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5.4 Continuity of Functions

5.4.1 Overview

The elementary limit rules for functions tell us that the limit of an algebraic
expression made from arithmetic operations will equal the value of the expres-
sion at the point in question, if that value exists. So why bother introducing
limits at all if they are the same as function evaluation?

The fact of the matter is, they aren’t the same thing at all. Recall that for
piecewise functions, we can use limits to find the limiting value of a function
to the left and to the right of a break point. Function evaluation would only
allow us to look at the point itself. Having a function value agree with the
limits is a characteristic of a function being continuous. A value for x where a
function is not defined is an example of a discontinuity.

In this section, we consider the continuity of functions. We learn about
removable and infinite discontinuities, which correspond to holes and vertical
asymptotes in a graph. We learn to compute limits of functions at these dis-
continuities by looking at simplified, factored expressions. Sign analysis is used
for infinite discontinuities to determine whether the discontinuity corresponds
to unbounded positive or negative values.

5.4.2 Removable and Infinite Discontinuities

The intuitive idea of a continuous function is a function whose graph is con-
nected. Sometimes, this is thought of as being able to draw the graph without
lifting the pen. The technical definition of a continuity at a point, say at x = c,
involves three parts. First, the limit on the left exists. This means that we
can trace the graph on a branch with x < c. Second, the limit on the right
exists. This means that we also can trace the graph on a branch with x > c.
Third, both limits are equal to f(c). This gives us the connection from the left
branch to the right branch through the point.

Any time a function has a break, it has a discontinuity at that location. A
break can be a simple hole, a jump between values, or an infinite discontinuity
associated with a vertical asymptote. Discontinuities might also occur due to
limits themselves not existing for any reason.

Consider two functions, f(x) =
1

(x − 3)(x + 2)
and g(x) =

x2 − 4x + 3

x − 3
.

In both functions, the value of the function is not defined at x = 3; f and
g are both discontinuous at x = 3. Consequently, the corresponding limits
lim
x→3

f(x) and lim
x→3

g(x) can not be computed directly using the limit rules for

functions.

If we look at the graphs of our functions, as shown below, we see that there
is something fundamentally different about the behavior around x = 3. The

function f(x) =
1

(x − 3)(x + 2)
appears to have a vertical asymptote at x = 3.

The function g(x) =
x2 − 4x + 3

x − 3
looks continuous, even though we know it

has a break at x = 3.
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Figure 5.4.1 y =
1

(x − 3)(x + 2)
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Figure 5.4.2 y =
x2 − 4x + 3

x − 3

If we factor the formula for g(x), we discover that the formula simplifies.

g(x) =
x2 − 4x + 3

x − 3

=
(x − 3)(x − 1)

x − 3

= x − 1, x 6= 3

Notice that we must include a domain restriction when we simplify. The orig-
inal function is not defined for x = 3, but the simplified version is. To ensure
the functions are the same, they must have the same domain. Because x − 1 is
continuous at x = 3, g(x) has a hole at x = 3 and we call this a removable

discontinuity. A vertical asymptote at a point corresponds to a infinite

discontinuity.

Example 5.4.3 The function f(x) =
3x2 − x − 2

x − 1
has a removable disconti-

nuity at x = 1. What is the continuous function equivalent to f(x)?

Solution. A polynomial, like 3x2 − x − 2, will have a factor of x − 1 if and
only if that polynomial has a value of 0 when x = 1. So we can see if it will
cancel a factor by checking 3(1)2 − (1) − 2 = 0. Knowing this factor, we can
soon find 3x2 − x − 2 = (x − 1)(3x + 2). For all x 6= 1, we have

f(x) =
3x2 − x − 2

x − 1
=

(x − 1)(3x + 2)

x − 1
= 3x + 2.

We can only say this for x 6= 1 since the domain of f is (−∞, 1) ∪ (1, ∞). That
is,

f(x) = 3x + 2, x 6= 1.

Our function f(x) has the same graph as y = 3x + 2 except it has a hole at
x = 1.
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The previous example illustrates a basic feature of rational functions

(i.e., a ratio or quotient of two polynomials). That is that there will be a
canceling factor if the numerator and denominator have a common zero.

Theorem 5.4.4 A rational function f(x) =
p(x)

q(x)
where p and q are polynomial

functions has a domain defined by

D = {x : q(x) 6= 0}.

Further, p and q will have canceling common factors of the form (x − a) where

a is a constant if and only if p(a) = 0 and q(a) = 0.

For rational functions, the only possible discontinuities are holes and infinite
discontinuities at vertical asymptotes. Holes correspond to points that are not
in the domain but can be removed by canceling common factors. Any other
points of discontinuity must be vertical asymptotes.

Example 5.4.5 Describe the discontinuities of the function

f(x) =
x3 − 5x2 + 6x

x2 + x − 6
.

Solution. The discontinuities are determined for a rational function by find-
ing the zeros of the polynomial in the denominator, q(x) = x2 + x − 6. We
solve this by factoring:

q(x) = (x + 3)(x − 2).

There are discontinuities (breaks in the graph) at x = −3 and at x = 2.
We determine the type of discontinuity by seeing if common factors cancel.

The numerator p(x) = x3 − 5x2 + 6x can be tested even before factoring. At
x = −3, we have p(−3) = −27 − 5(9) + 6(−3) = −90 so that x + 3 is not going
to be a common factor. There must be a vertical asymptote at x = −3. At
x = 2, we have p(2) = 8 − 5(4) + 6(2) = 0 so that there will be a common
factor that cancels.

f(x) =
x3 − 5x2 + 6x

x2 + x − 6

=
x(x2 − 5x + 6)

(x + 3)(x − 2)

=
x(x − 2)(x − 3)

(x + 3)(x − 2)
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=
x(x − 3)

x + 3
, x 6= 2.

Because the new formula has a natural domain x 6= −3, the discontinuity at
x = 2 was removable. The graph has a hole at x = 2 and a vertical asymptote
at x = −3. (Notice the addition of an explicit domain on the last step when
we canceled, corresponding to the hole.)
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5.4.3 Limits at Discontinuities

The limit rules do not apply when substitution would result in division by zero.
These precisely occur at points of discontinuity. Suppose a rational function

f(x) =
p(x)

q(x)
has p(c) = 0 and q(c) = 0. Immediate substitution of x = c into

f(x) would result in 0

0
, which we have earlier identified as an indeterminate

limit form. Because p(c) = 0 and q(c) = 0, p(x) and q(x) have a common
factor x − c. Cancellation of that factor gives f(x) a simplified form, and we
can try again to evaluate the limit.

Example 5.4.6 Evaluate lim
x→2

x2 − 5x + 6

x2 − 4
.

Solution. The formula is defined in terms of elementary arithmetic, so we
try to evaluate the expression by substituting x = 2.

lim
x→2

x2 − 5x + 6

x2 − 4

?
=

22 − 5(2) + 6

22 − 4
=

0

0

The limit has an indeterminate form. We can factor x − 2 from numerator and
denominator and rewrite the expression.

f(x) =
x2 − 5x + 6

x2 − 4

=
(x − 2)(x − 3)

(x − 2)(x + 2)

=
x − 3

x + 2
, x 6= 2

Limits use the function to the side of the point in question. In this case, f(x)
uses the same formula on the left and the right of the discontinuity. Because
the new formula is continuous, we can use substitution.

lim
x→2

x2 − 5x + 6

x2 − 4
= lim

x→2

x − 3

x + 2
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=
2 − 3

2 + 2
= −

1

4

�

When a limit has a form 0

0
, we know to rewrite the formula in a simplified

form. For sequences, we learned that if an > 0 and an → 0, then 1

an

→ +∞.
That is, the reciprocal of a small positive number will be a large positive
number. The smaller an becomes, the larger 1

an

will be. Consequently, a

rational function with a limit of the form L

0
has a vertical asymptote, and the

limit will be unbounded. We use sign analysis to determine if the left- and
right-limits are +∞ or −∞.

Example 5.4.7 Evaluate lim
x→−2

x2 − 5x + 6

x2 − 4
.

Solution. In the example above, we already found

f(x) =
x2 − 5x + 6

x2 − 4
=

x − 3

x + 2
, x 6= 2.

Attempting substitution, we find

lim
x→−2

f(x)
?
=

−2 − 3

−2 + 2
=

−5

0
.

This is an undefined expression and indicates that f(x) has an infinite discon-
tinuity.

To find the limit as either +∞ or −∞, we do sign analysis on the simplified
formula. The test intervals are separated by the roots and discontinuities. The
roots are at solutions to x − 3 = 0; the discontinuities are at solutions to
x + 2 = 0. We have a root at x = 3 and a discontinuity at x = −2, illustrated
in the number line shown below.

x

x−3

x+2

-2

dc

3

0

For the limit, we need the signs of the function in each interval bordering
the point x = −2. The intervals to test are (−∞, −2) and (−2, 3).

f(−3) =
−3 − 3

−3 + 2
= 6

f(−1) =
−1 − 3

−1 + 2
= −4

We could update the number line with these signs.

x

x−3

x+2

-2

dc

3

0+ −

To the left of x = −2, we see that f(x) > 0 (positive), so a limit from the
left at the vertical asymptote must be

lim
x→−2−

x − 3

x + 2
= +∞.

To the right of x = −2, we see that f(x) < 0 (negative), so a limit from the
right at the vertical asymptote must be

lim
x→−2+

x − 3

x + 2
= −∞.
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On the graph of the function, shown below, we see that the graph is unbounded
above (+∞) to the left of the vertical asymptote and unbounded below (−∞)
to the right of the vertical asymptote.
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Motivated by our example, we are ready for a definition of a removable
discontinuity. A removable discontinuity occurs when the graph to the left
and to the right of a discontinuity approach the same point, but the function
itself is not defined to match.

Definition 5.4.8 A function f has a removable discontinuity at x = c if
lim
x→c

f(x) exists (left- and right-limits have same value) and lim
x→c

f(x) 6= f(c),

either because they are different values or f(c) does not exist. ♦

An infinite discontinuity occurs at any point where the function has an
infinite limit.

Definition 5.4.9 A function f has an infinite discontinuity at x = c if
one or both of lim

x→c−

f(x) and lim
x→c+

f(x) is infinite. The graph y = f(x) has a

vertical asymptote x = c. ♦

A jump discontinuity occurs when the limits on the left and right of a
point both exist but have different values. We usually see these with piecewise
functions.

Definition 5.4.10 A function f has an jump discontinuity at x = c if
lim

x→c−

f(x) and lim
x→c+

f(x) both exist but lim
x→c−

f(x) 6= lim
x→c+

f(x). The graph

y = f(x) has a vertical gap between the branches to the left and to the right
of x = c. ♦

5.4.4 Continuity on Intervals

Having discussed the continuity of functions at individual points, we introduce
the idea of describing continuity on intervals. We want to be able to say that
the graph of the function is connected over an entire interval.

Recall that a limit of a function lim
x→c

f(x) is defined in terms of sequences

xn → c with xn 6= c. When thinking about continuity on an interval, we also
require that the sequences stay in the interval.

We begin with open intervals. An open interval (a, b) is the set {x : a <

x < b}. Open intervals have the feature that for every value in the set, say
c ∈ (a, b), there will be a sub-interval (a, c) to the left of the point and another
sub-interval (c, b) to the right of the point. In relation to a sequence with
xn → c, we can deal with left- and right-limits inside the interval.
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Definition 5.4.11 A function f is continuous on the open interval (a, b)
if for every c ∈ (a, b), f is continuous at x = c. ♦

Closed intervals are a little trickier. A closed interval [a, b] = {x : a ≤ x ≤
b} includes the end points. For values c strictly between a and b, we know
that there are subintervals to the left and the right of c. However, at x = a,
the interval only contains points to the right; and at x = b, the interval only
contains points to the left. Continuity of a function on a closed interval must
take this into account.

Definition 5.4.12 A function f is continuous on the closed interval [a, b]
if for every c ∈ (a, b), f is continuous at x = c and limx→a+ f(x) = f(a) and
limx→b− f(x) = f(b). ♦

Continuity on an interval including only one end point requires one-sided
continuity at that point using a limit that stays inside the interval. All of these
definitions can be combined into a single definition.

Definition 5.4.13 A function f is continuous on an interval I if for every
c ∈ I and every sequence with values xn ∈ I, xn 6= c, and xn → c, we have
f(xn) → f(c). ♦

5.4.5 Extreme and Intermediate Value Theorems

There are two important theorems that describe what we know about functions
that are continuous on closed intervals. The Extreme Value Theorem guaran-
tees that any function that is continuous on a closed interval has a highest and
lowest point within that interval. The Intermediate Value Theorem guaran-
tees that a function that is continuous on a closed interval can not skip over
any values between its values at the endpoints. The proofs for both of these
theorems require advanced methods not taught at this level. We treat them
essentially as axioms, statements that are true without proof.

Theorem 5.4.14 Extreme Value Theorem. Suppose f is a function that

is continuous on [a, b]. Then there must exist values cm, cM ∈ [a, b] so that for

any x ∈ [a, b] we have

f(cm) ≤ f(x) ≤ f(cM ).

The values f(cm) and f(cM ) are the minimum and maximum values, respec-

tively, of the function f on [a, b].

If a function is not continuous on [a, b], then it does not necessarily have a
maximum or minimum value. One way that this might happen is if f has a
vertical asymptote within the interval. In that case, the values of f would be
unbounded. Another way that this might happen is that f is bounded by what
would be a maximum (or minimum) value but just doesn’t reach it because of
a sudden jump.

Example 5.4.15 Consider the function defined piecewise as

f(x) =

{

1

x2 , x 6= 0,

0, x = 0.

This function has a non-removable discontinuity at x = 0, corresponding to a
vertical asymptote. Because the formula has x2 in the denominator (always
positive), we have

lim
x→0

f(x) = +∞.

This function is unbounded on the interval [−1, 1] and has no maximum. It
does have a minimum at f(0) = 0 since that is below the rest of the graph.
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Example 5.4.16 Consider the function defined piecewise as

f(x) =

{

x2, −1 < x < 1,

1

2
, x = ±1.

This function has a removable discontinuities at x = ±1, where the limits are 1
but the values are 1

2
. In this case, f is continuous on (−1, 1) but not on [−1, 1].

The maximum value should have been y = 1, but the graph never reaches that
value because of the discontinuity. The function does have a minimum value
at f(0) = 0.
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Example 5.4.17 Consider the function defined piecewise as

f(x) =

{

x2, −1 < x ≤ 1,

2, x = −1.

This function has a removable discontinuity at x = −1. In this case, f is
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continuous on (−1, 1] but not on [−1, 1]. In spite of the discontinuity at x = −1,
this function has a maximum value f(−1) = 2 because that value is above every
other point in the interval.
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The previous example is included to emphasize that a theorem gives con-
ditions that guarantee something is true. But those conditions are not always
required. The extreme value theorem gives conditions that guarantee a func-
tion will have a maximum value. There are no exceptions for a continuous
function on a closed interval to have both maximum and minimum values.
But there are discontinuous functions that have them as well. It is just that
there are also discontinuous functions that do not have extreme values.

Theorem 5.4.18 Intermediate Value Theorem. Suppose f is a function

that is continuous on [a, b]. Then for every y between f(a) and f(b), there

exists some x ∈ (a, b) so that f(x) = y.

The Intermediate Value Theorem guarantees that the graph of y = f(x)
intersects every horizontal line between y = f(a) and y = f(b) at least once for
values of x between a and b. Because continuity is essentially connectedness,
the only way for the graph to go from y = f(a) to y = f(b) is to cross through
all intermediate values. A discontinuous function has the ability to jump across
values without touching them.

Example 5.4.19 Consider the function defined piecewise as

f(x) =











−1, x < 0,

0, x = 0,

1, x > 0.

This function has a jump discontinuity at x = 0, and is otherwise constant. If
we consider the interval [−1, 1], the values at the endpoints are f(−1) = −1
and f(1) = 1. Except for y = 0, the function y = f(x) has no solutions for
−1 < y < 1 because of the jump.
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The Intermediate Value Theorem allows us to know that a continuous func-
tion has a solution to an equation within a particular interval. If the interval
is small, we have an approximation to the value of the solution. We say that
the interval brackets the solution. Finding successively smaller bracketing
intervals allows us to approximate the root to any needed precision. The In-
termediate Value Theorem guarantees this works for continuous functions.

Example 5.4.20 The function f(x) = x3 − x − 3 is continuous because it is
a polynomial and defined everywhere. Because f(1) = −3 and f(2) = 3, we
know that f(x) must pass through every y-value between -3 and 3 for at least
one value of x in the interval (1, 2). In particular, if we are solving f(x) = 0,
since y = 0 is between f(1) = −3 and f(2) = 3, we know that there is a
solution x bracketed by the interval [1, 2].
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If we find a smaller interval, then we can know more precisely where the
root occurs. In particular, since f(1.6) = −0.504 and f(1.7) = 0.213 and y = 0
is between those values, the Intermediate Value Theorem guarantees that our
continuous function has a root bracketed by the interval [1.6, 1.7]. �

The Intermediate Value Theorem is our justification for performing sign
analysis by testing intervals at single points. If we have solved for all of the
roots (zeros) and all of the discontinuities of a function f , then f can not change
sign on any interval containing none of the roots or discontinuities. Suppose
that f(a) and f(b) have opposite sign with a < b. Then y = 0 is between
f(a) and f(b). If a and b were chosen from an interval with no discontinuities,
f must be continuous on [a, b]. The Intermediate Value Theorem would then
guarantee that f(x) = 0 has a solution with a < x < b. Because the interval
contained no roots, f(a) and f(b) must not have had opposite signs. Thus, f

can never change sign on an interval containing no roots or discontinuities.

5.4.6 Summary

• A function defined by an algebraic formula has discontinuities at every
point for which the formula is undefined.

• A rational function is defined as the quotient of two polynomials. Discon-
tinuities of rational functions only occur at the zeros of the denominator.
If the numerator and denominator have a zero at the same location x = c,
then x − c is a common factor that can be cancelled.

• A limit of the form 0

0
is indeterminate. For rational functions with a

limit of this form, we must factor and simplify to continue. If the limit
ultimately exists (as a number), the discontinuity is removable and the
limit corresponds to having a hole in the graph.

• A rational function with a limit of the form L

0
where L 6= 0 has an infinite

discontinuity. The graph of such a function has a vertical asymptote. The
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left- and right-side limits have signs that are based on sign analysis of
the function in the intervals to the left and right of the point of interest.

• A function is continuous on an interval if it continuous at every point in
the interval. If an end point is included in the interval, the function must
be one-sided continuous from the side contained in the interval.

• The Extreme Value Theorem guarantees that whenever a function f is
continuous on a closed interval [a, b], there are points in the interval where
f reaches its maximum and minimum (extreme) values restricted to that
interval.

• The Intermediate Value Theorem guarantees that whenever a function
f is continuous on a closed interval [a, b], the equation f(x) = y has a
solution with a < x < b for any y between f(a) and f(b).

• The Intermediate Value Theorem guarantees that a function can only
change sign at its roots or discontinuities.

5.4.7 Exercises

Compute each of the following limits. If the limit is infinite, state both left-
and right-side limits.

1. lim
x→3

2x − 6

x − 3

2. lim
x→3

2x

x − 3

3. lim
x→2

x2 − x − 2

x − 2

4. lim
x→−1

x − 2

x2 − x − 2

5. lim
x→2

x2 − 2x − 8

x2 − 4

6. lim
x→−2

x2 − 2x − 8

x2 − 4

7. lim
x→4

x2 − 2x − 8

x2 − 4

8. lim
x→0

3x2 − 5x + 2

2x2 − x − 1

9. lim
x→−

1
2

3x2 − 5x + 2

2x2 − x − 1

10. lim
x→1

3x2 − 5x + 2

2x2 − x − 1

Classify the discontinuities for each function, if any. State the limits at each
discontinuity.

11. f(x) =
3

x2 − 5

12. f(x) =
2x

x2 + 3x
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13. f(x) =
x3 − x

2x − 2

14. f(x) =
x3 + 7x2 + 12x

x2 + 3x

15. f(x) =











3x, x < 1,

2, x = 1,

4 − x2, x > 1.

16. f(x) =

{

3

x−3
, x < 2,

2x − 7, x > 2.


