
280 CHAPTER 5. LIMITS AND DIFFERENTIABILITY

5.1 An Overview of Calculus

The previous chapter 13 studied sequences. There are three major concepts in
calculus that we can use sequences to motivate. These are limits, derivatives,
and integrals.

In this chapter, we will focus on the idea of the definite integral as a gen-
eralization of accumulating increments of change. Thinking of sequences in
terms of their increments of change is simpler because the domain consists
only of integers which are equally spaced. More general functions are defined
with domains consisting of intervals of the real numbers. (Some functions can
be defined on even more complex sets, which gives rise to even more advanced
mathematics.) Consequently, we can not think only in terms of increments of
change but in terms of a rate of change.

5.1.1 Derivatives and Integrals

For sequences, we learned to think of complementary ideas of accumulation
sequences and increments. With a sequence x, we had a forward difference

∆xn = xn+1 − xn

and a backward difference

∇xn = xn − xn−1.

These differences measure the change in the sequence x for consecutive values
of the index, which plays the role of the independent variable.

For functions defined on intervals, there is no meaning to consecutive values
of the independent variable. Near a point of interest x = c, there are infinitely
many other values close to c. Consequently, when measuring the change of a
function ∆f , we must also specify the change in the independent variable ∆x.
Consider two values for the independent variable, say x = a and x = b, and we
define ∆x = b − a and ∆f = f(b) − f(a).

Different increments ∆x will usually result in different function increments
∆f . However, for many functions, the ratio ∆f/∆x, called the average rate

of change, has a limit as ∆x → 0. This limiting rate of change is called the
instantaneous rate of change and in calculus is named the derivative.

Definition 5.1.1 Instantaneous Rate of Change. Given a function f

that relates variables x
f
7→ y, the instantaneous rate of change of y with

respect to x is the derivative
dy

dx
defined by

dy

dx
= lim

∆x→0

∆f

∆x
= lim

∆x→0

f(x + ∆x) − f(x)

∆x
,

if the limit exists. Consequently, for sufficiently small increments ∆x, we have

∆f ≈
dy

dx
· ∆x.

♦

The following example illustrates the role of the instantaneous rate of
change to relate the increments of the independent variable with the incre-
ments of the dependent variable.
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Example 5.1.2 A ball dropped from a tower has a height h (measured in feet)
modeled as a function of time t (measured in seconds) given by

t
f
7→ h = 40 − 16t2.

At t = 1, the instantaneous rate of change is
dh

dt
= −32.

This rate of change is illustrated in the dynamic figure below. Thinking
of t0 = 1 as one value of the independent variable, you can adjust the second
value t1 to establish the increment ∆t = t1 − t0. The function automatically
computes f(1) and f(t1) and shows ∆h = f(t1) − f(1). The ratio ∆h/∆t will
be close to −32 ft

s
for small values of ∆t.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 5.1.3

We can recover this instantaneous rate of change using limits, as shown in
the solution below.

Solution. We know that ∆t = t1 − 1 and ∆h = f(t1) − f(1). Using the
formula, this gives

∆h = (40 − 16t2
1) − (40 − 16(1)2) = −16(t2

1 − 1).

The average rate of change is defined by the quotient

∆h

∆t
=

−16(t2
1 − 1

t1 − 1
,

which has a value for all t1 6= 1.
The instantaneous rate of change is the limit of the average rate of change

as ∆t → 0, which in this case requires t1 → 1. Even though the quotient is not
defined at t1 = 1, we can simplify the formula used on the sides to a formula
that is defined.

dh

dt
= lim

∆t→0

∆h

∆t
= lim

t1→1

−16(t2
1 − 1)

t1 − 1

= lim
t1→1

−16(t1 + 1)(t1 − 1)

t1 − 1

= lim
t1→1

−16(t1 + 1)

= −16(1 + 1) = −32

The key step in this limit calculation was changing the limit expression from
one in which the formula is not continuous to a new formula. When the formula
is continuous, we can just evaluate it at the point of interest. The variable t1

used in the limit could have been chosen to be any convenient name. �

At this point, our emphasis is understanding that the rate of change or
derivative measures the limiting ratio for increments of change in the value of
the function to corresponding increments of change in the independent variable.
Not every function has a derivative. We will study the calculation of the
derivative in more depth in later chapters.

Computing a derivative for a given function is analogous to computing
the increments of a sequence. The complementary calculation for sequences
is to compute the accumulation sequence for given increments. That is, if
x = (xn)∞

n=1 is a sequence of increments, then the accumulation sequence u
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with increments ∇un = un − un−1 = xn and initial value u0 was written

un = u0 +

n∑
k=1

xk.

The calculus analogue is to be given a function that represents a rate of
change and use it to find a new function, the accumulation function, that
has that rate of change as its derivative. Suppose f(x) is the rate of change or
derivative of a quantity Q with respect to x,

dQ

dx
= f(x).

We are then interested in finding Q as a function of x if we know an initial
value Q(x0) = Q0. The analogue of summation of increments is the definite

integral, and we will write

Q = Q0 +

∫ x

x0

f(z) dz.

The rest of this chapter is focused on bringing meaning to the idea of
the definite integral. We study definite integrals before derivatives because
we have just studied summation and sequences. The calculations involved in
developing the ideas of definite integrals apply these concepts. Ultimately,
the Fundamental Theorem of Calculus will provide a connection between the
definite integral and the derivative, showing that our two ideas of rate of change
represent the same thing.

5.1.2 A Technological Aside

Computational tools play an important role in the real-world application of
mathematics. It is increasingly common to have a tool perform actual compu-
tations with the user responsible to formulate the appropriate problem.

For example, you may have heard of the website WolframAlpha. This site
acts like a search engine for mathematical content, and you can enter queries
like “factor x^2+3x”. The ability extends to calculus tools as well. We might
have asked for our earlier example “derivative of 40-16t^2 at t=1”.

Disadvantages of a site like WolframAlpha is that you are limited to a single
query at a time and it can sometimes be hard to state precisely what you
want. More powerful tools are available, including advanced programmable
calculators and commercial software tools like Wolfram’s Mathematica and
MapleSoft’s Maple programs.

A free, but similarly powerful tool is SageMath. A calculation in SageMath
uses a script based on the Python programming language. Comments in the
scripts follow the # symbol and are ignored by the computer but are useful to
understand what is happening.

Example 5.1.4 To factor the formula x2 + 3x, we would use the following
script.

# Tell Sage that x is a variable

var("x")

# Ask Sage to factor. Include the multiplication *

factor(x^2+3*x)

(x+3)*x

�
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Example 5.1.5 To find the derivative of 40 − 16t2 at t = 1, we would use the
following script.

# Tell Sage that t is an independent variable

var("t")

# Define h as function of t

# -- Notice how every operation must be typed

h(t) = 40-16*t^2

show(h(t))

# The derivative is also a function

# but let Sage figure it out using the derivative operation.

Dh(t) = derivative(h(t), t)

show(Dh(t))

# Find the value of the derivative at t=1

Dh(1)

-16*t^2+40

-32*t

-32

�

Example 5.1.6 A container of water has a volume V . Suppose that the
volume has an instantaneous rate of change with respect to time t given by

dV

dt
= −40 + 3t.

When
dV

dt
is negative, the volume is decreasing; when

dV

dt
is positive, the

volume is increasing. The expression defines exactly how fast the water is
entering or leaving the container. Find the volume of water as a function of
time if V = 500 when t = 1.

The following SageMath script will start by defining the formula for the
rate of change. It then uses a definite integral to create the variable for the
volume,

V (t) = 500 +

∫ t

1

−40 + 3z dz.

# Define the independent variable.

var("t")

# Define dV as a function for rate

DV(t) = -40+3*t

show(DV(t))

# Define the V using integral , but need dummy variable

var("z")

V(t) = 500 + integrate(DV(z), [z, 1, t])

show(V(t))

3*t-40

3/2*t^2-40*t+1077/2

The integration variable z was needed in the integral for the same reason
that a summation in sequence accumulations requires a dummy index variable.
The formula DV(z) represents the formula for the rate of change evaluated at
this integration variable instead of t, −40+3z. This could have been computed
in WolframAlpha with the query integrate -40+3z with respect to z from

1 to t. �
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5.1.3 Summary

• Calculus is developed using ideas similar to those for sequences—limits,
increments, and accumulation— to limits of functions, derivatives, and
integrals.

• The derivative
dQ

dx
measures the instantaneous rate of change of a

quantity Q with respect to the independent variable x, represented by a
limit,

dQ

dx
= lim

∆x→0

∆Q

∆x
.

Consequently, increments of change in Q, ∆Q, will be approximately
proportional to the increment in x,

∆Q ≈
dQ

dx
· ∆x,

for sufficiently small ∆x.

• Given a function f ′ for the rate of change of a quantity Q, x
f ′

7→ dQ
dx

, and
an initial value Q0 when x = x0, the accumulation function will be
that function with derivative dQ

dx
= f ′(x), represented by the integral

Q = Q0 +

∫ x

x0

f ′(z) dz.

• Computational tools, such as WolframAlpha and SageMath, are available
to perform these calculations, leaving us the responsibility of formulating
problems and interpreting the results.

5.1.4 Exercises

Use appropriate tables to approximate the following function limits. For a
two-sided limit, be sure that your work verifies that both sides approximate
the same value

1. lim
x→3−

2x − 8

x − 3

2. lim
x→3+

2x − 8

x − 3

3. lim
x→2

x2 − 4

2x − 4

4. lim
x→1

x2 − 1

|x − 1|

Find the instantaneous rate of change for the relationship described in each
problem using the limit of the average rate of change between the given point
and a second variable point. Compare the instantaneous rate to the average
rate for the specified increments.

5. An object tossed into the air has a height that changes in time. Let
h measure the height from the ground in feet and let t measure the
time since the object was tossed in seconds. Then h has a model

t 7→ h = 4 + 30t − 16t2.



5.1. AN OVERVIEW OF CALCULUS 285

Find
dh

dt
at t = 1 and compare this to the average rate

∆h

∆t
with

∆t = 0.1.

6. The material cost for producing an aluminum box the shape of a cube
is a function of the size of the cube. Let C be the cost in dollars and
let s measure the length of each side of the box in centimeters. Then
C has a model

s 7→ C = 0.03s2.

Find
dC

ds
at s = 10 and compare this to the average rate

∆C

∆s
with

∆s = −0.2.

7. For a circle of radius r, the area A satisfies a relation

r 7→ A = πr2.

Find
dA

dr
at r = 2 and compare this to the average rate

∆A

∆r
with

∆r = 0.05.

For each problem, write down the formula involving an integral for the quan-
tity whose derivative and initial value are given. Use technology to find the
algebraic formula of the quantity.

8. Given
dy

dx
= 4 and y = 5 when x = 2. Find y as a function of x.

9. Given
dy

dx
= 2 + 3x and y = 4 when x = 1. Find y as a function of x.

10. Given
dQ

dt
= t3 and Q = 2 when t = 1. Find Q as a function of t.

11. Given
dP

dt
= 500e0.2t and P = 4000 when t = 0. Find P as a function

of t.


