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6.4 Riemann Sums

Overview. When a rate of change is a simple function (piecewise constant),
we can compute the definite integral as a summation of the increments. Each
increment is the product of the rate of change times the width of the subin-
terval in the partition. When a rate of change is not simple (varying), we can
approximate the total change by using simple functions that are either above
or below the true rate. If we can make these approximations as good as we
desire, then there is a limiting value and that value is defined as the definite
integral.

The approximations to the definite integral using simple functions are called
Riemann sums. In this section, we will learn how to create Riemann sums
using a uniform partition. The Riemann sum will depend on the number of
increments. The definite integral will be the limit of this sum as the number
of increments goes to infinity.

6.4.1 Uniform Partitions

Recall that a partition P of an interval [a, b] is an increasing, finite sequence
P = (x0, x1, . . . , xn) with x0 = a and xn = b and xk−1 < xk. Adjacent terms in
the sequence define subintervals, Ik = [xk−1, xk], which has a width increment
of size ∇xk = xk − xk−1. A uniform partition of an interval [a, b] is a partition
in which all increments are the same size.

Definition 6.4.1 Uniform Partition. The uniform partition of an in-
terval [a, b] of size n is the partition with equal increments

∇xk = ∆x =
b − a

n
.

The partition points are defined by the arithmetic sequence

xk = a + k · ∆x, k = 0, 1, . . . , n.

The kth subinterval is Ik = [a + (k − 1)∆x, a + k∆x]. ♦

The definition of the uniform partition suggests the basic steps required to
create such a partition.

• Identify the interval [a, b] and the size of partition n.

• Compute the partition increment size

∆x =
b − a

n
,

which is the total width of the interval divided by the number of subin-
tervals.

• Create the partition points by using an arithmetic sequence with initial
value x0 = a and increment size ∆x (just calculated).

Example 6.4.2 Find the uniform partition of [1, 4] of size n = 8.

Solution. The interval uses a = 1, b = 4 and n = 8. Consequently we can
compute

∆x =
b − a

n
=

4 − 1

8
=

3

8
.
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Next, we define the partition points,

xk = a + k∆x = 1 + k ·
3

8
= 1 +

3

8
k.

In particular, the partition includes the points shown in the table below.
k xk

0 1

1 1 + 3

8
= 1 3

8

2 1 + 6

8
= 1 6

8

3 1 + 9

8
= 2 1

8

4 1 + 12

8
= 2 4

8

5 1 + 15

8
= 2 7

8

6 1 + 18

8
= 3 2

8

7 1 + 21

8
= 3 5

8

8 1 + 24

8
= 4

�

One of the tasks required in computing Riemann sums will involve evaluating
a function at these partition points. This is yet another example of the impor-
tance of composition of functions in that we replace the independent variable
(input) of the function with a formula for the partition point of interest.

Example 6.4.3 Evaluate f(xk) where f(x) = x2 and xk is a point in the
uniform partition of [1, 4] of size n.

Solution. We start by defining the partition. The interval [1, 4] means that
a = 1 and b = 4, as in the previous example. However, the size of the partition
n is not specified, so we use the variable itself to compute the increment size,

∆x =
b − a

n
=

4 − 1

n
=

3

n
.

Once the increment is known, we can define the partition points which is an
arithmetic sequence with x0 = 1 and increments ∆x to define

xk = 1 + k∆x = 1 + k ·
3

n
= 1 +

3k

n
.

Once the formula for the partition point is known, we use composition with
f(x) = x2 and then expand the formula.

f(xk) = f(1 +
3k

n
)

= [1 +
3k

n
]2

= (1 +
3k

n
)(1 +

3k

n
)

= 1 +
6k

n
+

9k2

n2
.

�

From this section, you should be able to write down the formula for the
points in a uniform partition of an interval whether the size of the partition is
given as a specific number or as an unspecified value. Using this formula, you
should also be able to use that formula to evaluate a function at the partition
points.
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6.4.2 Uniform Riemann Sums

Recall that a simple function is a piecewise function that is constant on each
subinterval defined by the partition. We know how to compute the accumulated
change (definite integral) for every simple function. Suppose that we had any
function f(x) representing a rate of change of some quantity Q and we wanted
to determine the resulting increment of change

Q(b) − Q(a) =

∫ b

a

f(x) dx

as x changes from x = a to x = b. A Riemann sum approximates this definite
integral by approximating the function f(x) by a simple function defined on a
partition of [a, b].

A Riemann sum involves two steps: specifying the partition and choosing
the simple function defined on the partition. The most common choice for a
partition is a uniform partition. The simple function is defined by choosing a
constant function value on each resulting subinterval. A Riemann sum requires
that we choose the value to match the true function f(x) at some point within
the closed subinterval [xk−1, xk]. Different rules for how to choose the point
define some common methods.

Left-Hand Rule The simple function uses the value at the left end point,
f(xk−1).

Right-Hand Rule The simple function uses the value at the right end point,
f(xk).

Mid-Point Rule The simple function uses the value at the midpoint of the
interval, f( xk−1+xk

2
).

Trapezoid Rule The simple function uses the average of the values at the

end-points,
f(xk−1) + f(xk)

2
.

Lower-Sum Rule The simple function uses the minimum value of the func-
tion on the subinterval, min(f(x) : x ∈ [xk−1, xk]).

Upper-Sum Rule The simple function uses the maximum value of the func-
tion on the subinterval, max(f(x) : x ∈ [xk−1, xk]).

The left-hand rule and the right-hand rule are the simplest rules to work
with algebraically. We will focus on practicing using those rules. The trapezoid
rule typically is a much better approximation and is preferred when using a
computer. The lower-sum and upper-sum rules provide error bounds on our
approximation. The lower-sum always underestimates the definite integral; the
upper-sum always overestimates the value. If we know both the lower-sum and
upper-sum, then the true value must be between them.

To compute a Riemann sum using a particular choice of simple function, we
usually do not define the approximating simple function separately. We just
compute the approximating definite integral based on that simple function.
For clarity, our first example will define the function directly.

Example 6.4.4 Approximate

∫ 5

2

x2dx using the left-hand rule with a uniform

partition of size n = 4.

Solution. The first step is to define the partition. Our interval is [a, b] =
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[2, 5]. Consequently, the increment size of the partition will be

∆x =
5 − 2

4
=

3

4
.

The partition points are defined by

xk = 2 +
3k

4
, k = 0, 1, 2, 3, 4.

In particular, the partition is defined by the sequence

x = (2, 2.75, 3.5, 4.25, 5).

The second step is to define the simple function, Lf (x). Using the left-
hand rule means that we will use the value of f(x) = x2 on each subinterval
[xk−1, xk] by the value of f(xk−1).

Lf (x) =























f(2) = 22 = 4, 2 < x < 2.75,

f(2.75) = 2.752 = 7.5625, 2.75 < x < 3.5,

f(3.5) = 3.52 = 12.25, 3.5 < x < 4.25,

f(4.25) = 4.252 = 18.0625, 4.25 < x < 5.

A graph of y = f(x) and the approximating simple function y = Lf (x) is shown
below. The shaded region corresponds to the definite integral represented by
the Riemann sum.

0 1 2 3 4 5
0

10

20

30

The Riemann sum is the definite integral of the approximating simple func-
tion. Notice how the limits of the integral correspond to the interval [2, 5] while
the limits of the sum correspond to counting the subintervals in the partition.

∫ 5

2

Lf (x) dx =

4
∑

k=1

f(xk−1)∆x
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= f(2) ·
3

4
+ f(2.75) ·

3

4
+ f(3.5) ·

3

4
+ f(4.25) ·

3

4
= 4(0.75) + 7.5625(0.75) + 12.25(0.75) + 18.0625(0.75)

= 31.40625

�

In usual practice, the only steps we really need are identifying the partition,
determining the value of the function on each subinterval, and then computing
the Riemann sum, which corresponds to the definite integral of the simple
function. Writing down the piecewise formula for the simple function is not
actually necessary. A table often makes the computation simpler.

Example 6.4.5 Use a Riemann sum with the right-hand rule and a uniform

partition of size n = 5 to approximate

∫ 2

0

1

x + 1
dx.

Solution. Start by identifying the partition. First determine the increment
size,

∆x =
2 − 0

5
=

2

5
= 0.4.

Use the increment size to find the partition,

x = (0, 0.4, 0.8, 1.2, 1.6, 2.0).

Once the partition is identified, calculate the value of the integrand function

f(x) =
1

x + 1
at the right endpoint of each subinterval. The table below

summarizes these computations.

k (index) [xk−1, xk] (interval) f(xk) (value)

1 [0, 0.4] f(0.4) = 1

1.4
≈ 0.7143

2 [0.4, 0.8] f(0.8) = 1

1.8
≈ 0.5556

3 [0.8, 1.2] f(1.2) = 1

2.2
≈ 0.4546

4 [1.2, 1.6] f(1.6) = 1

2.6
≈ 0.3846

5 [1.6, 2] f(2) = 1

3
≈ 0.3333

Knowing the constant values on each subinterval, if we called the simple
function using the right endpoint Rf (x), then we have the Riemann sum

∫ 2

0

Rf (x) dx =

5
∑

k=1

f(xk)∆x

≈ 0.7143(0.4) + 0.5556(0.4) + 0.4546(0.4) + 0.3846(0.4) + 0.3333(0.4)

≈ 0.9770

The graph below shows the original function y = f(x) and the simple function
y = Rf (x) that was used in the Riemann sum.
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The previous two examples illustrated very specific Riemann sums, where
the size of the partition was specified as a small number. In order to compute
definite integrals using limits of Riemann sums, we need to find an explicit
formula for a Riemann sum involving a partition of unspecified size n.

The basic steps for these problems are as follows.

• Create a formula for the partition with increment

∆x =
b − a

n

and partition points defined by an arithmetic sequence

xk = a + k ∆x.

• Evaluate the integrand function f(x) at the appropriate choice, usually
at an end point such as f(xk−1) (left) or f(xk) (right), and expand the
formula as necessary.

• Write down the Riemann sum using summation notation. Apply the
properties of summation and the summation formulas to find an explicit
formula for the Riemann sum in terms of n. The typical representation
of the Riemann sum uses the form

n
∑

k=1

f(x∗

k)∆x,

where f(x∗

k) is the function value chosen for the kth subinterval of the
partition depending on which rule is chosen.

• To find the actual definite integral, take a limit of the explicit formula
as n → ∞. That is, the definite integral is computed as

∫ b

a

f(x)dx = lim
n→∞

n
∑

k=1

f(x∗

k)∆x,
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Example 6.4.6 Use a Riemann sum with the right-hand rule and a uniform

partition of size n to approximate

∫ 5

−1

(5 − 2x)dx.

Solution. To find the partition of the interval [a, b] = [−1, 5], we compute
the partition increment size

∆x =
5 − −1

n
=

6

n
.

The partition points are defined using an arithmetic sequence

xk = −1 + k ·
6

n
= −1 +

6k

n
.

The partition defines the kth subinterval [xk−1, xk] such that the right-hand
rule will evaluate the integrand f(x) = 5 − 2x at the point xk,

f(xk) = 5 − 2xk = 5 − 2(−1 +
6k

n
)

= 5 + 2 −
12k

n
= 7 −

12k

n

The Riemann sum is equal to the sum of increments computed as the inte-
grand function (rate) times the partition increment width. That is, if we use
the function Rf (x) as the simple function using the right-hand end points of
the intervals, then the Riemann sum is

∫ 5

−1

Rf (x)dx =

n
∑

k=1

f(xk) · ∆x.

Using the value we found above and ∆x = 6

n
, this gives

∫ 5

−1

Rf (x)dx =
n

∑

k=1

(7 −
12k

n
) ·

6

n

=
n

∑

k=1

(
42

n
−

72k

n2
)

Linearity
=

1

n

n
∑

k=1

42 −
72

n2

n
∑

k=1

k

=
1

n
· (42n) −

72

n2
·

n(n + 1)

2

= 42 −
36(n + 1)

n

This final formula is the value of the Riemann sum using the right-hand rule.
The limit of the Riemann sum is the value of the actual definite integral of

interest. That is, for this problem, we have

∫ 5

−1

(5 − 2x)dx = lim
n→∞

[42 −
36(n + 1)

n
]

= lim
n→∞

[42 − 36 ·
n(1 + 1

n
)

n
]

= 42 − 36 · 1 = 6.
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Because the graph y = f(x) (shown below) is linear, we can compute the
corresponding signed area using the area of triangles and compare our calcu-
lation. The graph crosses the axis when f(x) = 0 which occurs at x = 2.5. So
we split the definite integral into two pieces,

∫ 5

−1

f(x)dx =

∫ 2.5

−1

f(x)dx +

∫ 5

2.5

f(x)dx.

The first region on interval [−1, 2.5] is a triangle above the axis with height
7 and width 3.5 so that the area of the region is 1

2
(7)(3.5) = 12.25. The

second region on interval [2.5, 5] is a triangle below the axis with height 5
(since f(5) = −5) and base width 5 − 2.5 = 2.5. The area of the second
triangle is 1

2
(5)(2.5) = 6.25 but corresponds to a signed area of −6.25 (because

below the axis). So

∫ 5

−1

f(x)dx = 12.25 + −6.25 = 6.

Thus, the limit of the Riemann sum exactly agrees with the geometric calcu-
lation of total signed area.

−2 0 2 4 6

−5

0

5

10

�

6.4.3 Summary

• The definite integral

∫ b

a

f(x) dx of a general function f(x) can be approx-

imated by a Riemann sum, which is the definite integral of a simple
function that approximates f(x) as a piecewise constant function.

• A partition of an interval of size n is a finite sequence of values P =
(x0, x1, . . . , xn) which defines n subintervals Ik = [xk−1, xk]. The lengths
of the subintervals are the increments ∇xk = xk − xk−1.
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A uniform partition of the interval [a, b] of size n has equal incre-

ments ∇xk = ∆x =
b − a

n
. The sequence of points is arithmetic with

formula
xk = a + k ∆x.

• A Riemann sum of

∫ b

a

f(x) dx on a partition P identifies values in each

subinterval, x∗

k ∈ [xk−1, xk], uses the values f(x∗

k) to define a simple
function, and computes the integral of the simple function as a simple
sum,

n
∑

k=1

f(x∗

k)∇xk.

Most calculations use simple rules to identify the points of evaluation.

◦ Left-Hand Rule: Choose x∗

k = xk−1 (left end-point).

◦ Right-Hand Rule: Choose x∗

k = xk (right end-point).

◦ Mid-Point Rule: Choose x∗

k =
xk−1 + xk

2
(mid-point).

◦ Trapezoid Rule: Choose x∗

k so that f(x∗

k) =
f(xk−1) + f(xk)

2
(av-

erage height of sides).

◦ Lower-Sum Rule: Choose x∗

k so that f(x∗

k) = min(f(x) : x ∈

[xk−1, xk] (minimum value).

◦ Upper-Sum Rule: Choose x∗

k so that f(x∗

k) = max(f(x) : x ∈

[xk−1, xk] (maximum value).

• The definite integral is the limit of all Riemann sums as the partition
size grows n → ∞ and the increments shrink ∆x → 0. In particular, for
a uniform partition,

∫ b

a

f(x) dx = lim
n→∞

n
∑

k=1

f(x∗

k)∆x.

• To approximate a definite integral

∫ b

a

f(x) dx for a specific size Riemann

sum (i.e., for a specific value of n), we apply the following steps.

1. Find the specific partition points.

2. Identify the evaluation points x∗

k according to the rule being used.

3. Calculate the specific values of the integrand f(x∗

k).

4. Add the increments of the Riemann sum, multiplying each rate value
f(x∗

k) by the increment ∇xk,

n
∑

k=1

f(x∗

k) ∇xk.

• To express a definite integral

∫ b

a

f(x) dx as the limit of uniform Riemann

sums, we apply the following steps.

1. Calculate the uniform increment ∆x = b−a
n

.
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2. Find and simplify the explicit formula for the partition points

xk = a + k ∆x.

3. Compute f(x∗

k), usually using x∗

k = xk (right-hand rule), using func-
tion substitution (composition).

4. Write down the limit of the Riemann sum, remembering to multiply
the rate value f(x∗

k) by ∆x,

∫ b

a

f(x) dx = lim
n→∞

n
∑

k=1

f(x∗

k)∆x.

To compute the value of the definite integral using the limit of Riemann
sums, we first compute the formula for the Riemann sum in terms of n,

n
∑

k=1

f(x∗

k) ∆x,

and then evaluate the limit of that formula.

6.4.4 Exercises

1. Pending.


