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Abstract

It recently has been shown that the observed noise amplitude of an intrinsically noisy system

may be reduced by causing the underlying state to fluctuate [J. M. G. Vilar and J. M. Rub́ı, Phys.

Rev. Lett. 86, 950 (2001)]. This paper extends the previous theory by considering the full power

spectrum of the output signal, interpreting noise reduction in terms of the low-frequency end of the

spectrum as well as the integrated spectrum. While the former provides a measure of the variance

in the estimator of the mean at asymptotically long time scales, the latter provides the variance

of discretely sampled observations. Our treatment accounts for arbitrarily sized fluctuations and

deals with both continuous and discretely sampled observations. We show that noise suppression

is possible if and only if the stationary average of the intensity of state-dependent noise decreases.

We apply our analysis to a an example involving saturable electrical conduction discussed in the

original paper by Vilar and Rub́ı.
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I. INTRODUCTION

Although noise is generally considered a nuisance, its constructive properties have become

increasingly clear in recent years as it plays essential roles in many fundamental processes,

particularly in biology. For example, biological motion by motor proteins requires the pres-

ence of thermal fluctuations [1, 2]. Furthermore, the response of sensory systems can be

enhanced through the interactions of noise and a weak driving signal leading to stochastic

resonance [3–5]. Recently, another beneficial aspect of noise has come to light: noise may

be used to reduce noise [6].

In their letter “Noise Suppression by Noise” [6], Vilar and Rub́ı consider the effect of

adding fluctuations to the input of a system where the intrinsically noisy output signal

depends on the input signal. In particular, they propose a model where, for a steady input,

the rapid fluctuations in the output signal due to intrinsic noise are essentially white, with

an intensity that depends on the particular input signal. Assuming that the autocorrelation

time of the noise added at the input is short compared to times of interest, the output signal

has a spectrum that remains essentially white over the low frequencies of interest. Vilar and

Rub́ı demonstrate that the spectral intensity of the output noise at these low frequencies

can be reduced by adding fluctuations at the input of the system. They also give a sufficient

condition for such a reduction when the added fluctuations at the input are kept sufficiently

small.

In this paper, we provide a more complete mathematical basis for the phenomenon of

noise suppression. In particular, we provide a framework for predicting the power spectral

density for arbitrary scales of input fluctuations. We also adapt the original model to

account for discretely sampled observations. The overall fluctuations in the output signal

naturally decouple into contributions arising from the intrinsic noise as well as the changing

input. We take advantage of this decomposition to compute the spectral power from these

two contributions separately. A consequence of this result is that noise suppression, which

corresponds to a decrease in the spectral power of the signal at either specific frequencies or

over a range of frequencies, will only occur if the average intensity of intrinsic noise decreases.

The article is organized as follows. First, we provide a formal description of the model

describing the input and output signals and introduce the appropriate quantitative measures

of noise. Next, we consider the power spectrum for the output signal, showing that it decom-
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poses into a white component corresponding to the average intensity of intrinsic noise plus

the spectrum characterizing the output signal in the absence of intrinsic noise. We further

demonstrate an explicit approach to determining this profile using an eigenmode expansion

involving Hermite polynomials. Third, we discuss the possibility of noise suppression in the

context of this spectral decomposition. Subsequently, we apply the techniques to one of the

examples originally provided by Vilar and Rub́ı. We conclude by commenting on the basic

mechanism required for noise suppression.

II. MODEL DESCRIPTION

The system under consideration essentially models an observed signal that is regulated

by an underlying state, X, which could represent either an unobserved, internal dynamic

variable or an external, controlled input signal. The output signal, Y , will be intrinsically

noisy in that there will be uncorrelated fluctuations for every state of the input. We seek

a model that captures the following properties. First, the output signal relaxes rapidly

to an essentially stationary process that depends on the current value of the input signal,

characterized by a mean signal level and by the intensity of the intrinsic, uncorrelated

noise. We idealize this relaxation by assuming that Y instantaneously reflects the current

state X. Second, the input signal will correspond to a stationary Gaussian process whose

autocorrelation decays exponentially in time.

Let Xt and Yt represent the value of the signals at the time t. The input signal Xt

is modeled as a stationary, continuous Gaussian process with mean x0, variance σ2, and

autocorrelation time τ . For a finite, arbitrary collection of times, t1 < t2 < · · · < tn, the

distribution of Xt is characterized by the density

Φ(t1, x1; t2, x2; . . . ; tn, xn) = φ(x1; x0, σ
2)

n∏

l=2

φ(xl; µl, σ
2
l ), (1)

where the individual factors are expressed in terms of the densities of Gaussian random

variables with means

µl = x0 + (xl−1 − x0)e
−(tl−tl−1)/τ (2)

and variances

σ2
l = σ2(1 − e−2(tl−tl−1)/τ ) (3)
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through the parametrized density for a Gaussian random variable with mean µ and variance

η2

φ(x; µ, η2) =
1√
2πη2

exp

(
−(x − µ)2

2η2

)
. (4)

The autocovariance of Xt is given by γX(u) as

γX(u) = 〈X̃t X̃t+u〉 = σ2e−|u|/τ , (5)

where X̃t = Xt − x0 represents the centered state, and averages are with respect to the

given distribution. This process is equivalent to the Ornstein-Uhlenbeck velocity process

[7], but with a shifted mean. For discretely sampled observations of the output, we de-

fine observation times {tk = k∆t; k ≥ 0} in terms of the sampling interval ∆t, and for

notational simplicity write Xk = Xtk and Yk = Ytk . In this case, we naturally define the

autocorrelation ρ = e−∆t/τ , and the sequence {Xk} becomes a simple autoregressive process

(often written AR(1)) with autocorrelation ρ and variance σ2 [8], which has a corresponding

discrete autocovariance function γX,∆(p) for lag p as

γX,∆(p) = 〈X̃k X̃k+p〉 = σ2ρ|p|. (6)

Setting σ2 = 0 corresponds to a constant input signal.

The observation process Yt will be a function of the state Xt with additive state-dependent

white noise so that we write

Yt = H(Xt) + g(Xt)ξt. (7)

The process ξt represents a standard continuous-time white noise process that is independent

of the input process X, having zero mean, 〈ξt〉 = 0, and autocovariance

〈ξ(t)ξ(s)〉 = δ(t − s). (8)

The function H(X) represents the mean output signal for a given state X, while the function

g(X) establishes the intensity of output noise for that state. If the state X remains constant

(σ2 = 0), then Y has an autocovariance given by

〈(Yt − H(X))(Ys − H(X))〉 = G(X)δ(t − s), (9)

expressed in terms of the covariance intensity G(X) = g2(X). We remark that mathe-

matically, the continuous white noise process ξt and consequently Yt are not well-defined
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stochastic processes, but in fact should be expressed as stochastic differentials [7]. The

white noise ξt corresponds to the differential of a Wiener process and Yt corresponds to

the differential of a diffusion with state-dependent infinitesimal drift H(X) and variance

G(X). Nevertheless, the formal expressions given above will suffice for this paper. In the

discretely sampled case, we introduce the discrete white-noise process {εk}, an independent

and identically distributed sequence of Gaussian random variables each with zero mean and

unit variance, which is independent of the state process {Xk}, so that we may write

Yk = H(Xk) + β(Xk)εk. (10)

We remark that the variance β2(X) arising the sampled case may or may not be related to

an underlying continuous intensity G(X). If we integrate the observation Yt over an interval

of duration ∆t which is short compared to the autocorrelation time τ , then Xt remains

essentially unchanged over that interval and we may approximate

∫ t+∆t

t

Ys ds ≈ H(Xt)∆t + G(Xt)∆W∆t (11)

where ∆W∆t is a Gaussian random variable with mean zero and variance ∆t. Dividing

both sides of this by the interval duration ∆t, we average the signal. That is, the discretely

sampled sequence generated by averaging the continuous signal,

Yk =
1

∆t

∫ tk

tk−1

Yt dt, (12)

would be well-approximated by

Yk ≈ H(Xk) + G(Xk)
∆W∆t,k

∆t
. (13)

In order for the variance of the noise term of this approximation to match the discretely

sampled model given in Eq. (10), we must have

β2(X) =
1

∆t
G(X). (14)

The essential property for associating the discrete noise variance with the continuous noise

intensity is that averaging the signal accumulates error over the entire interval ∆t at an

approximately constant rate G(Xt). If, however, the discrete observation results from a

single observation occurring at the end of the sampling interval, the intrinsic noise results

either from a brief accumulation of error related to the time to make the observation or
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else from other sources of error. In both cases, the discrete scale of noise β2(X) becomes

independent of the time between samples, ∆t, so that a relationship between β2(X) and

some G(X) through Eq. (14) would not hold.

The asymptotic suppression of noise discussed in [6] refers to a decrease in the spectral

intensity at low frequencies. To be explicit, if γY (u) represents the autocovariance function

for the observation signal Yt with lag u, then the power spectral density hY (ω) at the

frequency ω can be expressed in terms of the Fourier transform of γY (u)

hY (ω) =
1

2π

∫ ∞

−∞

γY (u) e−iωu du (15)

as guaranteed by the Wiener-Khintchine theorem [8]. When σ2 = 0, the input state does not

fluctuate, and the spectral density has a constant level of G(x0)/2π. When σ2 > 0, the shape

of the spectrum changes. As we show later, for reasonable functions, H, the spectral density

will be smooth, so that at sufficiently low frequencies, corresponding to asymptotically long

time scales, the spectral density will be approximately constant at the level

hY (0) =
1

2π

∫ ∞

−∞

γY (u) du. (16)

Defining the mean signal H0 = 〈Yt〉 and the asymptotic intensity of noise G0 = 2πhY (0), the

process Yt is approximately equivalent (at large time scales and in distribution) to a second

process Ŷt that is independent of the fluctuating input state and given by

Ŷ (t) = H0 +
√

G0 ξ̂t, (17)

where ξ̂t is another continuous-time white noise process independent of ξt. In this specific

sense, noise is suppressed if G0 < G(x0) since the approximating process Ŷt has smaller

intensity noise than Yt would have had if σ2 = 0. Vilar and Rub́ı [6] provide a perturbation

expansion of the integrated scale of noise which provides a sufficient condition for noise

suppression that G′′(x0) < 0 so long as σ2 and τ are sufficiently small, although they also

provide some numerical examples demonstrating that this persists for larger values of σ2

but still with a small autocorrelation time τ � 1.

III. SPECTRAL DECOMPOSITION

We now broaden the discussion and consider the complete power spectrum of the obser-

vation process. In order to characterize the spectrum of the output signal, we first need to
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describe precisely the autocovariance of Y . Because 〈ξt〉 = 0 is independent of Xt, the mean

signal H0 is simply the stationary average of H(Xt),

H0 = 〈Yt〉 = 〈H(Xt)〉

=

∫ ∞

−∞

H(x)φ(x; x0, σ
2) dx. (18)

The centered output signal Ỹt = Yt − H0 determines the autocovariance of the signal,

γY (u) = 〈Ỹt Ỹt+u〉. (19)

By writing H̃(x) = H(x)−H0, we can explicitly see the contributions arising from the white

noise and from the fluctuations in the input,

γY (u) = 〈(H̃(Xt) + g(Xt)ξt)(H̃(Xt+u) + g(Xt+u)ξt+u)〉 (20)

= 〈H̃(Xt)H̃(Xt+u)〉 + 〈G(Xt)〉δ(u), (21)

where we again use the assumption that ξt is independent of the input X. Thus, the autoco-

variance decomposes into two terms. The first term characterizes the correlated variability

in the output signal arising from the autocorrelated input signal. The second term charac-

terizes the average uncorrelated fluctuations due to the intrinsic white noise. By linearity

of the Fourier transform, the power spectrum must also decompose into two contributions,

hY (ω) = hH(ω) +
1

2π
〈G(Xt)〉, (22)

the sum of the spectral density of the stationary process H̃(Xt), given by hH(ω), and the

constant spectral density given by the average intensity of the white noise, 〈G(Xt)〉.
We now turn to an analytic approach to determine the power spectral density hH(ω).

The Ornstein-Uhlenbeck process that governs the input signal is a Markov process, so we

may consider the transition semigroup Tt on functions of X defined by

Tt[f ](x) = 〈f(Xt)〉x (23)

=

∫ ∞

−∞

f(y)k(y; x, t)dy, (24)

where the average in the first equality is conditioned on the process starting at X0 = x

and where k(y; x, t) is the transition probability density for Xt = y given X0 = x. The
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transition kernel k(y; x, t) is the Gaussian density with mean x0 +(x−x0)e
−t/τ and variance

σ2(1 − e−2t/τ ). The autocovariance γH(u) can be expressed in terms of the semigroup as

γH(u) = 〈H̃(Xt)Tu[H̃](Xt)〉. (25)

The semigroup operator can also be expressed in terms of its infinitesimal generator L as

Tt = etL, where L is defined as the differential operator

L[f ](x) =
1

τ
[−(x − x0)f

′(x) + σ2f ′′(x)], (26)

which governs the Kolmogorov backward, or adjoint, equation for the Ornstein-Uhlenbeck

diffusion process [7]. If we define the inner product between functions f1 and f2 as the

integral of the product with respect to the stationary probability measure,

〈f1, f2〉 = 〈f1(Xt)f2(Xt)〉

=

∫ ∞

−∞

f1(x)f2(x)φ(x; x0, σ
2)dx, (27)

then L is a self-adjoint operator in the Hilbert space defined by this inner product.

We expand the function H̃ in terms of the eigenfunctions of L. Eigenfunctions fλ(x) with

eigenvalue λ will be determined from the equation

L[fλ](x) = λfλ(x) (28)

which can be rewritten as

−(x − x0)f
′
λ(x) + σ2f ′′

λ (x) = τλfλ(x). (29)

If we shift and rescale space using the substitution z(x) = (x − x0)/
√

2σ2, the eigenvalue

equation becomes

f ′′
λ (z) − 2zf ′

λ(z) − 2τλfλ(z) = 0, (30)

which is well-known to have as solutions the Hermite polynomials, fλ(x) = Hn(z(x)), pro-

vided λ = −n/τ for integer values of n ≥ 0 [9]. The functions Hn are orthogonal,

〈Hn(X̃t/
√

2σ2)Hm(X̃t/
√

2σ2)〉 = δn,m 2nn!, (31)

and form a complete basis for the Hilbert space [9]. So for a square-integrable function H̃

(i.e. 〈H̃2(Xt)〉 < ∞), we create the Hermite expansion

H̃(x) =

∞∑

n=1

cn√
2nn!

Hn(
x − x0√

2σ2
), (32)
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starting the sum at n = 1 because 〈H̃(Xt)〉 = 0. The coefficients are determined in the

standard way by computing the inner product

cn =
1√
2nn!

〈H̃(Xt)Hn(X̃t/
√

2σ2)〉. (33)

We emphasize that the coefficients actually depend on σ2, as the Hermite expansion changes

when σ2 changes. In terms of the rescaled variable z, we have x = x0 +
√

2σ2 z so that

cn =
1√
2nn!

∫ ∞

−∞

H̃(x0 +
√

2σ2 z)Hn(z)φ(z; 0, 1) dz, (34)

so that from this perspective, changing σ fundamentally changes the function for which we

find the expansion. The variance of H̃(Xt) can be simply expressed as the sum of the squares

of the coefficients {cn : n ≥ 1},

〈H̃2(Xt)〉 =

∞∑

n=1

c2
n. (35)

We are now in a position to compute the autocovariance and hence the power spectrum.

Using the orthogonality property and the diagonal action of the semigroup operator on the

eigenfunctions,

Tu[Hn(
x − x0√

2σ2
)] = e−nu/τHn(

x − x0√
2σ2

), (36)

we find that the autocovariance of H̃(Xt) is

γH(u) =
∞∑

n=1

c2
ne−nu/τ . (37)

Taking the Fourier transform, we determine the power spectrum hH(ω) as

hH(ω) =
1

2π

∞∑

n=1

c2
n

2τn

n2 + (τω)2
, (38)

which can further be represented in terms of the spectral profile

ĥH(ω) =
1

2π

∞∑

n=1

c2
n

n

n2 + ω2
(39)

through the rescaling

hH(ω) = 2τ ĥH(τω). (40)

The power spectrum for the discretely sampled observation process can be similarly com-

puted. The autocovariance of the discretely sampled observation sequence γY,∆(p) decom-

poses into

γY,∆(p) = γH,∆(p) + 〈β2(Xk)〉δp,0, (41)
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analogous to the decomposition for the continuous time process. So we again focus on

determining the autocovariance and spectrum for the sequence H̃(Xk). Knowing the auto-

correlation coefficient ρ and the sampling interval ∆t (or setting ∆t = 1 if unknown), we

can determine the corresponding autocorrelation time τ = −∆t/ ln ρ so that the discrete

autocovariance function for H̃(Xk) will be given by

γH,∆(p) = γH(p∆t) (42)

=
∞∑

n=1

c2
ne

−n|p|∆t/τ (43)

=

∞∑

n=1

c2
nρ

n|p|. (44)

We compute the power spectral density hY,∆(ω) over the frequencies ω ∈ (−π/∆t, π/∆t) as

the Fourier series

hY,∆(ω) =
∆t

2π

∞∑

p=−∞

γY,∆(p)e−iωp∆t, (45)

which will decompose into the spectrum for H̃(Xk) plus a white-noise component,

hY,∆(ω) = hH,∆(ω) +
∆t

2π
〈β2(Xk)〉. (46)

Outside of the interval, (−π/∆t, π/∆t), the spectral densities vanishes. The spectral density

coming from H̃(Xk) can then be written

hH,∆(ω) =
∆t

2π

∞∑

n=1

c2
n

1 − ρ2n

1 + ρ2n − 2ρn cos ω∆t
. (47)

For the case that the sampled data arise from the continuous model, ρ is defined in terms of

the autocorrelation time τ and the sampling interval ∆t as ρ = e−∆t/τ so that, in the limit

as ∆t → 0, the spectrum for the sampled observations, Eq. (47), recovers the spectrum for

the continuous signal, Eq. (38).

IV. NOISE SUPPRESSION

With the spectrum in hand, we return to the question of noise suppression. First, we

consider the asymptotic noise level G0 originally considered by Vilar and Rub́ı. Recall that

G0 corresponds to the intensity of white noise that that gives the same spectral density as
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Yt for asymptotically small frequencies. This intensity can be explicitly written

G0 = 2πhY (0) = 2τ

∞∑

n=1

c2
n

n
+ 〈G(Xt)〉. (48)

The decomposition clearly shows that a necessary condition for noise suppression in this

sense, G0 < G(x0) is that the average intensity of white noise decrease,

〈G(Xt)〉 < G(x0), (49)

since the effect of the fluctuating signal coming from hH(0) raises the spectral density even

higher. In fact, if we add the constraint on the autocorrelation time

τ <
G(x0) − 〈G(Xt)〉

2
∑∞

n=1 c2
n/n

, (50)

we have a necessary and sufficient condition for noise suppression. We stress that a fixed

value of σ is implicit in this statement, since both 〈G(Xt)〉 and the coefficients cn depend

on σ.

In a similar way, we might consider a random sequence {Ŷk} which is independent of the

state X, given by the analog of Eq. (17),

Ŷk = H0 + β0ε̂k, (51)

where ε̂k is a white noise sequence. Such a sequence will have white power spectrum which

will correspond to the spectral density of {Yk} at low frequencies, hY,∆(0), if β2
0 is defined

as

β2
0 =

∞∑

n=1

c2
n

1 + ρn

1 − ρn
+ 〈β2(Xk)〉. (52)

Noise suppression in this asymptotic sense will occur when the stationary average variance

of the intrinsic noise decreases, 〈β2(Xk)〉 < β2(x0), analogous to the sufficient condition for

the continuous case. The sequence of factors { 1+ρn

1−ρn : n = 1, 2, . . .} is a decreasing sequence

converging to 1 so that we actually obtain bounds on β2
0 in terms of the variance 〈H̃(Xk)〉

and the average variance 〈β2(Xk)〉 as,

〈H̃2(Xk)〉 + 〈β2(Xk)〉 < β2
0 <

1 + ρ

1 − ρ
〈H̃2(Xk)〉 + 〈β2(Xk)〉, (53)

which actually avoids the explicit computation of the coefficients {cn}. Consequently, we

obtain the stronger necessary condition that the sum of the average variance of the white
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noise 〈β2(Xk)〉 and the stationary variance of the signal H(Xk) must be less than β2(x0).

We also obtain the sufficient condition that

1 + ρ

1 − ρ
〈H̃2(Xk)〉 + 〈β2(Xk)〉 < β2(x0). (54)

Because we actually have access to the complete spectral densities (continuous or sam-

pled), we may consider a broader view of noise suppression, namely a decrease in the in-

tegrated spectral power over a bandwidth of frequencies. When the input signal is held

constant (σ2 = 0), the power spectrum for the continuous observation process Yt will be

flat with density G(x0)/2π. When the input signal is allowed to fluctuate (σ2 > 0), the

spectrum adjusts to include the spectral density hH(ω) in addition to the already existing

white component corresponding to intrinsic noise. Because the intensity of the intrinsic

noise is now averaged over the stationary distribution of Xt, the white component of the

spectrum shifts to the level 〈G(Xt)〉/2π, which becomes a baseline for the spectral power at

all frequencies. Let I = (ωa, ωb) represent the spectral interval under consideration. When

Eq. (49) holds and the baseline has decreased, the integrated spectral power on the interval

I will decrease if ∫ ωb

ωa

hH(ω) dω <
G(x0) − 〈G(Xt)〉

2π
(ωb − ωa). (55)

Since hH(ω) ↓ 0 as |ω| → ∞, we will always be able to find a frequency interval (at least

at high frequencies) where the integrated spectral power has decreased whenever the white

spectral component has decreased. If we integrate the spectral density hH(ω) over the entire

real line, we recover the variance of H(Xt),
∫ ∞

−∞

hH(ω) dω = γH(0) = 〈H̃2(Xt)〉, (56)

since this amounts to computing the inverse Fourier integral for u = 0. Thus, the integrated

contribution from hH(ω) over any interval will always be less than the variance 〈H̃2(Xt)〉.
If we consider the symmetric frequency interval (−ωa, ωa), the integrated spectral density

on this interval must decrease so long as

ωa > π
〈H̃2(Xt)〉

G(x0) − 〈G(Xt)〉
. (57)

This is true even if the originally considered asymptotic noise has increased, G0 > G(x0),

which simply indicates that the spectral density begins above the original white spectral

density and then falls below that level at higher frequencies. Note that if G0 < G(x0), then
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the entire spectral density is below the original spectral density and thus the integrated

spectral power will show a decrease over every interval.

For discretely sampled observations, we can similarly consider the integrated spectral

power. A significant difference between the continuous and the sampled cases, however,

is that the power spectrum for the sampled observation is defined on a compact interval

while the spectrum for the continuous output signal has infinite support. Consequently,

the spectral density hH,∆(ω) will not vanish on this support so that we may not be able

to find a frequency interval where the integrated spectral power has decreased even if the

white spectral component has decreased, particularly when ρ is large. On the other hand,

although the total power for the continuous process will be infinite, the total power for

sampled observations is finite and given by
∫ π/∆t

−π/∆t

hY,∆(ω)ω = 〈H̃2(Xk)〉 + 〈β2(Xk)〉, (58)

the sum of the variance of H(Xk) and the average variance of the added white noise. That

is, the total spectral power is precisely equal to the variance of the output sequence. Thus,

if

〈H̃2(Xk)〉 + 〈β2(Xk)〉 < β2(x0), (59)

we would observe a decrease in the variance of the signal, which might be visualized as a

narrowing of a histogram of observed values.

We remark in passing that the asymptotic noise levels G0 and β2
0 also have a well-

established non-spectral interpretation. If we were to estimate the mean output signal H0

using our observations, then G0 would correspond to an asymptotic variance of that estimate

based on continuous observations while β2
0 would correspond to an asymptotic variance of

the estimate based on sampled observations [8], such as one might compute using Markov

chain Monte Carlo algorithms [10]. In particular, if we define the continuous and discrete

sample means, respectively, as

Y T =
1

T

∫ T

0

Yt dt, Y N =
1

N

n−1∑

k=0

Yk, (60)

then the variance of these estimators will asymptotically decrease as

Var[Y T ] ∼ G0

T
, Var[Y N ] ∼ β2

0

N
, (61)

as T → ∞ and N → ∞, respectively.
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FIG. 1: The average intensity of intrinsic white noise, 〈G(Vt)〉, for various mean input signals (v0)

in the absence of state fluctuations (σ = 0) and for two levels of state fluctuations (σ = 1, σ = 2).

Units are arbitrary.

V. EXAMPLE

We demonstrate these principles using an example proposed in [6] of a model for electrical

conduction which displays saturation [11, 12]. The state X = V corresponds to an input

voltage. The observed current intensity has a mean characterized by the function

H(V ) =
V

R(1 + V 2)1/2
, (62)

and the intensity of the noise is characterized by

G(V ) =
Q

(1 + V 2)1/2
, (63)

where R and Q are constants. To conform to standard notation, we use V rather than X

for this discussion. The parameters R and Q set the observation scale and the time scale,

so that by rescaling the variables Y and t we may assume that R = 1 and Q = 1.

We first consider the effect of input fluctuations on the average intensity of the intrinsic

output noise, 〈G(Vt)〉. Figure 1 plots the average intrinsic output noise intensity 〈G(Vt)〉 as a

function of the mean input signal v0 for two non-zero levels of input fluctuations (σ = 1 and

σ = 2) as well as the original intensity of intrinsic noise (σ = 0), which simply corresponds to

plotting G(v0). Averaging the intensity of intrinsic noise flattens and broadens the intensity

profile as σ increases, so that the intensity profile completely vanishes in the limit as σ → ∞.

Whenever the intensity profile lies below the original intensity profile (σ = 0), the baseline

level of the output signal power spectrum is decreased so that output noise is suppressed
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FIG. 2: The average intensity of intrinsic white noise, 〈G(Vt)〉, as a function of the size of input

fluctuations (σ) for three values of the mean input signal (v0 = 0, v0 = 1/
√

2 and v0 = 1.5). Units

are arbitrary.

beyond some spectral frequency. Figure 2 shows the average intrinsic output noise intensity

〈G(Vt)〉 for fixed mean input signals v0 as the size of the input signal fluctuations σ increases.

For small values of σ, the behavior of 〈G(Vt)〉 is completely determined by G′′(v0) using the

perturbative approximation given by [6] that

〈G(Vt)〉 ≈ G(v0) +
1

2
σ2G′′(v0), (64)

so that concavity initially determines whether the average noise intensity increases or de-

creases. When v0 < 1/
√

2, the function G is concave down so that the average intensity

initially decreases. Due to the specific example under consideration, this behavior continues

for larger values of σ, so that the baseline of the power spectrum continually lowers. When

v0 > 1/
√

2, G is concave up so that the average intensity initially increases as the station-

ary distribution samples states (near V = 0) where the noise intensity is high. However,

as σ continues to increase, the stationary distribution samples more extreme states where

the intensity becomes asymptotically small. Consequently, the average intensity eventually

decreases. Thus, although concavity determines whether the white component of the spec-

trum increases or decreases for small values of σ, it becomes irrelevant for predicting noise

suppression for larger values of σ. The mean input level v0 = 1/
√

2 corresponds to the point

where G′′(v0) = 0, so that the fourth-order derivative, which is negative, determines that

the average noise initially decreases proportionally to σ4.

We next consider the power spectrum under conditions where noise suppression is possi-

ble, namely 〈G(Vt)〉 < G(v0). Figure 3 plots typical power spectral densities corresponding
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FIG. 3: The power spectral intensity 2πhY (ω) as a function of spectral frequency (ω) for a mean

input signal v0 = 0 and input fluctuations of size σ = 1 where the input signal has autocorrelation

time τ = 0.5, τ = 0.25, and in the limit τ ↓ 0. The reference white spectral density in the absence

of input fluctuations is shown with a dotted line (G(0) = 1). Units are arbitrary.

to v0 = 0 and σ = 1. When the autocorrelation time for the input fluctuations is too large

(e.g. τ = 0.5), part of the spectral density is larger than the initial flat intensity at G(0) = 1.

However, for sufficiently large frequencies ω, the spectral intensity decreases and approaches

the new baseline 〈G(Vt)〉 < G(v0), so that over sufficiently large spectral bandwidths, the

integrated spectral power will decrease for any arbitrary autocorrelation time τ . But when

the autocorrelation time is sufficiently small, the spectral intensity lowers and widens ac-

cording to the scaling in Eq. (40) until it is uniformly smaller than the initial intensity (e.g.

τ = 0.25). The peak spectral intensity at ω = 0 corresponds to the integrated scale G0.

For those conditions where the average intensity of the intrinsic output noise decreases,

the inequality of Eq. (50) determines a maximum autocorrelation time so that G0 < G(v0).

Recall that the suppression of the asymptotic scale of noise G0 is equivalent to the power

spectrum of the output noise lying completely below the original white spectrum in the

absence of input fluctuations. In Fig. 3, this maximum time would correspond to that time

τ where the spectral density is tangent to the original spectral density at ω = 0. Figure

4 provides a contour plot of this maximum autocorrelation time as a function of v0 and σ.

The heavy contour line for τ = 0 separates the region where noise suppression is possible

from the region where noise invariably increases. We see that in this example the maximum

autocorrelation time increases as the input fluctuations increase. Two factors make this

possible. First, as the fluctuations σ2 increase, the average intensity of the intrinsic noise
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FIG. 4: A contour graph showing the largest possible autocorrelation time for the input fluc-

tuations, τ , as a function of mean input signal v0 and input fluctuation size σ such that noise is

suppressed, G0 < G(v0), as calculated in Eq. (50). Solid contours represent increments of ∆τ = 0.1,

dashed contours represent increments of ∆τ = 0.05, and the coutour for τ = 0 is shown in bold.

Units are arbitrary.

〈G(Vt)〉 decreases to zero. Second, the variation in the mean output signal H(Vt) increases

as σ2 increases. However, since H(Vt) is bounded between +1 and −1, added fluctuations

at the input lead to smaller and smaller increases in the variation of H(Vt). Consequently,

for a given mean input v0, the maximum autocorrelation time will be bounded. Considering

the other direction, as σ ↓ 0, the maximum autocorrelation time is determined from the

previous perturbation results [6] to be

τ = − G′′(v0)

4H ′(v0)2
, (65)

so long as the condition G′′(v0) < 0 holds.

VI. CONCLUSION

In this article, we have considered noise suppression in the context of the power spectrum

of an intrinsically noisy output signal for a system in which the correlations at the input

decay exponentially. Because the intrinsic noise at the output depends on the input signal

only in terms of the intensity, the autocovariance for the output signal and therefore the

power spectrum both undergo a simple decomposition. This decomposition shows that
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the spectrum has a contribution arising from the average intensity of the intrinsic noise

plus a component corresponding to the variation arising from the fluctuating signal itself.

Consequently, noise suppression is possible only when the average intensity of the intrinsic

noise decreases. That is, the increased fluctuations in the input signal must cause the system

to visit more frequently those states where the intrinsic noise has low intensity such that

the ergodic average of the intensity decreases.

Mathematically, the ergodicity of the input signal, rather than some nonlinearity in the

system, plays the fundamental role in noise suppression. That is, according to the theory,

there must be some input states where the intrinsic output noise is decreased. As the input

signal samples its available phase space, it is driven into these low-noise states sufficiently

often that the average intensity of noise decreases relative to an input signal constrained to

a smaller phase space. In fact, the only strictly linear noise intensity profile G(X) would be

a constant, G(X) = G, since any nonzero slope would lead to negative intensities for some

attainable state X. Nor, as we have shown, does concavity determine the existence of noise

suppression except for sufficiently small fluctuations.
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