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5.3 Limits of Functions

We have previously studied limits of sequences. In the last section, we con-
sidered the continuity of piecewise functions as it depended on whether the
function rules to the left and to the right of a point agreed with the value at
the point. We used limit notation to describe the values coming from the left
and from the right.

In this section, we seek to harmonize these two views of limits. We will
introduce the idea that the limit of a function describes the limit of a sequence
of output values for a converging sequence of input values. The behavior of
limits of sequences justify our rules to calculate limits of functions. We will
also discuss horizontal and vertical asymptotes of functions in the context of
limits.

5.3.1 Limits

For sequences, we introduced the idea of limits as the value the sequence was
approaching further and further in that sequence. We saw that the decimal
approximations of the sequence values would eventually converge to the decimal
approximation of the limiting value. The mathematical definition of the limit
was stated in terms of the possibility of eventually waiting long enough in the
sequence that the sequence values would approximate the limit value within
any desired accuracy of approximation.

The only limits of interest in sequences were when the index went to infinity.
For functions, in order to understand continuity 5.2.19, we have found that we
also need to think about limits as the independent variable approaches a value
from either the left or the right. Sequences can give us a way to think about
this possibility.

Definition 5.3.1 Limits of Function. For a function f defined on intervals
to the left and right of c, we say

lim
x→c

f(x) = L

to mean that for every independent sequence x such that xn 6= c and xn → c,
the dependent sequence y = (f(xn))

∞
n=n0

must have the limit L,

lim
n→∞

f(xn).

One-sided limits add constraints to the independent sequences, with x → c+

requiring xn > c and x → c− requiring xn < c. ♦

Function limits are properties of the function itself and do not depend on
the sequences chosen. If different independent sequences that converge to c

result in different limits for the dependent sequence, then the function does
not have a limit. The following example illustrates how this new definition re-
lates our earlier concept of continuity of piecewise functions with the sequence
definition of function limits. We create a table of sequence values, one column
corresponding to the independent variable (input) and another column corre-
sponding to the dependent variable (output). The input sequence is chosen to
converge to the value c, and we examine what happens to the sequence of the
dependent variable.
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Example 5.3.2 A function is defined piecewise as

f(x) =

{

x + 2, x < 3,

4x − x2, x > 3.

Find lim
x→3−

f(x), lim
x→3+

f(x), and lim
x→3

f(x) using sequences for approximation.

Solution. The left-sided limit needs to consider an independent sequence
xn < 3 with xn → 3. The following partial table illustrates an example with
xn = 3 − 10−n.

n xn f(xn)

1 2.9 f(2.9) = 2.9 + 2 = 4.9

2 2.99 f(2.99) = 2.99 + 2 = 4.99

3 2.999 f(2.999) = 2.999 + 2 = 4.999

If we compare the values of the dependent sequence f(xn) with the value
of the formula x+ 2 evaluated at x = 3, which is x+ 2 = 5, we can see that the
dependent sequence is approaching that limit f(xn) → 5. We therefore write

lim
x→3−

f(x) = 5.

In a similar way, a right-sided limit requires xn > 3 with xn → 3, such as
the sequence xn = 3 + 10−n.

n xn f(xn)

1 3.1 f(3.1) = 4(3.1) − (3.1)2 = 2.79

2 3.01 f(3.01) = 4(3.01) − (3.01)2 = 2.9799

3 3.001 f(3.001) = 4(3.001) − (3.001)2 = 2.997999

If we compare the values of the dependent sequence f(xn) with the value of
the formula 4x − x2 evaluated at x = 3, which is 4x − x2 = 3, we can see that
the dependent sequence is approaching that limit f(xn) → 3. We therefore
write

lim
x→3+

f(x) = 3.

The two-sided limit requires only xn → 3. The sequence values might be
either above or below 3. Above, we found that when the independent variable
values are on the left xn < 3, we had f(xn) → 5. But when xn > 3, we had
f(xn) → 3. Because different sequences with xn → 3 result in different limits
for f(xn),

lim
x→3

f(x) does not exist.

�

While the previous example attempted to connect our simpler understand-
ing of limits with the limits of sequences, the given solution really only illus-
trated the first few terms from two out of infinitely many possible independent
sequences. Using tables of sequence values might suggest possible values of the
limits, but we need a more definitive reason that the limit agrees with simple
evaluation of the formula.

When a function is visualized as a graph, a limit can be determined by
looking at the branches of the graph immediately to the left or right of the
point of interest. A limit of f(x) with x → c− means to look at the branch of
the function with x < c and identify what point that branch would lead to as
x → c. Similarly, a limit of f(x) with x → c+ means to look at the branch of
the function with x > c and identify what point that branch would lead to as
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x → c.

Example 5.3.3 Consider the function f whose graph is shown below. Find
the following limits based on the graph, assuming the coordinates of shown
points are integers.

1. lim
x→−1

f(x)

2. lim
x→0

f(x)

3. lim
x→2

f(x)

4. lim
x→4

f(x)

−4 −2 0 2 4

−4

−2

0

2

4

x

y
=

f
(x

)

Solution.

1. lim
x→−1

f(x)

We consider a sequence for x on the x-axis that converges to −1. It is
best to consider a sequence on the left and another on the right. For
xn < −1, our function will be using the cubic portion of the graph. As
xn → −1 (from the left), the function will move closer and closer to the
open point at (−1, −2). The y-value of this point is the corresponding
limit of the dependent sequence:

lim
x→−1−

f(x) = −2.

For xn > −1, we will be somewhere to the right. As xn → −1 (from the
right), we will eventually be on the portion of the function corresponding
to the concave down parabola. The sequence will move us closer and
closer to the filled-in point at (−1, 1):

lim
x→−1+

f(x) = 1.

Because the left- and right-limits have different values, the two-sided limit
does not exist.

2. lim
x→0

f(x)

We consider a sequence for x on the x-axis that converges to 0. Regardless
of whether the sequence is to the left or the right of x = 0, the value xn

will eventually use the function defined by the concave down parabola.
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The point on the graph of the function will converge to the vertex of this
parabola at (0, 2). This is our limit.

lim
x→0

f(x) = 2.

3. lim
x→2

f(x)

For a sequence xn → 2 with xn < 2, the point on the graph will eventually
be on the parabola and approaching the open point at (2, −2). For values
with xn > 2, the point on the graph will eventually be on the line and
also approaching the point (2, −2). Because the sequence always results
in approaching the point (2, −2), we have a limit

lim
x→2

f(x) = −2.

Notice that a limit does not depend on whether the point is included in
the function or not. All that matters is whether the sequence of points
converges to that point.

4. lim
x→4

f(x)

For a sequence xn → 4 and xn 6= 4, eventually the function will be on
the line to the left or right of x = 4. Either way, the corresponding point
on the graph will be converging to (4, 0):

lim
x→4

f(x) = 0.

The value of the function f(4) = 2 has no effect on the limit.

�

When we have a formula for a function, we already know that a table can
be helpful but will not guarantee the value of the limit. We might think we
can graph the function, but even our graphs of functions are ultimately based
on a table of values. We need some methods to evaluate limits based on the
formulas alone.

Our earlier motivation for limits involving piecewise functions suggest that
we can find a limit by evaluating a function at the point of interest. In most
cases, this is true. This is a consequence of the algebraic structure of expres-
sions and the fact that limits behave very nicely with algebraic operations.
The rest of this section explains why limits usually behave so well.

5.3.2 Limit Rules for Combining Sequences

We start by formalizing some rules about how sequence limits relate to the
arithmetic of sequences. These rules are stated as theorems. We begin each
theorem with one or more sequence that is given with a particular limit. We
then define a new sequence using arithmetic involving those sequences. The
conclusion of each theorem describes the limit of the new sequence. To apply
a theorem, we must verify that the hypotheses are satisfied before we can use
the conclusion.

For a converging sequence x = (xn) with xn → L, we can think of the
sequence values as approximating L. The absolute error of approximation
|xn − L| must vanish as n → ∞. In other words, for any margin of error
ǫ > 0, there must be some index N so that |xn − L| < ǫ once n > N . The
proofs of these theorems rely on showing how the error of approximation for
the arithmetic combination of the sequences can be related to the errors of
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approximations of the given sequences to their limits in a way to show that
the approximation error will eventually vanish.

The first three rules involve elementary operations involving constants on
a single sequence. They correspond to the operations used to construct ex-
pressions involving another expression and a constant, as discussed in (((Unre-
solved xref, reference "subsubsection-elementary-arithmetic-operations"; check
spelling or use "provisional" attribute))) .

Theorem 5.3.4 Sequence Limit of a Constant Sum (SL:CS). Given a

sequence u = (un) with un → L and any constant k, the transformed sequence

wn = un + k has limit

lim
n→∞

un + k = L + k.

Proof. The error of approximation for wn from its proposed limit L + k can be
rewritten

|wn − (L + k)| = |un + k − L − k| = |un − L|.

This is the same as the error of approximation for un from its limit L. As soon
as |un − L| < ǫ, we also have |wn − (L + k)| < ǫ. Because |un − L| → 0, this
proves

lim
n→∞

un + k = L + k.

�

Theorem 5.3.5 Sequence Limit of a Constant Multiple (SL:CM).
Given a sequence u = (un) with un → L and any constant k, the transformed

sequence wn = k · un has limit

lim
n→∞

k un = k L.

Proof. The error of approximation for wn from its proposed limit kL can be
rewritten

|wn − kL| = |kun − kL| = |k(un − L)| = |k| · |un − L|.

If k = 0, then wn = 0 for all n and wn → 0 must be true. If k 6= 0, then the
error of approximation for w from its proposed limit is exactly |k| times the
error of approximation for u from its given limit. As soon as |un − L| < 1

|k| ǫ,

we must have |wn − kL| < ǫ. Because |un − L| → 0, this proves

lim
n→∞

k un = k L.

�

Theorem 5.3.6 Sequence Limit of a Reciprocal (SL:MInv). Given a

sequence u = (un) with un → L 6= 0, the transformed sequence of multiplicative

inverses wn = 1

un

has limit

lim
n→∞

1

un

=
1

L
.

Proof. Division is not defined when the denominator equals zero. Because
un → L and L 6= 0, we know that |un − L| < 1

2
|L| eventually. When L > 0,

this means that 1

2
L < un < 3

2
L. If L < 0, then 3

2
L < un < 1

2
L. Either way,

un is kept away from 0 and wn = 1

un

is guaranteed to be defined. (Before this
point, we might have had un = 0 so that wn is not defined.

The error of approximation for wn from its proposed limit 1

L
can be rewrit-

ten using a common denominator

|wn −
1

L
| = |

1

un

−
1

L
| = |

L − un

unL
| = |un − L| ·

1

|un||L|
.
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Because |un| > 1

2
|L|, we know that

1

|un|
<

2

|L|
. Thus,

|wn −
1

L
| < |un − L| ·

2

|L|2
.

The error of approximation for wn is always smaller than 2

|L|2 times the error

of approximation for un from its limit. Because |un − L| → 0, this proves

lim
n→∞

1

un

=
1

L
.

�

The second group of limit rules of combination allow us to take two limits
that we know and combine them with arithmetic. Notice how the limit rules
correspond exactly with the arithmetic operations used to construct expres-
sion, as discussed in Subsection 2.2.2. The proofs of these theorems are more
advanced and will not be given in this section.

Theorem 5.3.7 Sequence Limit of a Sum (SLC:Sum). Given sequences

u = (un) with un → L and v = (vn) with vn → M , the sequence defined by the

sum wn = un + vn has limit

lim
n→∞

[un + vn] = L + M.

Theorem 5.3.8 Sequence Limit of a Difference (SLC:Diff). Given

sequences u = (un) with un → L and v = (vn) with vn → M , the sequence

defined by the difference wn = un − vn has limit

lim
n→∞

[un − vn] = L − M.

Theorem 5.3.9 Sequence Limit of a Product (SLC:Prod). Given

sequences u = (un) with un → L and v = (vn) with vn → M , the sequence

defined by the product wn = un · vn has limit

lim
n→∞

[un · vn] = L · M.

Theorem 5.3.10 Sequence Limit of a Quotient (SLC:Quot). Given

sequences u = (un) with un → L and v = (vn) with vn → M and M 6= 0, the

sequence defined by the sum wn =
un

vn

has limit

lim
n→∞

un

vn

=
L

M
.

In addition to algebraic operations combining sequences, we have operations
associated with functions. This includes raising sequences to powers, applying
exponential or logarithm functions, or using trigonometric functions. We will
learn that each of these functions are continuous. Consequently, the following
theorem will apply.

Theorem 5.3.11 Sequence Limit of a Continuous Function (SLC:CFxn).
Given a sequence u = (un) with un → L and a function f that is continuous

at L, the sequence defined by the sum wn = f(un) has limit

lim
n→∞

f(un) = f(L).
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5.3.3 Elementary Limit Rules for Functions

Having established the limit rules associated with sequences, we can apply
those rules to create corresponding limit rules for functions.

The first collection of limit rules are some basic limits. We can think of
them as our building blocks for more complicated limits. We begin by showing
that constant functions and the identity functions are continuous.

Theorem 5.3.12 Limit of a Constant (LE:Const).

Hypothesis k is a real number.

Conclusion lim
x→a

k = k.

Proof. For a constant function f(x) = k, the output sequence is a constant
sequence regardless of the input sequence. �

Theorem 5.3.13 Limit of the Identity (LE:Ident).

Hypothesis none

Conclusion lim
x→a

x = a.

Proof. For identity function f(x) = x, the output sequence is will be the same
as the input sequence. Since xk → a, the output sequence has limit a. �

We include the limit of linear functions in our known limits of elementary
functions.

Theorem 5.3.14 Limit of a Linear Function (LE:Line).

Hypothesis m and b are real numbers.

Conclusion lim
x→a

[mx + b] = ma + b.

Proof. Given a sequence xk with xk 6= a and xk → a, define the output
sequence yk = mxk + b. This is a constant sum and constant multiple of xk.
By SLC:CM, we know mxk → ma. By SLC:CS, we then have yk = mxk + b →
ma + b. �

5.3.4 Limit Rules of Combination

The second collection of limit rules tell us how we can take limits that we
already know (starting with building blocks) and use them to compute more
complicated limits. The first three rules take a single limit that is known
to be valid and use arithmetic with a constant to find a new limit. Each of
the theorem simply applies the corresponding limit rule for sequences on the
sequence created by the function.

Theorem 5.3.15 Limit of a Constant Sum (LC:CS).

Hypothesis lim
x→a

f(x) = L and k is a real number.

Conclusion lim
x→a

[f(x) + k] = L + k.

Theorem 5.3.16 Limit of a Constant Multiple (LC:CM).

Hypothesis lim
x→a

f(x) = L and k is a real number.

Conclusion lim
x→a

[k · f(x)] = k · L.

Theorem 5.3.17 Limit of a Reciprocal or Multiplicative Inverse
(LC:MInv).

Hypothesis: lim
x→a

f(x) = L and L 6= 0.
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Conclusion: lim
x→a

1

f(x)
=

1

L
.

The next limit rules of combination allow us to take two limits that we
know and combine them with arithmetic. In each of the cases, note that both
limits in the hypothesis have x → a (i.e., x approaches the same value in both
limits).

Theorem 5.3.18 Limit of a Sum (LC:Sum).

Hypothesis lim
x→a

f(x) = L and lim
x→a

g(x) = M .

Conclusion lim
x→a

[f(x) + g(x)] = L + M .

Theorem 5.3.19 Limit of a Difference (LC:Diff).

Hypothesis lim
x→a

f(x) = L and lim
x→a

g(x) = M .

Conclusion lim
x→a

[f(x) − g(x)] = L − M .

Theorem 5.3.20 Limit of a Product (LC:Prod).

Hypothesis lim
x→a

f(x) = L and lim
x→a

g(x) = M .

Conclusion lim
x→a

[f(x) · g(x)] = L · M .

Theorem 5.3.21 Limit of a Quotient (LC:Quot).

Hypothesis lim
x→a

f(x) = L and lim
x→a

g(x) = M and M 6= 0.

Conclusion lim
x→a

f(x)

g(x)
=

L

M
.

In addition to the arithmetic of functions, composition of functions plays an
important role in algebra and calculus. So we need a limit rule associated with
composition. Recall that for composition, the output of one function becomes
the input to another function.

Theorem 5.3.22 Limit of a Continuous Composition (LC:Comp).

Hypothesis lim
x→a

f(x) = L and g is continuous at L, or in other words,

lim
u→L

g(u) = g(L).

Conclusion lim
x→a

g ◦ f(x) = lim
x→a

g(f(x)) = g(L).

If f is continuous at a so that lim
x→a

f(x) = f(a) then we have lim
x→a

g ◦ f(x) =

g◦f(a). In other words, the composition of continuous functions is a continuous
function.

5.3.5 Justifying Limit Calculations

There are two ways in which limit rules are applied. One way is to provide
formal justification of limit calculations, or in other words, to write a proof of
limit statements. The other way limit rules are used is to break a computation
down into recognizable and manageable parts. This section focuses on the
process of formal justification.

A mathematical proof is essentially a sequence of statements, each of which
is demonstrably true based only on previously stated knowledge and logical
arguments. This means that when writing a proof or any careful justification,
we must be careful that when we write something down we have previously
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established all of the necessary conditions at a previous step. In order to avoid
circular reasoning, we should avoid referring to something as true before we
actually show it is true.

For justification of limit statements, this means that we start from the small
building blocks that create our formula and put them together one step at a
time until we can justify the limit statement we are trying to prove.

Example 5.3.23 Compute and justify lim
x→2

3x2(2x − 5).

Solution. Start by planning ahead. The formula 3x2(2x − 5) is a product of
3x2 and 2x−5. This second factor 2x−5 is a linear function so there is a limit
rule for that piece. But 3x2 is not linear, and we recognize it as a product of
3 (a constant) and x2. Finally, we see that x2 = x · x is the product of the
identity with itself. We will start with the elementary formulas and build them
back up to the full function.

1. lim
x→2

x = 2 by LE:Ident.

2. lim
x→2

x · x = 2 · 2 = 4 by LC:Prod using limits of f(x) = x (step 1) and

g(x) = x (step 1).

3. lim
x→2

3x2 = 3 · 4 = 12 by LC:CM using constant k = 3 and limit of

f(x) = x2 (step 2).

4. lim
x→2

2x − 5 = 2(2) − 5 = −1 by LE:Line (m = 2, b = −5).

5. lim
x→2

3x2(2x − 5) = 12(−1) = −12 by LC:Prod using the limits found in

step 3 and step 4.

�

Example 5.3.24 Compute and justify lim
x→3

x3 + 4x2 − 3x + 1.

Solution. It is important to note that limit rules of combination only combine
two formulas at a time. In this calculation, we will need the limit of x3. Writing
this as x3 = x · x · x is not going to be as useful as writing x3 = x · x2 because
there are no rules to combine three limits at once. In addition, subtraction is
always problematic, so it is best to rewrite subtraction as a sum,

x3 + 4x2 − 3x + 1 = x3 + 4x2 + −3x + 1.

1. lim
x→3

x = 3 by LE:Ident.

2. lim
x→3

x · x = 3 · 3 = 9 by LC:Prod using the limits in step 1 (twice).

3. lim
x→3

x · x2 = 3(9) = 27 by LC:Prod using the limits in step 1 and step 2.

4. lim
x→3

4x2 = 4(9) = 36 by LC:CM using k = 4 and the limit in step 2.

5. lim
x→3

−3x + 1 = −3(3) + 1 = −8 by LE:Line (m = −3, b = 1).

6. lim
x→3

x3 + 4x2 = 27 + 36 = 63 by LC:Sum using limits in step 3 and step

4.

7. lim
x→3

x3 + 4x2 + −3x + 1 = 63 + −8 by LC:Sum using limits in step 6 and

step 5.

�
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Because most expressions that we work with are defined strictly in terms
of the basic arithmetic operations and elementary functions, the limit rules we
have developed essentially allow us to replace the independent variable in the
formula f(x) with the limiting point x → c. That is, whenever the expression
involves basic arithmetic operations (addition, subtraction, multiplication, and
division), we know that we could apply the limit rules step-by-step to justify

lim
x→c

f(x) = f(c).

The exception is that our rule for quotients does not allow division by zero.

Theorem 5.3.25 If f(x) is an algebraic expression that involves only arith-

metic operations, then lim
x→c

f(x) = f(c) so long as f(c) is defined.

Example 5.3.26 Determine lim
x→2

2x + 3

x2 − 5
.

Solution. At first glance, we might worry that the theorem does not apply
because x2 is a power and not an arithmetic operation. However, because

x2 = x · x is a product, we have a function f(x) =
2x + 3

x · x − 5
defined in terms

of arithmetic operations. We evaluate f(2):

f(2) =
2(2) + 3

22 − 5
= −7.

Consequently, by Theorem 5.3.25, we have

lim
x→2

2x + 3

x2 − 5
= −7.

�

We will learn in the next section how to deal with expressions where the
value is not defined.

5.3.6 Summary

• The limit of a function lim
x→c

f(x) represents the value L that is the limit

of the dependent sequence f(xn) for every independent sequence (xn)
that satisfies xn 6= c and xn → c. One-sided limits add the constraint
that the sequence must stay below c (x → c−) or above c (x → c+).

• Numerically, a function limit lim
x→c

f(x) can be approximated by testing

the value of the function for values of the independent variable following
a sequence x → c.

• Graphically, a function limit lim
x→c

f(x) corresponds to the y-value of the

point in the plane that the sequence of points (xn, f(xn)) approaches
from the left and from the right as xn → c. If the two branches (left vs
right) approach different points, the two-sided limit does not exist.

• Limit rules associated with all of the arithmetic operations justify apply-
ing the same operations with limits.

• An argument justifying limits using limit rules must demonstrate that
the component limits are known prior to combining them with a limit
rule.
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5.3.7 Exercises

Use appropriate tables to approximate the following function limits. For a
two-sided limit, be sure that your work verifies that both sides approximate
the same value

1. lim
x→3−

2x − 8

x − 3

2. lim
x→3+

2x − 8

x − 3

3. lim
x→2

x2 − 4

2x − 4

4. lim
x→1

x2 − 1

|x − 1|

Consider the function f whose graph is shown below. Find the following values,
if they exist, based on the graph and assuming the coordinates of shown points
are integers.

−4 −2 0 2 4

−4

−2

0

2

4

x

y
=

f
(x

)

5.

(a) f(−2)

(b) lim
x→−2−

f(x)

(c) lim
x→−2+

f(x)

(d) lim
x→−2

f(x)

6.

(a) f(0)

(b) lim
x→0−

f(x)

(c) lim
x→0+

f(x)

(d) lim
x→0

f(x)

7.

(a) f(2)

(b) lim
x→2−

f(x)
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(c) lim
x→2+

f(x)

(d) lim
x→2

f(x)

Consider the function f whose graph is shown below. Find the following values,
if they exist, based on the graph and assuming the coordinates of shown points
are integers.

−4 −2 0 2 4

−4

−2

0

2

4

x

y
=

f
(x

)

8.

(a) f(−2)

(b) lim
x→−2−

f(x)

(c) lim
x→−2+

f(x)

(d) lim
x→−2

f(x)

9.

(a) f(1)

(b) lim
x→1−

f(x)

(c) lim
x→1+

f(x)

(d) lim
x→1

f(x)

10.

(a) f(2)

(b) lim
x→2−

f(x)

(c) lim
x→2+

f(x)

(d) lim
x→2

f(x)

Compute and justify the value of each limit applying the limit rules for func-
tions step-by-step.

11. lim
x→−3

4x + 1

2x + 3
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12. lim
x→2

3x2 − 4x + 5

13. lim
x→4

5x2

2x2(3x − 1)

14. lim
x→−2

x3 − 4x2 + 5x − 7


