4.10 Sum of Squares.

n
∑

k=1

k2 =
n(n + 1)(2n + 1)

6

Proof. The accumulation sequence of interest is

un =

n
∑

k=1

k2

so that increment sequence x is defined by xk = k2. The proposed explicit
sequence is

wn =
n(n + 1)(2n + 1)

6
.

The initial values agree:

u0 = 0,

w0 =
0(1)(1)

6
= 0.

The increment for w is given by:

(∇w)n = wn − wn−1

=
n(n + 1)(2n + 1)

6
−

(n − 1)n
(

2(n − 1) + 1
)

6

=
n

6

(

(n + 1)(2n + 1) − (n − 1)(2n − 1)
)

=
n

6

(

(2n2 + 3n + 1) − (2n2 − 3n + 1)
)

=
n

6
(6n) = n2

Since (∇w)n = n2 = xn, u and w have the same increments and same initial
value. By Theorem 4.3.3, u and w are equivalent. �
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Theorem 4.4.11 Sum of Cubes.

n
∑

k=1

k3 =
n2(n + 1)2

4

Proof. The accumulation sequence of interest is

un =

n
∑

k=1

k3

so that increment sequence x is defined by xk = k3. The proposed explicit
sequence is

wn =
n2(n + 1)2

4
.

The initial values agree:

u0 = 0,

w0 =
0(1)(1)

6
= 0.

The increment for w is given by:

(∇w)n = wn − wn−1

=
n2(n + 1)2

4
−

(n − 1)2n2

4

=
n2

4

(

(n + 1)2 − (n − 1)2
)

=
n2

4

(

(n2 + 2n + 1) − (n2 − 2n + 1)
)

=
n2

4
(4n) = n3

Since (∇w)n = n3 = xn, u and w have the same increments and same initial
value. By Theorem 4.3.3, u and w are equivalent. �

Theorem 4.4.12 Sum of a Geometric Sequence.

n
∑

k=0

bk =
bn+1 − 1

b − 1

Proof. The accumulation sequence of interest is

un =
n

∑

k=0

bk

so that increment sequence x is defined by xk = bk. The proposed explicit
sequence is

wn =
bn+1 − 1

b − 1
.

Because the summation lower index is 0, the sequence u has a non-zero initial
value u0 = b0 = 1. The initial value of w is given by

w0 =
b1 − 1

b − 1
= 1,
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which matches the initial value of u. The increment for w is given by:

(∇w)n = wn − wn−1 =
bn+1 − 1

b − 1
−

bn − 1

b − 1

=
1

b − 1

(

(bn+1 − 1) − (bn − 1)
)

=
bn+1 − bn

b − 1
=

bn(b − 1)

b − 1
= bn

Since (∇w)n = bn = xn, u and w have the same increments and same initial
value. By Theorem 4.3.3, u and w are equivalent. �

Our first examples consider sums involving just the elementary terms.

Example 4.4.13 Find the sum of the integers 1, 2, . . . , 100.

Solution. Start by recognizing this as the accumulation of the sequence x =
(k : k = 1, 2, 3, . . .) over a range 1 ≤ k ≤ 100. This allows us to rewrite our
problem as a summation:

100
∑

k=1

k.

Theorem Theorem 4.4.9 applies directly with n = 100, so we know

100
∑

k=1

k =
100(101)

2
= 5050.

�

Example 4.4.14 Find the sum of the integers 100, 101, . . . , 200.

Solution. This example uses the same basic sequence (the integers) but in-
stead of starting at k = 1, we are summing the sequence x = (k : k = 1, 2, 3, . . .)
over an index range 100 ≤ k ≤ 200,

100 + 101 + · · · + 200 =

200
∑

k=100

k.

Using the Summation as Net Accumulated Change theorem, we can write the
summation as a difference

200
∑

k=100

k =
200
∑

k=1

k −

99
∑

k=1

.

The two summations are accumulations from Theorem 4.4.9:

200
∑

k=1

k =
200(201)

2
= 20100,

99
∑

k=1

k =
99(100)

2
= 4950.

Consequently,
200
∑

k=100

k = 20100 − 4950 = 15150.

�
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4.4.5 Summations of Linear Combinations

The elementary summation formulas allow us to compute sums involving only
the elementary terms. Combining these formulas using the properties of sum-
mation, namely using the constant multiple rule and the sum rule, we can
compute sums of any linear combination of the elementary terms.

Example 4.4.15 Find

20
∑

k=1

(500 + 60k − 2k2).

Solution. The increments in the sum consist of a constant (500), a constant
multiple of the index (60k), and a constant multiple of the square of the index
(−2k2). The linearity property of summation 4.4.6 allows us to compute the
sum using the elementary formulas. Although linearity allows the two steps to
be done at once, the following illustrates the steps (sum and constant multiple
rules) in order:

20
∑

k=1

[500 + 60k − 2k2] =

20
∑

k=1

[500] +

20
∑

k=1

[60k] +

20
∑

k=1

[−2k2]

=

20
∑

k=1

[500] + 60

20
∑

k=1

[k] − 2

20
∑

k=1

[k2].

The brackets emphasize that the increments of a summation are given by a
particular value or formula. Each of these summations involve elementary
increment sequences for which we have explicit formulas.

20
∑

k=1

[500] = 500(20) = 10000,

20
∑

k=1

[k] =
20(21)

2
= 210,

20
∑

k=1

[k2] =
20(21)(41)

6
= 2870.

Consequently,

20
∑

k=1

[500 + 60k − 2k2] = 10000 + 60(210) − 2(2870) = 16860.

�

The same strategy still applies if the constant multiple coefficients are writ-
ten using parameters or even using variables other than the dummy index vari-
able of summation. In particular, when the upper limit of the summation is a
variable, the formula for the sequence might also involve that variable as well
as the index variable. Because this will be encountered frequently, an example
is provided below.

Example 4.4.16 Find a formula for

n
∑

k=1

(

3k

n2
−

k2

n3

)

that involves only n.

Solution. The sequence of increments is xk =
3k

n2
−

k2

n3
. We recognize this as

a linear combination of the more elementary sequences k and k2 if we rewrite
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the sequence

xk =
3

n2
· k +

−1

n3
· k2.

Because the coefficients of this linear combination only involve n and not the
dummy variable of the summation k, we can rewrite the summation as a cor-
responding linear combination and then apply the elementary summation for-
mulas to find our desired formula.

n
∑

k=1

(

3k

n2
−

k2

n3

)

=
3

n2

n
∑

k=1

[k] −
1

n3

n
∑

k=1

[k2]

=
3

n2
·

n(n + 1)

2
−

1

n3
·

n(n + 1)(2n + 1)

6

=
3n(n + 1)

2n2
−

n(n + 1)(2n + 1)

6n3
.

�

There are no convenient summation rules for products or quotients, with
one exception. If the product can be rewritten as a sum using the distributive
property of multiplication, then we can sometimes use linearity after this sim-
plification in terms of elementary formulas. If the increments are not linear
combinations of elementary terms, then we have no methods for simplifying
the calculation.

Example 4.4.17 Find a formula for

n
∑

k=1

(2 −
3k

n
)(1 +

2k

n
) that only involves

n.

Solution. Use the distributive property (aka FOIL) to rewrite the product
as a sum which can be identified as a linear combination of a constant term,
k, and k2:

(2 −
3k

n
)(1 +

2k

n
) = 2 +

4k

n
−

3k

n
−

12k2

n2

= 2 +
1

n
· k −

12

n2
k2.

The linearity property of summation 4.4.6 allows us to compute the sum as
the same linear combination of the elementary accumulations:

n
∑

k=1

(2 −
3k

n
)(1 +

2k

n
) =

n
∑

k=1

2 +
1

n
· k −

12

n2
k2

=

n
∑

k=1

2 +
1

n

n
∑

k=1

·k −
12

n2

n
∑

k=1

k2

= 2n +
1

n
·

n(n + 1)

2
−

12

n2

n(n + 1)(2n + 1)

6

To simplify the answer, we need to cancel common factors and then rewrite
the expression with a common denominator.

n
∑

k=1

(2 −
3k

n
)(1 +

2k

n
) = 2n +

n + 1

2
−

2(n + 1)(2n + 1)

n

=
(2n)(2n) + n(n + 1) − 4(n + 1)(2n + 1)

2n

=
4n2 + n2 + n − 8n2 − 12n − 4

2n
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=
−3n2 − 11n − 4

2n

�

4.4.6 Summary

• Summation of terms is equivalent to an accumulation of those terms as
increments.

• The Summation Splitting Property allows us to split a summation over
an index range into the sum of two summations over adjacent ranges.

• Every summation can be computed as the accumulated change of the
terms as increments. The Summation as Net Accumulated Change theo-
rem states that if we know the accumulation sequence u with increments
x, then

n
∑

k=m

xk = un − um−1.

• The linearity properties of summation (the constant multiple rule and
the sum rule) allow us to break summations involving sums into simpler
summations over the same index range.

◦ Constant Multiple Rule of Summation:

n
∑

k=m

αxk = α

n
∑

k=m

xk

◦ Sum Rule of Summation:
n

∑

k=m

[uk + wk] =
n

∑

k=m

uk +
n

∑

k=m

wk

◦ Linearity of Summation:

n
∑

k=m

[αuk + βwk] = α

n
∑

k=m

uk + β

n
∑

k=m

wk

• Elementary accumulation formulas:

◦ Sum of Constant Sequence:

n
∑

k=1

c = cn

◦ Sum of Natural Numbers:

n
∑

k=1

k =
n(n + 1)

2

◦ Sum of Squares:
n

∑

k=1

k2 =
n(n + 1)(2n + 1)

6

◦ Sum of Cubes:

n
∑

k=1

k3 =
n2(n + 1)2

4

◦ Sum of a Geometric Sequence:
n

∑

k=0

bk =
bn+1 − 1

b − 1

4.4.7 Exercises

The following collection of problems practice applying the properties of sum-
mation. Given the following information about the sequence x and y, compute
the desired summations.

x0 = 8

10
∑

k=1

xk = 42

20
∑

k=0

xk = 30
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y19 = 4 y20 = −8

18
∑

k=0

yk = −4

20
∑

k=11

yk = 5

1.

10
∑

k=0

4xk

2.

20
∑

k=0

xk + yk

3.

20
∑

k=11

3xk − 2yk

Compute the following sums using the summation properties and the elemen-
tary summation formulas.

4.

20
∑

k=1

3k

5.

30
∑

k=1

4k − 100

6.

20
∑

k=12

k2

7.

n
∑

k=1

(1 + 3k)(2 − 5k)

8.

6
∑

k=0

3k

9. 3 + 33 + 35 + 37 + · + 319

Hint: Rewrite as a summation that can use the geometric sum.

10. The sum of three-digit multiples of 5

11. The sum of three-digit perfect squares

12.

n
∑

k=1

(

4

n
−

5k

n2

)

13.

n
∑

k=1

3k2

n3

14.

n
∑

k=1

(

2 +
3k

n

)2

·
1

n


