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8.1 Extreme Values

We have learned earlier that when a function f(x) can be written as an accu-
mulation function, we can describe the behavior of the function in terms of its
rate of accumulation f ′(x). We use sign analysis of f ′(x) to find the intervals
of monotonicity of f(x). And if f ′(x) can also be written as an accumulation
function with rate f ′′(x), the sign analysis of f ′′(x) determines the intervals of
concavity of f(x).

In this section, we apply this information to describe the extreme values of
a function. By identifying points where f ′(x) changes sign, we can find local
maximum and minimum values. Global extreme values require comparing local
extremes with end behaviors.

8.1.1 Local Extreme Values

When the derivative f ′(x) changes sign at a point where f(x) is continuous,
the function has a local or relative extreme value. We begin by focusing on
what we mean by a local extreme value. A local extreme is a point where the
function reaches either its highest or lowest point on an interval around that
point. The function might exceed the value on some other interval, but the
value needs to be the extreme in a neighborhood of the point.

Definition 8.1.1 Local (Relative) Extreme Values. A function f(x) has
a local maximum at a point x = c in the domain if there is an interval (a, b)
with c ∈ (a, b) so that f(x) ≤ f(c) for all x ∈ (a, b).

A function f(x) has a local minimum at a point x = c in the domain if
there is an interval (a, b) with c ∈ (a, b) so that f(c) ≤ f(x) for all x ∈ (a, b).

♦

The reason that the definition describes these extreme values as local ex-
tremes is that the function might go higher or lower at some point outside of
the interval. A local or relative extreme value is only at the highest or lowest
points relative to its immediate neighbors. The following graph illustrates a
function with multiple local extreme values.

−4 −2 0 2 4

−4

−2

0

2

4
A

B

C

D

E

F

Figure 8.1.2 Illustration of a function with local extremes and no global
extremes.

The function shows local maxima at points labeled A, C, and E and local
minima at points labeled B, D, and F . Of the three maxima, the value at
A is the greatest. Because the graph continues to increase after F , however,
the function reaches values higher than all of the local maxima. Similarly, the
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minimum at F is the lowest of the three lolal minima but the function reach
values even lower at points to the left of A.

One observation we should make is that the local extreme values occurred
where the function transitioned between an interval of increasing to an interval
of decreasing. Such points are called turning points. Sign analysis using the
first derivative can often identify these turning points, so we use sign analysis to
find local extreme values. The applicable theorem is called the first derivative
test for extreme values.

Theorem 8.1.3 First Derivative Test. Suppose that f ′(x) exists on an in-
terval (a, b), possibly except at x = c with a < c < b and that f(x) is continuous
at x = c.

• If f ′(x) < 0 for x ∈ (a, c) and f ′(x) > 0 for x ∈ (c, b), then f(x) is de-
creasing on (a, c] and increasing on [c, b) so that f has a local minimum

at x = c.

• If f ′(x) > 0 for x ∈ (a, c) and f ′(x) < 0 for x ∈ (c, b), then f(x) is in-
creasing on (a, c] and decreasing on [c, b) so that f has a local maximum

at x = c.

• If f ′(x) does not change sign, then f does not have a local extreme value
at x = c.

Because f ′(x) most frequently changes sign at points where f ′(x) = 0, we
call such points the critical points of f(x). When we have a more precise
definition of the derivative, we will learn that critical points also need to include
points where f ′(x) is not defined.

Example 8.1.4 Find the local extreme values of f(x) = x3 − 6x2 − 36x + 5.

Solution. The first step in a question about extreme values is to compute
the rate of change f ′(x).

f ′(x) = 3x2 − 12x − 36.

To apply the First Derivative Test, we need to complete sign analysis. Because
f ′(x) is defined and continuous everywhere, our critical points of f are the
roots of f ′(x). We solve the equation by factoring:

3x2 − 12x − 36 = 0

3(x2 − 4x − 12) = 0

3(x − 6)(x + 2) = 0.

There are two roots of f ′, x = 6 and x = −2, which are the critical points of
f .

Next, we perform sign analysis using the roots as the end points of the test
intervals, which are (−∞, −2), (−2, 6), and (6, ∞). Using the factored function
f ′(x) = 3(x + 2)(x − 6) makes it easier to find the signs without necessarily
computing the final value. We can just look at the signs of each factor:

f ′(−3) = 3(−3 + 2)(−3 − 6) = (+)(−)(−) = +,

f ′(0) = 3(0 + 2)(0 − 6) = (+)(+)(−) = −,

f ′(8) = 3(8 + 2)(8 − 6) = (+)(+)(+) = +.

We now know f is increasing on (−∞, −2], decreasing on [−2, 6], and increasing
on [6, ∞).

By the First Derivative Test, we now know that f has a local maximum at
x = −2 and a local minimum at x = 6. The y-coordinate of the local maximum
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can be found using the formula for f(x):

f(−2) = (−2)3 − 6(−2)2 − 36(−2) + 5 = 45.

This is guaranteed to be the maximum value over the interval (−∞, 6]. The
y-coordinate of the local minimum can also be found:

f(6) = (6)3 − 6(6)2 − 36(6) + 5 = −211,

which is guaranteed to be the minimum over the interval [−2, ∞). If we wanted
to graph this function and show the local extrema, we would know that our
window would need to include the x-values of x = −2 and x = 6 as well these
y-values.
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Although we do not yet know all of the rules that would allow us to compute
derivatives, with the help of technology we can analyze many other functions.

Example 8.1.5 Use technology to find the derivative of the function

f(x) =
x

x2 + 3
.

Then describe the local extreme values of f(x).

Solution. In SageMath, we find the derivative formula using the diff com-
mand, which stands for the verb differentiate. The following script will define
our function for SageMath and then ask it to show us the derivative where x

is the independent variable.

# Define our function.

f(x)=x/(x^2+3)

# Show the derivative.

show( diff(f(x), x) )
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-2x^2/(x^2+3)^2 + 1/(x^2+3)

We see that f(x) has a derivative

f ′(x) = −
2x2

(x2 + 3)2
+

1

x2 + 3
.

We can simplify this if we get a common denominator.

f ′(x) = −
2x2

(x2 + 3)2
+

(x2 + 3)

(x2 + 3)2

=
−2x2 + x2 + 3

(x2 + 3)2

=
3 − x2

(x2 + 3)2

The denominator of f ′(x) is never zero because x2 + 3 ≥ 3 will never equal
zero. So the sign can only change where 3−x2 = 0 which occurs at two values,
x = ±

√
3. There are three intervals of interest to test, (−∞, −

√
3), (−

√
3,

√
3),

and (
√

3, ∞). We can find the signs of f ′(x) using the values x = −2, x = 0
and x = 2. The signs are summarized in the number line summary below.

f ′(x)

x
−

√
3

0

√
3

0− + −

We finish by interpreting our results.

• Because f ′(x) < 0 on (−∞, −
√

3) and f ′(x) > 0 on (−
√

3,
√

3), we know
f(x) has a local minimum at x = −

√
3. (Minimum over the interval

(−∞, +
√

3))

• Because f ′(x) > 0 on (−
√

3,
√

3) and f ′(x) < 0 on (
√

3, ∞), we know
f(x) has a local maximum at x =

√
3. (Maximum over the interval

(−
√

3, ∞))

A graph of the function is illustrated below.
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Having discussed how the first derivative f ′(x) allows us to identify local
extreme values of f(x), we should note that the second derivative f ′′(x) will
allow us to identify local extreme values of f ′(x). These points are the inflec-
tion points of the function f , where the concavity of f changes. Inflection
points are significant as being extreme values in that they represent points
where the rate of accumulation or rate of change reaches either a maximum or
minimum rate.

8.1.2 Global Extreme Values

In Figure 8.1.2, we saw that when a function has local extreme values, there
could still be other points that are not local extremes that exceed the extremes.
This leads to the idea of global extreme values.

Definition 8.1.6 Suppose the function f has domain D.

• f has a global maximum at c ∈ D if f(c) ≥ f(x) for all x ∈ D.

• f has a global minimum at c ∈ D if f(c) ≤ f(x) for all x ∈ D.

♦

To identify global extremes of a function, we first need to find all of the
local extreme values. Then we use additional information to test whether
the function manages to reach beyond those values. The sign analysis used
to analyze local extrema does give us some information about the intervals
immediately to the left and right of an extremum. For example, we know that
a local maximum will be greater than all points in the immediately adjacent
intervals, but we may not know how far down the function goes.

Finishing the analysis for global extremes generally involves computing lim-
its of the function on intervals not already accounted for by the local extremes.
If a limit has a real (finite) value, the function values approach that limit but
may not actually reach the limit as an actual function value. When a func-
tion is approaches a value in a limit that would be an extreme value but never
reaches it, we call that value a bound rather than an extreme.
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Example 8.1.7 Find the global extreme values of f(x) = 4x2 − x3 restricted
to each of the following domains.

1. D = (−∞, ∞)

2. D1 = [−1, 3]

3. D2 = (−2, 4]

4. D3 = [−2, 2)

Solution. This question considers finding global extrema for a function when
it is restricted to different domains. Regardless of which domain we use, we
will need to find the local extreme values. Local extreme values are identified
from sign analysis of f ′(x). We find

f ′(x) = 4(2x) − (3x2) = 8x − 3x2.

Sign analysis begins by finding the roots, where f ′(x) = 0.

8x − 3x2 = 0

x(8 − 3x) = 0

x = 0, 8 − 3x = 0

x = 0, x =
8

3

Because f ′(x) is continuous, the roots determine the test intervals: (−∞, 0),
(0, 8

3
), and (8

3
, ∞). Testing one value of x from each interval in f ′(x) = x(8 −

3x), we find the signs summarized on the following number line.

f ′(x)

x0

0

8

3

0− + −

We can interpret the sign analysis of f ′(x) as characterizing the monotonic-
ity of f(x).

• f(x) is decreasing on (−∞, 0).

• f(x) is increasing on (0, 8

3
).

• f(x) is decreasing on ( 8

3
, ∞).

Because f(x) is decreasing on the left of x = 0 and increasing on the right,
f(x) has a local minimum at x = 0. The value of the function at this minimum
is

f(0) = 4(0)2 − (0)3 = 0.

Similarly, because f(x) is increasing on the left of x = 8

3
and decreasing on the

right, f(x) has a local maximum at x = 8

3
. The value of the function at this

maximum is

f(
8

3
) = 4(

8

3
)2 − (

8

3
)3 =

256

27
≈ 9.4815.

From our sign analysis of f ′(x), we know that f(0) is the minimum value
for the interval (−∞, 8

3
] and that f( 8

3
) is the maximum value for the interval

[ 8

3
, ∞). To complete the analysis of global extreme values, we need use limits

to compare f(0) with points on the interval (8

3
, ∞) and f( 8

3
) with points on
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the interval (−∞, 0). To evaluate limits involving ±∞, we need to factor out
the dominant power,

f(x) = 4x2 − x3 = x3(
4

x
− 1),

before using the limit arithmetic of infinity.

lim
x→−∞

f(x) = lim
x→−∞

x3(
4

x
− 1)

= (−∞)3 · (
4

−∞
− 1)

= −∞ · (0 − 1) = +∞

lim
x→+∞

f(x) = lim
x→+∞

x3(
4

x
− 1)

= (∞)3 · (
4

∞
− 1)

= ∞ · (0 − 1) = −∞

Let us now address the question of the global extreme values on each of the
requested restricted domains.

1. Find the global extremes on the interval (−∞, ∞).

We have learned that on the interval (−∞, 0), f reaches all values be-
tween f(0) = 0 and lim

x→−∞

f(x) = ∞. Clearly, f(x) has no maximum

value because it is unbounded above. Similarly, we learned that on the
interval (8

3
, ∞), f(x) reaches all values between −∞ and f( 8

3
) = 256

27
and

is unbounded below. So f(x) has no minimum value. The range of f

has been shown to be (−∞, ∞) and f has no global extreme values on
(−∞, ∞).

2. Find the global extremes on the interval D1 = [−1, 3].

We know f is decreasing on [−1, 0), a subset of (−∞, 0), so the maximum
value on that interval is

f(−1) = 4(−1)2 − (−1)3 = 5.

We also know f is decreasing on ( 8

3
, 3] so the minimum value on that

interval is
f(3) = 4(3)2 − (3)3 = 9.

Comparing these to the local minimum f(0) = 0 and the local maximum
f( 8

3
) = 256

27
, we see that f(0) = 0 is the global minimum and f( 8

3
) = 256

27

is the global maximum for the interval D1 = [−1, 3]. When restricted to
this domain, the range of f becomes [0, 256

27
].

3. Find the global extremes on the interval D2 = (−2, 4].

We know f is decreasing on (−2, 0), so that the left end-point provides
an upper bound

lim
x→−2+

f(x) = f(−2) = 4(−2)2 − (−2)3 = 24.

This is not a maximum value because x = −2 is not included in the
domain. Because f is decreasing on ( 8

3
, 4] the minimum value on that

interval is
f(4) = 4(4)2 − (4)3 = 0.
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The global minimum occurs in two locations,

f(0) = f(4) = 0.

The value f(−2) = 24 is not a global maximum because x = −2 is not
included in the domain. However, f does include all values up to that
value through the limit so that f has an upper bound of 24. When f is
restricted to D2 = (−2, 4], the range is [0, 24).

4. Find the global extremes on the interval D3 = [−2, 2).

From the work above, we know f(−2) = 24 is the maximum value on
[−2, 0). Because the right end point x = 2 is to the left of the local
maximum at x = 8

3
, we need to consider the interval of monotonicity

(0, 2). f is increasing on this interval and bounded above by the limit

lim
x→2−

f(x) = f(2) = 4(2)2 − 23 = 8.

Our work shows that f has a global minimum at x = 0 with f(0) = 0
and a global maximum at x = −2 with f(−2) = 24. The range of f

restricted to D3 = [−2, 2) is [0, 24].

The following figure illustrates the graph y = f(x) restricted to each domain.
Be sure to compare the analysis that identified the global extremes with the
graphs.
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Figure 8.1.8

�

The process to find global extrema is summarized as the following algo-
rithm.
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Algorithm 8.1.9 Finding Global Extreme Values. To find the global
extrema of a function f(x) that is continuous on an interval:

• Determine the derivative f ′(x) and perform sign analysis.

• Identify all of the local extreme values and compute the value of f(x) at
each extreme.

• Find extremes or bounds for f(x) at the end points using values or limits,
respectively.

• Identify the highest and lowest values out of the local extremes and the
end points.

• If an extreme value occurs at a point in the interval, that value is a global
maximum/minimum. If an extreme value occurs as a limit at an excluded
end point, that value is a bound but not a global extremum.

8.1.3 Extreme Values involving Accumulation

In our examples above, we worked with functions with explicit formulas. How-
ever, most steps in the analysis involved only knowing information about the
derivative. Here we consider examples where the derivative is given as the rate
of accumulation and we do not know the explicit formula for the function in
question.

Example 8.1.10 Suppose f is defined as an accumulation function with an
initial value f(0) = 10 and a rate of accumulation f ′ shown in the graph
below. We assume the graph continues as shown outside of the viewing window.
Determine local and global extreme values for f(x).
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Solution. Our function of interest is defined by an accumulation

f(x) = 10 +

∫
x

0

f ′(z) dz.

We can find local extrema in the same way as before. However, instead of
solving an equation f ′(x) = 0, we can look at the graph to both find the roots
and the signs of f ′. The graph crosses the x-axis at x = −3, x = 1 and
x = 5. The signs of f ′(x) are identified in the following sign analysis number
line summary.
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f ′(x)

x−3

0

1

0

4

0+ − + −

The Theorem 8.1.3 allows us to conclude that f(x) has a local maximum
at x = −3, a local minimum at x = 1, and another local maximum at x = 4.
It is possible to decide which maximum has a higher value by considering the
signed area of the graph. In particular, because f ′(x) has linear segments, we
can compute the areas in question using elementary geometry to find

∫ 1

−3

f ′(x) dx = −5,

∫ 4

1

f ′(x) dx = 6.

Using the splitting property of definite integrals, this implies

f(4) − f(−3) =

∫ 4

−3

f ′(x) dx = −5 + 6 = 1.

Consequently, f(4) = f(−3) + 1 and f has a higher value at x = 4 than at
x = −3.

We can find actual values if we use the initial value,

f(−3) = 10 +

∫
−3

0

f ′(z) dz.

Because the integral goes right to left, we have dz < 0 and the signed area will
be negated. Again using geometry, we find

f(−3) = 10 + −(−4.5) = 14.5.

Using this point and the integrals above, we can quickly find

f(1) = f(−3) +

∫ 1

−3

f ′(z) dz = 14.5 − 5 = 9.5,

f(4) = f(1) +

∫ 4

1

f ′(z) dz = 9.5 + 6 = 15.5.

To find global extrema, we need to think about what happens to the left
and right of these local extrema. The sign analysis of f ′(x) shows that f is
increasing on (−∞, −3). Thus, f(−3) is the maximum value on (−∞, 3]. The
value of f is unbounded below on this interval,

lim
x→−∞

f(x) = −∞.

We can see this by considering the integral

∫
x

−3

for x < −3. Because the

integral goes right to left, dz < 0, and f ′(z) > 0 on this interval, the integral
becomes more and more negative the further x goes to the left. With a similar

argument using

∫
x

4

f ′(z) dz, we find

lim
x→∞

f(x) = −∞

and f is again unbounded below on the interval (4, ∞).
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We conclude that f has a global maximum f(4) = 13.5 and no global
minimum. A graph of y = f(x) is shown below.
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8.1.4 Summary

• A function f has a local maximum (plural: maxima) at x = c if f(c) ≥
f(x) in a neighborhood of c. The function f has a local minimum (plural:
minima) at x = c if f(c) ≤ f(x) in a neighborhood of c.

• A function f has a global maximum at x = c if f(c) ≥ f(x) for all x in the
domain. The function f has a global minimum at x = c if f(c) ≤ f(x)
for all x in the domain.

• We can use sign analysis of the derivative f ′ to find local extreme values.
Points where f ′(x) changes sign are local extrema. This is called the
First Derivative Test.

• Global extrema can occur at local extrema or at boundaries of intervals.
We need to compare the value of the function at each of the local extrema
with the end points. If an end point is not included, the value of the limit
at that point can serve as a bound for the function but would not be an
actual extreme value.

8.1.5 Exercises

For each function, identify all local extrema.

1. f(x) = x3 − 9x2 − 48x + 60

2. f(x) = 120x + 3x2 − 2x3

3. f(x) = x4 − 8x2

4. f(x) = x4 − 4x3 + 3x2 + 2

For each function, find the global extrema on the given intervals.

5. f(x) = 4x − x2 on (i) D = [−1, 6], (ii) D = (1, 4), and (−∞, ∞)

6. f(x) = x2 + 3x on (i) D = [−1, 2], (ii) D = (−4, 1], and (−∞, ∞)

7. f(x) = x3 − 9x2 − 48x + 60 on (i) D = [−5, 5], (ii) D = [−10, 10), and
(−∞, ∞)
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8. f(x) = x4 − 12x3 + 28x2 − 17 on (i) D = [−1, 3], (ii) D = (1, 8), and
(−∞, ∞)


