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4.5 Limits of Sequences

4.5.1 Overview

The limit of a sequence describes its end behavior. Some sequences converge
to a particular value, meaning that the values of the sequence keep getting
closer and closer to that value. Other sequences grow without bound. Still
other sequences alternate between values or behave chaotically. Limits allow
us to establish some mathematical language that characterizes some of these
behaviors.

The objectives for this section are as follows. We will focus on what it
means for a sequence to have a limit. Much of our intuition will focus on
graphs and tables. As we do this, we will learn about limits of sequences
defined recursively in terms of fixed points of the projection function. We will
then discuss limit arithmetic involving infinity and how this can be used to
find limits of some sequences defined explicitly.

4.5.2 What Is A Limit?

Consider the sequence defined recursively by xn = 0.8xn−1 +1 and initial value
x0 = 1. The next ten values (to the nearest ten-thousandth) are shown in a
table and the first twenty values are illustrated in a graph.

n xn

0 1

1 1.8

2 2.44

3 2.952

4 3.3616

5 3.68928

6 3.951424

7 4.161139

8 4.328911

9 4.463129

10 4.570503 0 5 10 15 20
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The graph illustrates that the sequence x is increasing and concave down.
It appears that the values of the sequence might be leveling off at some value.
A cobweb diagram, shown below, suggests that this sequence has values that
are converging to a fixed point of the projection function f(x) = 0.8x + 1,
where f(x) = x.
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The fixed point corresponds to an equilibrium of the recursively defined
sequence. We find the equilibrium value by solving the fixed point equation.

f(x) = x

0.8x + 1 = x

1 = 0.2x

x = 5

Now, let us compare the decimal approximations to the sequence with higher
index values with the equilibrium.

n xn

20 4.953883140

25 4.984888427

30 4.995048240

35 4.998377407

40 4.999468309

45 4.999825775

50 4.999942910

55 4.999981293

60 4.999993870

Notice that the values for the sequence have decimal approximations that
are converging to the equilibrium value x = 5. The greater the index value,
the closer the sequence value is to equilibrium. Consequently, we say that our
sequence has a limit of 5 and write xn → 5 or

lim
n→∞

xn = 5.

Next consider another example—a recursive sequence x defined by a recur-
rence relation xn = 1.2xn −1 and initial value x0 = 4. The projection function
f(x) = 1.2x − 1 has the same fixed point x = 5 because

f(5) = 1.2(5) − 1 = 5.

n xn

0 4

1 3.8

2 3.56

3 3.272

4 2.9264

5 2.51168

6 2.014016

7 1.416819

8 0.700183

9 -0.1597804

10 -1.191736 0 5 10 15 20
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However, this time the sequence is decreasing and concave down, moving
away from the equilibrium value. Instead, the value of the sequence is becoming
more and more negative. The cobweb diagram illustrates that this will continue
forever. For a sequence like this, we say xn → −∞ or

lim
n→∞

xn = −∞.
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For the same recursive definition xn = 1.2xn−1 − 1 with an initial value
above the equilibrium, x0 = 6, the sequence is increasing and concave up,
shown below. The values become more and more positive. For a sequence like
this, we say xn → ∞ or

lim
n→∞

xn = ∞.

n xn

0 6

1 6.2

2 6.44

3 6.728

4 7.0736

5 7.48832

6 7.985984

7 8.583181

8 9.299817

9 10.15978

10 11.19174 0 5 10 15 20
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We have seen that a recursive sequence sometimes converges to a fixed
point and sometimes it diverges away from a fixed point. We might wonder if
a recursive sequence can have a limit that is not a fixed point of the projection
function. The answer is no, so long as the projection function is continuous.

Theorem 4.5.1 Recursive Limits as Fixed Points. If a sequence is

defined recursively with a continuous projection function f , xn = f(xn−1), and

xn has a limit, then the limit must be a fixed point of f .

Proof. We have to wait for a definition of continuity before this can be proved.
�

Note some things that this theorem does not guarantee. First, just because
a function has a fixed point does not mean that it will be a limit. (The sequence
might not have a limit.) Second, the projection function needs to be continuous.
If a function is not continuous, then it is possible to have a limit that is not
a fixed point. Fortunately, functions defined by simple algebraic formulas will
be continuous everywhere they are defined. For any continuous projection
functions, the only limits will be fixed points. Finally, if the sequence is not
defined recursively, then we will need other methods to find the limits.

In practice, we first observe that a sequence defined recursively has a limit
(perhaps through a graph or a table). If we find all of the fixed points for the
projection function, then we can determine which of those is the appropriate
limit. The limit may depend on the initial value of the sequence, so we compare
approximate values from the table with the approximate (decimal) values of
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the fixed points.

We consider some additional examples. As you attempt the examples or
exercises, take advantage of technology to generate tables and graphs. Refer
back to Section 13.3 for guidance as needed.

Example 4.5.2 Use a table and a graph of the sequence defined explicitly as

xn =
3 + 2n

1 + 3 · 2n

to estimate the limit of xn.

Solution. The explicit definition of the sequence allows us to create a table.
Because we are looking for the decimal approximation to converge, we need to
show quite a few decimal places. Once the table is generated, we can create a
plot.

n xn

0 1.0

1 0.714285714286

2 0.538461538462

3 0.44

4 0.387755102041

5 0.360824742268

6 0.347150259067

7 0.34025974026

8 0.336801040312

9 0.335068314899

10 0.334201106411

11 0.33376729048

12 0.333550329563

13 0.333441835863

14 0.333387585702

15 0.333360459793
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The plot for the sequence shows that the sequence appears to be leveling off.
Looking at the table, we see that more and more of the digits are converging
to a 3. If this pattern is real and continues, the limiting value would be the
repeating decimal 0.3333 . . . which is the rational number 1

3
. We would say

that this sequence has a limit xn → 1

3
:

lim
n→∞

xn =
1

3
.

�

Example 4.5.3 Use a table and a graph of the sequence defined explicitly as

un = 1 +
1

2
· (−1 +

1

2n
)n,

to estimate the limit of un.

Solution. We generate a table of sequence values and plot the results.
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n un

0 1.5

1 0.75

2 1.28125

3 0.6650390625

4 1.38623809814

5 0.573392406106

6 1.45491835196

7 0.526711160622

8 1.48458696224

9 0.508720709959

10 1.49513858939

11 0.502678999959

12 1.4985371216

13 0.500792876146

14 1.49957292337

15 0.500228832948
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Notice that for this sequence, the graph appears to level off to two different
values. However, this is because the sequence is actually approaching two
alternating values. This is an example of approaching a repeating pattern
rather than a value, most easily seen in the table. As we look further down
the table, the odd index values correspond to a sequence value that is getting
closer to 0.5 while the even index values correspond to a sequence value that
is getting closer to 1.5.

This sequence does not have a limit because the sequence is not approaching
a single value. We say lim

n→∞

xn does not exist. �

Example 4.5.4 Use a table and a graph of the sequence defined recursively
by

zn+1 = 2.7zn − 0.7z2
n

and an initial value z0 = 1 to estimate the limit of zn.

Solution. We can use the recursive definition and a computer to generate
approximate values and then graph the sequence.
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n zn

0 1.00000000000000

1 2.00000000000000

2 2.60000000000000

3 2.28800000000000

4 2.51313920000000

5 2.36436779299635

6 2.47062849869924

7 2.39789332147854

8 2.44938730115809

9 2.41369700737469

10 2.43882864952499

11 2.42131772649675

12 2.43361218868805

13 2.42502511000601

14 2.43104504810447

15 2.42683561174279

16 2.42978439120944

17 2.42772132482997

18 2.42916599531699

19 2.42815498439281

20 2.42886281809844
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Graphically, you should see that the plot shows the sequence values appears
to level off to a single value. However, the graph also shows that the values
are alternately above and below that limit. We look in the table to determine
the limiting value, but it is not obvious from the table what the limiting value
should be. Because the values are alternately above and then below whatever
the limit should be, we can conclude that the limit must be between the last
two values listed.

The limit is approximately 2.428 but we do not know the next decimal place
without computing more values in the sequence. With additional computation
(not shown), we find z39 = 2.42857109636261 and z40 = 2.42857166111753
so that our approximation for the limit (a value between z39 and z40) can be
estimated as close to 2.428571,

lim
n→∞

zn ≈ 2.428571.

To find a better approximation using data would require more computation.
Because the sequence is defined recursively, the limit will be a fixed point

of the projection function. If we solve the fixed point equation, we can find the
exact value of the limit.

2.7x − 0.7x2 = x

1.7x − 0.7x2 = 0

x(1.7 − 0.7x) = 0

The factored equation indicates there are two fixed points: x = 0 and x = 17

7
.

The decimal approximation for x = 17

7
is 2.4285714286, which is precisely

where our sequence is converging,

lim
n→∞

zn =
17

7
.

�
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4.5.3 The Definition of a Limit

With these examples, we can introduce the mathematical definition for the
limit of a sequence. The idea of a limit xn → L is that the value of the sequence
xn approximates the value of L closer and closer as n increases. Recall that
we measure the quality of approximation using the error of approximation,
|xn − L|. The sequence successfully approximates the limit L if the error
eventually become smaller than any desired accuracy of approximation.

Definition 4.5.5 Limit of a Sequence. For a real number L, a sequence x

has a limit L if for any desired accuracy of approximation ǫ > 0, the error of
approximation is eventually |xn − L| < ǫ and we write

lim
n→∞

xn = L or xn → L.

This means that for every ǫ > 0, there is a threshold index N so that |xn−L| < ǫ

whenever n > N . ♦

In most cases, verifying the definition directly will be too challenging. We
will usually learn to apply rules that guarantee that this definition will be
satisfied rather than directly show that the approximation rule is satisfied.
However, for sequences defined by sufficiently simple explicit formulas, we can
determine how far down the table we would need to go to reach a desired
accuracy. In these cases, we use strategies for solving inequalities to find the
interval of integers where the error of approximation is sufficiently small.

Example 4.5.6 Consider the sequence xn =
n

2n + 1
, for n = 0, 1, 2, . . .. Find

numerical evidence that lim
n→∞

xn =
1

2
. Then determine the index threshold N

so that |xn − 1

2
| < 0.001 for index values n > N .

Solution. Using the following simple Sage script, we can generate a plot and
table quickly. This script includes some modifications so that only a portion
of the table is printed. We also have modified the format code to include more
decimal values.
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# What range of index values to plot

lastIndex = 100

# Which values in the calculation to show?

# Some at the beginning

showFirst = 10

# Some at the end

showLast = 10

# Calculate the table for plotting

data = []

for n in range(lastIndex +1):

xn = n/(2*n+1)

data.append( [n,xn] )

graph = list_plot(data , frame=True , axes_labels =["n", "x_n"])

show(graph)

# Display beginning of the table

for i in range(showFirst):

# data is a list of points , so data[i] = [n,xn]

[n,xn] = data[i]

print("%d\t%,8f" % (n,xn))

# Print a break -line to show there are missing terms

print("...")

# Display end of the table

for i in range(lastIndex -showLast ,lastIndex +1):

# data is a list of points , so data[i] = [n,xn]

[n,xn] = data[i]

print("%d\t%.8f" % (n,xn))

0 0.00000000

1 0.33333333

2 0.40000000

3 0.42857143

4 0.44444444

5 0.45454545

6 0.46153846

7 0.46666667

8 0.47058824

9 0.47368421

...

90 0.49723757

91 0.49726776

92 0.49729730

93 0.49732620

94 0.49735450

95 0.49738220

96 0.49740933

97 0.49743590

98 0.49746193

99 0.49748744

100 0.49751244

It appears that the sequence is leveling out to a value near 0.5. However,
at index n = 100, the value is at approximately x100 ≈ 0.49751244 (8 decimal
places). If the limit really is xn → 0.5, then the error of approximation for
n = 100 is

|x100 − 0.5| ≈ 0.00248756.

We need to ensure that the error continues to go down. At index n = 1000 (by
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modifying the script and running again), we have x1000 ≈ 0.49975012 with an
error of approximation

|x1000 − 0.5| ≈ 0.00024988.

The explicit formula for the sequence uses the function f(n) =
n

2n + 1
for

integer values of n. We can think of the mapping n
f7→ x for arbitrary values

of n and not just integers. The inverse f−1 : x 7→ n can inform us of when the
sequence passes different values. We solve for n as the dependent variable.

x =
n

2n + 1

(2n + 1)x = n

2nx + x = n

2nx − n = −x

(2x − 1)n = −x

n =
−x

2x − 1
=

x

1 − 2x

This function, f−1(x) =
x

1 − 2x
, gives the relation x 7→ n.

From our graph, we have seen that (n, xn) is increasing and concave down.
The sequence will always be below the limit. Given any desired error of ap-
proximation ǫ > 0, we can use our inverse function to see exactly when the
sequence rises above xn > 1

2
− ǫ. For example, with ǫ = 0.001, we want to find

when xn > 0.5 − 0.001 = 0.499. We find

f−1(0.499) =
0.499

1 − 2(0.499)
= 249.5.

The sequence, which requires integer index values, will therefore be above
xn > 0.499 for n ≥ 250. In the definition of a limit, this corresponds to
an index threshold N = 249 for accuracy ǫ = 0.001.

We can verify this numerically by running the script to show a table and
graph for index values surrounding n = 250. The table and graph show that
the sequence value is below 0.499 for n ≤ 249 and above 0.499 for n ≥ 250,
agreeing with our calculation.
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n xn

235 0.49893843

236 0.49894292

237 0.49894737

238 0.49895178

239 0.49895616

240 0.49896050

241 0.49896480

242 0.49896907

243 0.49897331

244 0.49897751

245 0.49898167

246 0.49898580

247 0.49898990

248 0.49899396

249 0.49899800

250 0.49900200

251 0.49900596

252 0.49900990

253 0.49901381

254 0.49901768

255 0.49902153

235 240 245 250 255
0.4988

0.4989

0.499

0.4991

n

x
n

The inverse function, f−1(x) =
x

1 − 2x
, is undefined for x = 1

2
. For values

x > 1

2
, we will have negative values for n, f−1(x) < 0. The sequence therefore

will never reach or surpass the value x = 1

2
. But we will be able to identify

when the function rises above every value below x = 1

2
. This is how we know

that

lim
n→∞

xn =
1

2
.

�

4.5.4 Summary

• A sequence has a limit, xn → L, if the values of the sequence get closer
and closer to the value of L. The graph of the sequence (n, xn) approaches
a horizontal line x = L.

• If xn → L, then a table of values for the sequence x should have decimal
approximations that converge to the decimal approximation of L.

• Sequences defined recursively using a continuous projection function f

can only have limits that are fixed points of f . (See Theorem 4.5.1)

• The formal definition of a sequence limit xn → L, written

lim
n→∞

xn = L,

is that for any desired threshold of approximation error ǫ > 0, there
is an index threshold N so that |xn − L| < ǫ whenever n > N . (See
Definition 4.5.5)
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4.5.5 Exercises

Use a computer-generated table to approximate the limit of the following se-
quences to at least four decimal places. If the limit does not exists, state
why.

1. xn =
√

n · (
√

3n + 1 −
√

3n)

2. xn = n · (
√

3n + 1 −
√

3n)

3. xn =

(

1 +
1

3n

)n

4. xn = n2 ·
(

1

4n + 5
− 1

4n

)

5. xn+1 =
xn

5
+

2

xn
with x0 = 2.

6. xn+1 =
xn

5
− 2

xn
with x0 = 2.

7. xn+1 = 5xne−xn with x0 = 0.5.

8. xn+1 = 8xne−xn/3 with x0 = 0.5.

For each of the following functions, find all fixed points. Then, using a sequence
defined recursively xn = f(xn−1) and the given initial value, test if the sequence
has a limit and give its exact value.

9. f(x) = 1.3x + 12; x0 = 1

10. f(x) = 0.8x + 6; x0 = 5

11. f(x) = 1.2x − 0.04x2; x0 = 3

12. f(x) =
4x

1 + x2
; x0 = 3

For each of the following sequences, explore the definition of a limit by finding
the index threshold associated with the approximation error threshold.

13. The sequence xn = 1

2n+1
has a limit xn → 0. For ǫ = 0.01, find N so

that |xn − 0| < ǫ for n > N .

14. The sequence xn = n
2n+1

has a limit xn → 1

2
. For ǫ = 0.01, find N so

that |xn − 1

2
| < ǫ for n > N .

15. The sequence xn =
(

− 2

3

)n
has a limit xn → 0. For ǫ = 0.01, find N

so that |xn − 0| < ǫ for n > N .


