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Abstract

Observations of the position of a microscopic bead attached to a single kinesin protein

moving along a microtubule contains detailed information about the position of the

kinesin as a function of time, although this information remains obscured because of

the fluctuations of the bead. The theory of hidden Markov models suggests a possible

theoretical framework to analyze these data with an explicit stochastic model describ-

ing the kinesin cycle and the attached bead. We model the mechanical cycle of kinesin

using a discrete time Markov chain on a periodic lattice, representing the microtubule,

and model the position of the bead using an Ornstein-Uhlenbeck autoregressive pro-

cess. We adapt the standard machinery of hidden Markov models to derive the likeli-

hood of this model using a reference measure, and use the Expectation-Maximization

(EM) algorithm to estimate model parameters. Simulated data sets indicate that the

method does have potential to better analyze kinesin-bead experiments. However,

analysis of the experimental data of Visscher et al. (1999) indicates that current data

sets still lack the time resolution to extract significant information about intermediate

states. Considerations for future experimental designs are suggested to allow better

hidden Markov model analysis.
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Chapter 1

Introduction

Kinesin, a motor protein originally discovered as a primary player in fast axonal

transport (Vale et al., 1985a,b), has been actively studied to understand better how

chemical energy is converted into mechanical energy. Kinesin uses energy released

through the hydrolysis of adenosine triphosphate (ATP) to pull membrane-bound

organelles along a microtubule, a filamentary and dynamic lattice structure made from

αβ-tubulin dimers (Vale et al., 1985a). Kinesin moves vesicles and other membrane

bound organelles toward the microtubule’s fast-growing, or plus end, which in neurons

corresponds with the anterograde direction (Hirokawa et al., 1991). The mechanical

stepping remains tightly coupled to the chemical cycle, with a net gain of position

of approximately 8.2 nm, the length of a single αβ-tubulin dimer, corresponding to

a single ATP hydrolysis event (Schnitzer and Block, 1997; Hua et al., 1997; Coy

et al., 1999) over a wide range of opposing forces and ATP concentrations (Visscher

et al., 1999). In addition, structural analyses such as X-ray crystallography (Kozielski

et al., 1997; Marx et al., 1998), electron paramagnetic resonance and cryo-electron

microscopy (Rice et al., 1999), fluorescence microscopy (Vale et al., 1996; Rice et al.,

1999; Sosa et al., 2001; Rosenfeld et al., 2001), and simulated annealing (Wriggers

and Schulten, 1998; Xing et al., 2000) support the existence of different physical

conformations for kinesin in different chemical states. However, the detailed relation

between the chemical cycle and the conformational changes which lead to movement

remains unknown.

As a processive motor, repeating many biochemical cycles prior to releasing from

the microtubule, kinesin has been subject to a wide range of single-molecule studies

(Gelles et al., 1988; Howard et al., 1989; Block et al., 1990; Svoboda et al., 1993;
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Romberg and Vale, 1993; Kuo and Sheetz, 1993; Svoboda and Block, 1994b; Malik

et al., 1994; Hunt et al., 1994; Meyhofer and Howard, 1995; Vale et al., 1996; Schnitzer

and Block, 1997; Hua et al., 1997; Coy et al., 1999; Visscher et al., 1999; Schnitzer

et al., 2000). Several of these (Block et al., 1990; Svoboda et al., 1993; Svoboda and

Block, 1994b; Schnitzer and Block, 1997; Visscher et al., 1999; Schnitzer et al., 2000)

have used an optical tweezers to manipulate microscopic glass beads with adsorbed

kinesin which move along microtubules attached to a microscope slide coverslip. By

controlling the concentration of kinesin, experimentalists can prepare beads with only

a single kinesin molecule attached. When the attached kinesin, in the presence of ATP,

binds to the microtubule, it undergoes its chemical and mechanical cycle, pulling the

bead along. By measuring the position of the bead, experimentalists indirectly obtain

information regarding the position of the kinesin molecule. Under regulated condi-

tions, the noise of the bead position measurement is sufficiently small that individual

stepping events can be directly visualized (Svoboda et al., 1993). Previous analysis

of these assays have focused on determining the stall force, the average velocity, and

the randomness, a measure of variation of kinesin movement about the mean velocity.

However, analysis of the data has not yet been performed to incorporate the details

of the measurement, such as through modeling the kinetic cycle of kinesin and the

nature of the noisy observation.

Hidden Markov models provide a promising tool to analyze the single-molecule

data according to their details while incorporating models to describe the kinesin

mechanochemical cycle and the noisy bead observation. Briefly, a hidden Markov

model is a stochastic model describing two related randomly evolving time sequences,

or stochastic processes: a state process and an observation process. The state process

is assumed to be a Markov process that is not directly observed. The observation

process is generated from the state process, and yet obscures the true state because

the observation includes independent random fluctuations. Hidden Markov models

have been used successfully in a variety of areas including speech processing (Levinson
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et al., 1983; Rabiner, 1989), DNA sequence analysis (Churchill, 1989), and ion channel

analysis of neuron firing patterns (Chung et al., 1990; Fredkin and Rice, 1992), as

well as a recent application to single-molecule studies of the motor protein myosin

(Smith et al., 2001).

This dissertation describes an implementation of hidden Markov model filtering

to analyze single-molecule kinesin-bead assay data. We focus on the experimental

design and resulting data of Visscher et al. (1999). Given a number of data sets for

each experimental condition under consideration, we wish to extract information from

the data regarding the position of kinesin during its enzymatic cycle by analyzing the

position of the bead. It will be necessary to determine the number of internal states

supported by the data and to estimate various model parameters. We will model the

mechanochemical cycle of kinesin as a Markov process, while we model the observed

bead positions with an autoregressive noise process which depends on the kinesin

position. Such a model allows the use of hidden Markov model filtering techniques.

Simulated results indicate that such a model holds promise. Unfortunately, the ex-

perimental data were not quite adequate for the desired analysis, primarily due to an

inability to identify the correct step-size of the underlying microtubule lattice.

This dissertation is organized as follows. This chapter will continue with more

in depth background material regarding the biology of kinesin, the single-molecule

bead assays, and the classical theory of hidden Markov models. The second chapter

will focus on the development of the hidden Markov model which will be used to

model the kinesin-bead system of the single-molecule assay, and will develop the

theoretical framework for the filtering and analysis. The third chapter will focus on

the effectiveness of the hidden Markov model filtering for simulated experimental data

where the generating model is known. The fourth chapter will discuss the results of

applying the hidden Markov model filtering techniques on the experimental kinesin

data and the problems with the data arising in this analysis. Finally, we conclude

in chapter five by discussing improvements in the experiments, in the modeling, and
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in the algorithms so that valid experimental analysis can be effectively carried out in

the future.

1.1 Biology and Chemistry

Kinesin has been identified as the protein primarily responsible for fast anterograde

axonal transport in neurons (Vale et al., 1985a,b; Hirokawa et al., 1991). Neurons

are comprised of three major regions: the cell body, the dendrites, and the axon.

Electrical signals are received through the dendrites, directed to the cell body, and

when the incoming signal is sufficiently strong, the neuron fires a new signal which is

transmitted along the axon. Different neurons have axons of widely varying lengths,

with some axons shorter than one millimeter and others longer than a meter. The

cell body includes the nucleus, which contains the genetic material regulating protein

assembly, and so protein assembly occurs in the cell body. In order for the axon to

remain functional, these products must be carried outwardly along the axon, which

movement is known as anterograde axonal transport. Axonal transport can be cate-

gorized into slow transport of cytosol (∼1 mm/day) and fast transport of membrane

bound organelles (∼400 mm/day) (Vallee and Bloom, 1991). Diffusive processes in-

volve time scales that grow quadratically with the distance traveled, and as such are

incompatible with fast transport. Instead, fast axonal transport must be mediated

by a directed motion, and this motion is performed by kinesin.

Kinesin travels along microtubules, which are typically composed of thirteen par-

allel tubulin protofilaments arranged to form an extended cylinder approximately 25

nm in diameter. Each tubulin protofilament has a lattice structure, made from al-

ternating α- and β-tubulin, and the lattices of adjacent protofilaments have a slight

offset. The αβ-tubulin dimer has a length of 8.2 nm, establishing the lattice spacing

of the microtubule. Microtubules are naturally very dynamic molecules, with one

end—the plus end—growing and shrinking much faster relative to the opposite end.
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Kinesin is a directional motor protein, in that it always travels toward the plus end

of the microtubule, which corresponds to the anterograde direction in axons. In addi-

tion, experimental evidence suggests that kinesin follows an individual protofilament

of a microtubule, rather than crossing to other protofilaments (Ray et al., 1993).

Following the discovery of the motor protein kinesin in axonal transport, many

related microtubule-associated motor proteins have also been identified. Dynein is

a microtubule-associated motor protein which provides retrograde axonal transport

(Schnapp and Reese, 1989), and which had been earlier associated with the movement

of cilia and flagella (Gibbons, 1965). In addition, proteins closely related to kinesin,

known as the kinesin superfamily of proteins, have been identified for a variety of

different microtubule associated motor functions (Muresan, 2000), and some of which

travel in opposite directions (Woehlke and Schliwa, 2000). One important kinesin-

related protein is non-claret disjunctional (ncd), which is structurally homologous to

kinesin, but which travels toward the minus end (Walker et al., 1990).

Conventional kinesin is a hetero-tetramer, meaning it is composed of four polypep-

tide chains which associate tightly to form the kinesin protein. Two identical heavy

chains (∼125 kDa each) form two globular heads which bind to the microtubule.

These heavy chains join at a neck region, forming an extended alpha-helical coiled

coil known as the stalk. Two light chains associate to the stalk and serve to bind the

kinesin with membrane-bound organelles which will be transported along the micro-

tubule. Each of the two heads contains a motor domain. The processive nature of

kinesin—it remains bound to a microtubule for multiple cycles—has been experimen-

tally linked to the presence of both heads (Young et al., 1998; Hancock and Howard,

1998). The more traditional interpretation of these results is that the two heads of

kinesin alternately drive the motion, participating in a hand-over-hand action (Kuo

et al., 1991), although the possibility of other mechanisms remain (Hua et al., 2002).

Kinesin acts as an ATPase, releasing stored energy through the hydrolysis of

adenosine triphosphate (ATP). The globular head of the heavy chain includes an ATP
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binding site, in addition to domains associated with microtubule binding. Movement

by kinesin along a microtubule is driven by this ATPase cycle, converting the chem-

ical energy stored in ATP into mechanical energy of directed motion. The presence

of a microtubule enhances the ATPase rate by ∼ 103 − 104 fold (Hackney, 1988).

Furthermore, in the absence of attached cargo, the stalk region interacts with the

head to inhibit motion (Friedman and Vale, 1999). Together, these two properties

minimize the amount of futile hydrolysis—the hydrolysis of ATP without performing

transport—reserving active hydrolysis for periods when transport of cellular products

will result.

The chemical cycle of ATP hydrolysis is coupled to the mechanical motion of

kinesin. The basic chemical cycle involves the enzyme-catalyzed breaking of a phos-

phate bond and the subsequent release of both an ortho-phosphate Pi and the result-

ing adenosine diphosphate (ADP):

K + ATP ↔ K · ATP ↔ K · ADP · Pi ↔ K + ADP + Pi. (1.1)

Experimental evidence through the use of crystallography (Kozielski et al., 1997; Marx

et al., 1998), fluorescence and electron microscopy (Vale et al., 1996; Rice et al., 1999;

Sosa et al., 2001; Rosenfeld et al., 2001) suggests that these stages correspond to var-

ious physical conformations of the involved kinesin attached to a microtubule. When

ATP binds to kinesin, the kinesin adopts a rigid conformation with the detached head

positioned in the direction of forward motion (Rice et al., 1999). When the phosphate

is released but ADP remains attached, the kinesin enters a highly dynamic state (Rice

et al., 1999; Sosa et al., 2001). Identifying the precise sequence of conformations and

the exact relationships with the chemical cycle remains one of the puzzling mysteries

of kinesin motion.

Although the details of the conformations in the mechanical cycle and the rela-

tionship with the chemical cycle remain uncertain, a number of relationships between

the chemical and mechanical cycles have been determined. First of all, the coupling
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between the two cycles is tight, with evidence suggesting that one 8.2 nm step cor-

responds exactly with one hydrolysis cycle of ATP (Schnitzer and Block, 1997; Hua

et al., 1997; Coy et al., 1999) over a wide range of forces (Visscher et al., 1999).

ADP-bound kinesin is weakly bound to the microtubule, while ATP-bound kinesin

and empty kinesin have a strong association with the microtubule (Crevel et al., 1996;

Rosenfeld et al., 1996). These different binding strengths between the kinesin and the

microtubule contribute to the importance of the need for two heads, with one head

staying in a state of high associativity while the other head dissociates according to

the different chemical states of each head, leading to the high duty cycle of kinesin

that corresponds to processivity.

1.2 Single-Molecule Bead Assays

In order to gain better insight into the nature of kinesin’s mechanical cycle and

its relationship to the chemical hydrolysis cycle, experimentalists have developed a

variety of single-molecule experiments. The common objective of these experiments is

to capture information about the individual events that combine to create the overall

motion of kinesin. Some of the experiments include microtubule displacement by a

single kinesin protein (Howard et al., 1989), the precise measurement of force exerted

on a microtubule by a single kinesin (Meyhofer and Howard, 1995), fluorescence

microscopy tracking of kinesin (Vale et al., 1996), and the use of kinesin-coated beads

to simulate the pulling of cargo by kinesin along a microtubule (Block et al., 1990). We

will focus on the single-molecule bead assays, as this dissertation focuses on analyzing

the data from a particular set of experiments.

1.2.1 Experimental Setup

Although the data produced from single-molecule bead assays essentially depend only

on the interactions of the kinesin with the microtubule and the bead with the optical
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Figure 1.1. Illustration of the VSB experimental setup for single-molecule bead
assays using optical tweezers. The distance between the position of the bead and the
center of the trap is held constant through the use of a feedback loop. Courtesy: K.
Visscher.

tweezers, we first briefly discuss some aspects of the preparation required in order to

help the reader have a better understanding of the overall experimental setup (Block

et al., 1990; Svoboda et al., 1993; Svoboda and Block, 1994b; Schnitzer and Block,

1997; Visscher et al., 1999). The essential idea is that a bead attached to kinesin is

visible, whereas an individual kinesin molecule is not. Optical tweezers also treat the

bead as a handle, which can move kinesin directly to a microtubule as well as exert

forces on the kinesin as it moves. Figure 1.1 illustrates the basic components of the

experiment.

Before the observations can begin, a flow cell must be prepared with microtubules

and kinesin-coated beads. A flow cell is constructed from a microscope slide and a

polylysine-treated coverslip, to which microtubules will adhere when flowed in. Mi-

crotubules, which are naturally unstable dynamic structures, are prepared and stabi-

lized through the use of the drug taxol. The solution with microtubules is introduced

to the flow cell quickly so that the microtubules will have a tendency to enter the

channel straight and parallel to the channel. The excess solution is flushed out with

a buffer, leaving several microtubules bound to the coverslip. The surface is subse-

quently blocked with the protein casein, which will prevent kinesin-coated beads from
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sticking to it. Next, kinesin-coated beads must be prepared. Microscopic silica beads

with a uniform diameter of 0.5 microns and a solution with kinesin are incubated

together at a ratio of concentrations such that, on average, only one kinesin can move

a bead at a time. The kinesin-bead solution is combined with an experimentally

controlled concentration of ATP, and this solution is added to the flow cell, ready for

observation.

We now turn to a discussion of the nature of the optical tweezers (Svoboda and

Block, 1994a). The most basic ingredients are the microscope objective lens and a

laser. When a laser beam is sent through a microscope objective lens with a high

numerical aperture, the beam is very rapidly focused to a narrow waist, or diffraction

limited spot. The electromagnetic field polarizes the dielectric beads when illumi-

nated by the laser light, and the steep gradient in the intensity leads to a restoring

force which pulls the bead to the region with the highest intensity. Near the center

of the trap, the potential energy landscape is very well modeled as a harmonic po-

tential. Thus, for displacements that are not too large, the trap will exert a restoring

force that is proportional to the displacement, exactly like a standard spring obeying

Hooke’s law. This spring-like behavior is empirically observed to extend over ∼200

nm, allowing for well-calibrated force calculations based on the displacement of the

bead from the center of the trap and the spring constant, or stiffness, of the trap.

Outside of this linear regime, the force-displacement relationship becomes nonlinear

so that at sufficiently large distances, the trap no longer even attracts the beads.

Control mechanisms on the optical system can move the position of the tweezers in

all three dimensions, allowing for precise manipulation of the bead in solution. By

also incorporating a feedback system, the position of the trap can be controlled so

that the displacement between the trap center and the position of the bead remains

fixed, establishing a force clamp that maintains a constant load on the bead as it is

pulled along a microtubule by kinesin (Visscher and Block, 1998).

Finally, with the tweezers providing a method to move beads to the vicinity of the
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microtubules, as well as to exert calibrated forces on the beads, scientists can perform

experiments where kinesin moves along a microtubule with a particular load and

under regulated chemical conditions, such as the concentration of ATP. To quantify

these motions, the position of the bead is recorded using laser tracking methods.

The position of the bead, tethered by the extended stalk region of a kinesin protein,

fluctuates subject to the forces exerted by the tweezers, the stalk, and the fluid

medium. The stalk has elastic properties as well, with an elastic restoring force

that is a nonlinear function of extension (Svoboda and Block, 1994b). One of the

important benefits of using a force clamp is that by applying a constant force on

the bead with minimal fluctuations, the tension on the kinesin also remains constant

with correspondingly small fluctuations. As a result, the stalk similarly maintains a

reasonably constant extension. Consequently, when a force clamp is used, an observed

displacement in the position of the bead represents the same displacement in the

position of kinesin—except for the nagging problem of thermal fluctuations by the

bead in solution. Figure 1.2 shows a typical sample of the bead observation, coming

from an experiment with a constant load of 3.5 pN and an ATP concentration of 100

µM.

1.2.2 Experimental Results and Previous Analysis

In 1999, Visscher, Schnitzer, and Block (VSB) first published their results of im-

plementing a single-molecule bead assay for kinesin motility using a force clamp, as

described above. This experiment tracked the position of the bead using laser track-

ing at a rate of approximately 20 kHz for updating the position of the trap to create

the force clamp, and the position of the bead was recorded at the ten-fold slower rate

of approximately 2 kHz. The design of the experiment included performing assays

over a range of ATP concentrations ([ATP]) for three levels of the force, with [ATP]

ranging from 1 µM to 2 mM and force levels of 1.05 pN, 3.59 pN, and 5.63 pN. In
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Figure 1.2. )
showing the bead position.] A typical data set for the bead position of a single-
molecule bead assay. The data shown come from the VSB experiments, with a load
of 3.5 pN and 100 µM [ATP].
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Figure 1.3. A scatter-plot illustrating the ATP concentration and externally applied
load that characterize the experimental measurements of the VSB experiment for the
determination of mean rate of kinesin motion.

addition, for the ATP concentrations of 5 µM and 2 mM, assays were performed for

a number of additional intermediate force levels. The data were recorded for three

main purposes: to determine how the rate of motion depends on the experimental

conditions of ATP concentration and the opposing force, to measure more precisely

the stall force of kinesin under different ATP concentrations, and to examine the

processivity of kinesin by quantifying the rate of detachment (Schnitzer et al., 2000).

The data collected to determine the rate of motion also was used to determine the

variability of motion known as randomness, which will be more precisely defined

later, and includes multiple recordings of kinesin moving along the microtubule for

each experimental condition. Figure 1.3 provides a graphical representation of the

experimental conditions at which measurements were recorded for the determination

of the rate of motion.
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Because the hidden Markov model analysis will focus on the dynamics of kinesin

motion, we pay particular attention to the methods used to characterize the rate of

motion. The first fundamental quantity for describing motion is the velocity at which

kinesin moves along the microtubule. It is observed that kinesin does not move at a

constant velocity, but instead persists at specific positions along the microtubule for a

random amount of time and then makes a transition to another site. Accordingly, the

velocity is actually an average velocity. Using the assumption that kinesin undergoes

a chemical and mechanical cycle which ends in a state equivalent to the initial state,

but offset by one site on the microtubule lattice, one can represent the random time

required to complete this full cycle as the random variable T , with a mean cycle

time of E[T ] = τ , where E represents the expectation operator. The theoretical

mean velocity is defined as v = d/τ , where d ≈ 8.2 nm is the spacing of the lattice.

The second fundamental quantity used to characterize the rate of motion, known

as the randomness, characterizes the variation in motion. The randomness, r, a

dimensionless parameter, is also defined in terms of the random variable T , as the

ratio of the variance of T , σ2
T , to the square of the mean (Svoboda et al., 1994;

Schnitzer and Block, 1995):

r =
Var[T ]

E[T ]2
=
σ2

T

τ 2
(1.2)

We note that this is actually just another name for the square of the coefficient

of variation of the random variable T . Consequently, characterization of the mean

velocity and the randomness parameter characterize the first two moments of the

random time required to complete a mechanochemical cycle.

Due to the inherent difficulty in identifying individual steps in the presence of

noise and discretized sampling, experimental calculations do not involve any direct

estimates of the random time T . The data used for analyzing motion are composed

of many files, each of which contains a record of a single kinesin run. Each such run

consists of a sequence of a time and a corresponding bead position, with a time delay
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between recordings of approximately 0.5 ms. To compute the average velocity for a

single run, the simplest and most direct approach is to take the difference between the

last and first observations and divide by the total time elapsed. However, apparently

to deal with the variability in how long kinesin remains at a given position and the

relatively short duration of individual runs, a filtered average is computed instead

(Schnitzer and Block, 1997). For clarity, we let y1, . . . , yK represent the observations

at the times t1, . . . , tK , with a time spacing of ∆t. For each integer n ≥ 1, one

computes the average n-lag pairwise displacements:

∆ny =
1

K − n

K−n∑
i=1

(yi+n − yi). (1.3)

The filtered average velocity v̄ for a single run is computed by determining the slope

of a line fit of these average pairwise displacements versus time:

∆ny = v̄ · (n∆t) + residuals. (1.4)

Finally, the overall average velocity, v, is the mean of the average velocities for all of

the runs, v = 〈v̄〉.

The randomness parameter is also experimentally computed based on an aver-

age variation in position, rather than from a direct estimation of the statistics of T

(Schnitzer and Block, 1995). In particular, if we let N(t) represent the number of

complete cycles that have occurred up through time t, and each cycle takes an in-

dependent random time with a distribution identical to T , then N(t) is a stochastic

process with the following limit theorem for the randomness:

r =
Var[T ]

E[T ]2
= lim

t→∞

Var[N(t)]

E[N(t)]
. (1.5)

The advantage to the expression in terms of N(t) is that the number of cycles can be

directly estimated in terms of the position of the bead, and that the noise involved

in this estimation does not impact the limit. That is, if we represent the position of
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the bead by Y (t) = d ·N(t) + ξ(t), with ξ(t) representing the noise, then we obtain

r = lim
t→∞

Var[Y (t)]

dE[Y (t)]
, (1.6)

which can be estimated by replacing the theoretical variance and expectation with

the ensemble averages based on the multiple runs which compose the data. Similar

to the computation of the average velocity, this experimental computation has, in

practice, been computed as a time-averaged quantity in terms of the time-lagged

pairwise displacements (Schnitzer and Block, 1997). Writing

∆̃nyi = yi+n − yi − v(n∆t), (1.7)

the time-averaged mean squared variation from the expected displacement is com-

puted for each run as

(∆̃ny)2 =
1

K − n

K−n∑
i=1

(
∆̃nyi

)2

, (1.8)

and, for each n, this is averaged over all runs. This time-averaged variation in dis-

placement grows linearly in time,

〈(∆̃ny)2〉 = D · (n∆t) +B + residuals. (1.9)

using the fitted parameters D and v, the randomness can be estimated as

r =
D

d · v
. (1.10)

The VSB experiment succeeded in measuring the velocity and randomness over

a wide range of experimental conditions. By considering the observed measurements

for a particular concentration of ATP but different forces, the load-dependence of

the velocity and the randomness were characterized. As the load increased, the

velocity steadily decreased. When [ATP] = 5 µM, an ATP-limiting case, the velocity

decreased approximately linearly with increasing load. For the ATP-saturating case

of [ATP] = 2 mM, the velocity decreased with a more concave shape, and with a
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Figure 1.4. A velocity profile demonstrating a Michaelis-Menten relationship to
ATP concentration. The velocity attains half the maximal velocity, vmax, when
[ATP] = KM .

different stall force. Similarly, by considering a particular level of the force, the [ATP]-

dependence of the velocity and randomness were also described. Under low loads, the

dependence on [ATP] had been previously demonstrated to satisfy classical enzyme

kinetics (Howard et al., 1989; Schnitzer and Block, 1997). That is, for low [ATP],

the velocity grows proportionally to [ATP], but as the concentration increased, the

velocity approaches an asymptotic limit vmax. This relationship is well characterized

by the Michaelis-Menten relationship,

v([ATP]) =
vmax[ATP]

[ATP] +Km

, (1.11)

where the Michaelis-Menten constant Km is the concentration at which the velocity

is exactly half the asymptotic limit, as illustrated in Figure 1.4. The VSB experi-

ment demonstrated, as anticipated, that the maximum velocity decreased as the load

increased. However, contrary to many models’ predictions, the Michaelis-Menten

constant increased as the load increased. We will discuss more precisely these rela-

tionships in the next section in the context of theoretical models for kinesin in order
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to give some possible explanations for these results.

1.3 Mathematical Models

The discovery of the directed motion of kinesin along a microtubule inspired a number

of physical and mathematical models. Early models fell into two basic classes: Brow-

nian ratchet models and simple mechanistic models. The Brownian ratchet models

focused on the use of asymmetry to rectify thermal fluctuations, and typically at-

tempted to model motor proteins such as kinesin through asymmetric and fluctuating

energy interactions with a microtubule. The simple mechanistic models attempted to

characterize motion by hypothesizing possible general mechanical structures, such as

hinges and springs, and considering the motion of the motor protein passing through

a sequence of states of these components. A third class of models represents some-

what of a hybrid of these earlier models, which we call mechanochemical models,

although they actually were first proposed to explain the mechanics of myosin in

muscle (Huxley, 1957; Huxley and Simmons, 1971). Mechano-chemical models incor-

porate a sequence of chemical and/or conformational states through which the motor

protein progresses as a stochastic process, not necessarily attempting to identify spe-

cific mechanical features of these states but rather characterizing properties such as

transition rates and partial displacement of the motor relative to a complete step. In

this section, we discuss these models with a view of motivating the use of a Markov

jump process to model kinesin motility.

A number of physical considerations motivated the development of Brownian

ratchet models. First, the dimensions of the motor protein system necessitate the

incorporation of thermal Brownian noise (Magnasco, 1993). All events occur at the

molecular level, and thermal fluctuations keep everything moving. Energy barriers,

which control the rates of transitions of binding and unbinding, are reasonably com-

parable with the thermal energy scale of room temperature where experiments are
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performed, kBT = 4 pN·nm. For example, the free energy released from the hydrol-

ysis of ATP, the source of energy in the kinesin mechanical cycle, is ∼ 31 kJ/mol,

which corresponds to about 12 kBT , although it should be emphasized that this is

actually a standard free energy change which must be adjusted according to the con-

centrations of ATP, ADP and Pi in solution. Unfortunately, current experiments have

not as yet characterized the ADP and phosphate concentrations, making a precise

determination of available free energy unclear. In addition, by moving the distance

of a single tubulin dimer, d = 8.2 nm, against observed opposing forces of greater

than 5 pN, kinesin performs a comparable net amount of work. Second, most of the

ratchet models utilize a potential energy that changes in time, relative to which a

particle undergoes Brownian motion. The binding of kinesin to its tubulin track can,

in principle, be described according to the potential energy. During the processes

of binding ATP and its subsequent hydrolysis, the interaction changes between the

kinesin and microtubule, which corresponds to a change in the potential energy (As-

tumian and Bier, 1994). Finally, a ratchet mechanism provides a reasonable method

to allow directed motion at microscopic scales without violating the second law of

thermodynamics (Feynman et al., 1963; Vale and Oosawa, 1990; Magnasco, 1993).

The basic mathematical model for a Brownian ratchet includes a particle, perhaps

representing a motor protein, that undergoes motion in a potential energy landscape

with thermal noise. If we let x(t) represent the position of the particle at time t, and

let V (x) represent a periodic potential energy due to interactions between the particle

and its track, then the Langevin equation describing the motion of the particle in the

presence of thermal noise is given by

γ
d

dt
x(t) = − d

dx
V (x(t)) +

√
2γkBT ξ(t), (1.12)

where γ represents the viscous drag coefficient for the particle in solution and ξ(t)

is a standard white noise process. In the absence of any additional influences, this
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system has a stationary distribution with a density given by

f(x) ∝ exp(−V (x)/kBT ), (1.13)

and which satisfies detailed balance so that there is no net transport. However, by

introducing an external fluctuation and by using an asymmetric potential V , the

Brownian motion can be rectified to induce directed motion that can perform work.

There are two classic methods to generate the external fluctuations, either by intro-

ducing an additional fluctuating force or by having the potential V fluctuate in time.

We will briefly discuss simple examples of each of these (Astumian and Bier, 1994;

Astumian, 1997).

The simplest example of a fluctuating force ratchet involves an additive, homoge-

neous force that alternates between two opposite values, ±∆F . That is, we consider

an expanded system that incorporates a fluctuating state z(t) = ±1 so that the

Langevin equation becomes

γ
d

dt
x(t) = − d

dx
V (x(t)) +

√
2γkBT ξ(t) + ∆F · z(t). (1.14)

At a given time t, the effect of the additional force is that the potential energy

landscape has been tilted with a slope of ±∆F . As a simple example of an asymmetric

potential, consider the piecewise linear potential energy illustrated in Figure 1.5.

Because the repeating peaks on this potential energy function have the same height,

a particle in equilibrium undergoing Brownian motion in this potential will have

the same rate to cross in either direction. The addition of a homogeneous force

superimposes a tilt on the potential, which alternately raises and lowers the energy

barrier by a fixed amount on each side, and these models are sometimes referred to as

a rocking ratchet. For each of the fixed tilts, the stationary distribution corresponds to

a particle having an exponentially faster rate to cross by diffusion the lowered barrier

than the raised barrier, leading to a net velocity in the direction of the superimposed

force. The asymmetry in the potential energy leads to a larger change in energy
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Figure 1.5. Periodic piecewise linear, asymmetric potential. The peaks all have
V = E0 and the valleys all have V = 0.
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Figure 1.6. Plot of the potential in a rocking ratchet model. The fluctuating
homogeneous reduces energy barrier the most along the longer, but less steep edge,
leading to exponentially more likely transitions over that barrier. Net motion goes to
the right.
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barrier for the peak further away from the potential energy minimum. As a result, a

given force applied in this direction leads to a greater average velocity than the same

force applied in the opposite direction (see Figure 1.6). By fluctuating between these

two forces at a slow enough rate, the overall average force will be zero, yet the particle

will exhibit an average velocity moving in the direction of the peak further away from

the minimum. The presence of an additional constant force opposing motion, perhaps

caused by a load, reduces the amount the barrier is lowered, but if the force is not

too large, the motion will continue, moving against this force and performing work.

Note that Brownian motion is essential to this behavior, to allow for the escape

over the potential energy barrier. Other variations of the fluctuating force ratchet

include continuously varying forces (Magnasco, 1993), as well as additive colored

noise (Millonas and Dykman, 1994). The fluctuating force ratchet, however, does

not describe a system compatible with motor proteins such as kinesin. In particular,

the non-equilibrium fluctuations in the force are spatially homogeneous, whereas the

fluctuations for motor proteins need to be localized to the interaction between the

motor and its track.

Fluctuating potential ratchets (Astumian and Bier, 1994; Astumian, 1997) over-

come the localization problem, because instead of superimposing a global change in

the energy landscape, the potential energy itself changes, possibly only in a region

local to the position of the motor. A prototype of the fluctuating potential arises by

considering the same initial potential energy landscape as shown in Figure 1.5. In

this base state, the particle will localize near the minimum of the potential energy,

in that the most likely configurations are for the particle at or near the minimum.

Occasional transitions over the boundaries will occur, though they will happen at

the same rate for each direction. Consider, then, the effect of the potential energy

suddenly being turned off, leaving the particle free to undergo standard Brownian

motion. The probability density of a particle undergoing Brownian motion with a

well-defined initial condition is simply a Gaussian density with a center at the initial
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Figure 1.7. Plot of the potential in a flashing ratchet model. A particle undergo-
ing Brownian motion which starts at the minimum of the potential energy function
(dashed line) has a Gaussian probability density which spreads in time. The period
to the left has a greater probability than the period to the right, so the net motion is
to the left. Note that the probability of moving to the left is still less than 1/2.

position with a variance that grows proportionally with the time. In this case, the

asymmetry in the potential energy function places the initial starting point for the

Brownian motion to be closer to one of the barriers than the other. If the potential

energy is turned back on, then the probability of being trapped in the region which is

closer to the starting minimum will be higher than the probability of being trapped in

the region which is farther away, as illustrated in Figure 1.7. By alternately turning

the potential on and off, hence the name of a flashing potential model, the particle

will alternately move to the energy minimum followed by Brownian motion, leading

to a net motion in the direction of the peak nearest the minimum. The presence of

an opposing force introduces a tilt to the potential energy landscape, and when the

potential is turned off, the particle will undergo a constant drift in the direction of

the force. However, if the force is not too large and the time that the potential is

turned off remains sufficiently short, then spread of the density will still favor the site
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Figure 1.8. With a superimposed force, the Gaussian density in a flashing ratchet
model drifts to the right and spreads symmetrically. The spread still favors the
particle changing sites to the left compared to the right for short flashing times.

in the direction of the nearest peak, as shown in Figure 1.8.

Fluctuating or flashing potential ratchet models provide an intriguing possible

model for motor proteins, although there are a number of serious challenges. Typi-

cally, the transition in the potential energy corresponds to an event in the chemical cy-

cle of ATP hydrolysis (Peskin et al., 1994; Jülicher et al., 1997). In fact, as mentioned

earlier, when kinesin binds ATP or has no ligand, the microtubule-kinesin interaction

becomes strong, whereas bound ADP leads to a weak interaction. Consequently, mod-

eling the transitions in chemical states as corresponding to different potential energies

makes good physical sense. However, in this simplistic model, because the probability

of diffusing to either side with the potential off is, by symmetry, at most 1/2, this

model requires an average of greater than two cycles for each step in the direction of

motion, which is counter to the tightly-coupled behavior of kinesin. This weakness

can be overcome by introducing additional states (Jülicher et al., 1997; Astumian

and Derényi, 1999) and by incorporating different potential energies for each state

rather than simply alternating between two states (Kolomeisky and Widom, 1998).
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However, a greater challenge is that dealing with the entire potential energy function

becomes unwieldy. All present ratchet models use simple potential energies, while

the true interaction between kinesin and the microtubule remains elusive. So while

it might be argued that a sufficiently complicated flashing potential ratchet model

might explain the motion of kinesin, the state of science is insufficient to pursue this

approach directly.

Another class of models for kinesin, mechanical or power-stroke models, attempt

to simplify the overall structure of the protein into a few simple mechanical parts, such

as hinges, springs, rods and levers (Peskin and Oster, 1995; Duke and Leibler, 1996).

In these models, energy stored from binding events or ATP hydrolysis is transferred

through springs and levers to provide a physical power stroke which propels the motor

forward. Note that because of the overdamped conditions that exist in the molecular

domain, the propulsion does not impart a momentum that can carry the motor for-

ward, but instead serves to move part of the protein to a forward position. Most of

these models also directly incorporate the presence of both heads of kinesin linked by

a spring or a hinge, with one of the heads undergoing hydrolysis and a power stroke

and moving the other head into the presence of the next binding site. Paralleling some

of the ideas of the Brownian ratchet models, the power stroke provides an asymmetry,

and typically the second head which has been positioned forward must then wait for

Brownian motion to complete the step. The effect of an opposing force is typically

included as a shift in equilibrium positions through linkage in the springs joining the

heads. Each of the dynamic mechanical components must be characterized through

phenomenological parameters, such as spring constants, lever arms, and power-stroke

amplitudes. Typically, these parameters are chosen in order to fit reported quantities

such as the force-velocity curves and randomness. The intended advantages of these

models are that they propose specific behaviors in the physical proteins that might

generate the motion. That is, they attempt to model conformational changes as sim-

ple mechanical changes. The greatest challenge for this approach is that the number
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of parameters is high relative to the quantities to which they are fit.

A third class of models, mechanochemical models combine several of the advan-

tages of the flashing potential ratchet models and the mechanical models. As in the

flashing potential models, mechanochemical models hypothesize that the motor pro-

tein has a number of different chemical states, with random transitions between these

states (Astumian, 1997). However, instead of attempting to describe the transition

in terms of a potential energy landscape, the transitions are characterized by tran-

sition rates. Most commonly, these transitions are assumed to satisfy the properties

of a Markov process, although there has been some work to generalize to arbitrary

waiting times (Fisher and Kolomeisky, 1999a,b). Mechano-chemical models with a

single cycle are sometimes called tightly-coupled models, as a step forward would

correspond precisely with one completion of the cycle. As in the mechanical models,

conformational changes can be incorporated by associating each state with a spe-

cific displacement. Early tightly-coupled models for kinesin (Leibler and Huse, 1991)

selected specific chemical states and corresponding kinesin-microtubule interactions.

In fact, mechanical models might be viewed as being built around a tightly-coupled

model, with the addition of attempting to model the power-stroke and the coupling

between the two different heads (Duke and Leibler, 1996).

Most recently, models have attempted to incorporate the dependence on an ex-

ternal force, motivated by the single-molecule experiments. In order to accommodate

a force, thermodynamics requires the model to account for reversibility. Consider

a mechanochemical cycle in which all of the load-dependence occurs within a single

reversible transition between two states and which involves a displacement of length

`. Let kf (F ) be the forward transition rate, which depends on the applied force, and

let kr(F ) be the load-dependent reverse transition rate. A detailed balance condition

dictates the force dependence on transition rates that involve physical displacement
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(Qian, 1997), according to the relationship

kf (F )

kr(F )
=
kf (0)

kr(0)
e−F`/kBT . (1.15)

That is, the forward and backward rates adjust in order to account for the conversion

of free energy F` into work. However, this does not account for transition rates that

may be affected indirectly due to an external force, such as strains in the protein

that might alter the molecular dynamics. Nevertheless, a number of different models

have incorporated external forces by implementing a detailed balance condition as in

Equation 1.15.

Astumian and Derényi (AD) developed a flashing ratchet model with four different

potential energy landscapes corresponding to four chemical states (1999). Under the

assumption that the physical transitions between different states, such as for Brownian

motion over a barrier, occur faster than the chemical transitions which drive the

potential energy landscape changes, this model was recast as a Markov jump process.

This simplification breaks down when waiting times are not exponentially distributed,

such as when a comparable deterministic time for a mechanical transition is added to

a typical chemical transition. However, by casting the problem as a Markov process,

the machinery available for Markov processes can be applied to make the analysis of

the model explicit. Load dependence was introduced by imposing a detailed balance

condition on diffusive steps, where an imposed force had the effect of altering the

energy barriers. Explicitly, transitions which involved a displacement εd, where ε

represents the fraction of a complete step of size d which occurs during that transition,

had a suppression of the forward rate by the factor f = e−εFd/2kBT , and reverse

transition rates were enhanced by the factor f−1. This representation implements

the detailed balance condition f/f−1 = e−εFd/kBT by dividing the influence equally

in the forward and reverse direction.

In a follow-up paper to the single-molecule kinesin experiments, Schnitzer et al.

(2000) proposed another model (SVB) based on a load-dependent composite state.
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The motivation for the model was to account for the load-dependence of the observed

velocity, as well as to account for the processivity measurements reported in this

same paper. Starting with a typical tightly-coupled model based on the standard

ATP hydrolysis cycle, the SVB model introduces a composite state when ATP binds

with one head of the kinesin. Thus, as ATP binds kinesin, kinesin undergoes an

isomerization with two possible configurations, undergoing rapid transitions between

these states. If the isomerization is rapid enough, the kinesin can be treated as

existing in an equilibrium between the two states. Load-dependence for the model

arises through the load-dependence of the equilibrium distribution between these

states.

Rather than parametrize all of the transition rates, the SVB model summarizes

the effect of all transition rates through the use of a binding rate kb and a catalytic

rate kcat. The binding rate kb represents the rate at which kinesin binds ATP which

will actually undergo hydrolysis, and thus incorporates both the rate of binding ATP

as well as subsequent release, relative to proceeding through the remainder of the

hydrolysis cycle. The catalytic rate kcat represents the rate at which kinesin with

an irreversibly bound ATP molecule will complete the remainder of the hydrolysis

cycle, and thus includes effects from all of the remaining transition rates. Allowing

both the catalytic rate and effective binding rate to depend on the external force, the

functional dependence of velocity on load and [ATP] can then be written

v(F, [ATP]) =
d · kcat(F )[ATP]

[ATP] + kcat(F )/kb(F )
, (1.16)

so that the asymptotic maximal velocity and Michaelis-Menten constant can be writ-

ten vmax(F ) = d · kcat(F ) and KM(F ) = kcat(F )/kb(F ). In order that the maximum

velocity decrease as the opposing force increases, kcat must decrease. In order that

the Michaelis-Menten constant increase, the effective binding rate kb must decrease

faster than kcat.

Motivated by the assumption of an underlying potential energy landscape, the
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SVB model proposes that these two isomer states, which represent two conforma-

tional states with shifted positions, correspond to two local minima of the potential

energy at each of the isomer positions and separated by a relatively small energy

barrier. The resulting tilt of the energy landscape due to an external force shifts the

equilibrium between these two isomers in the direction of the force. Because of the as-

sumed fast equilibrium, detailed balance is implemented through the load dependence

of the equilibrium constant for this isomerization K according to K = K0e
−εFd/kBT ,

where ε represents the fraction of a complete lattice step that corresponds to a transi-

tion between the two isomer states. Consequently, the presence of the external force

increases the fraction of time spent in the first isomer configuration, which will in-

crease the effective rate of ATP unbinding and thus decrease kb as the force increases.

In addition, the corresponding decrease of the second configuration occupancy leads

to a reduction in the catalytic rate. All other transitions are assumed to have no load

dependence. The overall effects of the various transition rates and load are combined

to obtain the expressions for kcat and kb:

kcat(F ) =
k0

cat

pcat + qcateεFd/kBT
, (1.17)

kb(F ) =
k0

b

pb + qbeεFd/kBT
, (1.18)

where p, q, and k0 parametrize these rates. Such a parametrization leads to good

global fits to the velocity data of the single-molecule VSB experiments (Visscher

et al., 1999), and can also be adapted to account for the processivity results.

Another approach to modeling load-dependence, but without explicitly referencing

an underlying potential energy landscape, has been recently developed by Fisher and

Kolomeisky (Fisher and Kolomeisky, 1999a,b; Kolomeisky and Fisher, 2000; Fisher

and Kolomeisky, 2001). In this framework, the motor protein moves along a lattice,

passing through N internal states associated with each lattice site. The simplest

scheme within the framework is a standard kinetic scheme, where the motor proceeds

through the states in sequence, with the transition out of the last state returning to
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the first state, but with the lattice site increasing by one. Labeling the internal states

1, 2, . . . , N , the following kinetic diagram represents the dynamics:

1l

u1



v2

2l

u2



v3

· · ·
uN−1



vN

Nl

uN



v1

1l+1, (1.19)

where the subscript specifies the site on the lattice, and u and v represent the transi-

tion rates between sites. Unlike earlier models, the framework does not try to assign

a chemical interpretation for each of the states, preferring instead to let the state

represent some generic stage through which the motor must pass, except for the first

state which is explicitly assigned the state immediately prior to ATP binding. Con-

sequently, the first forward transition u1 in the absence of load (indicated by the

superscript of 0) is modeled in terms of [ATP] by

u0
1 = k0[ATP]. (1.20)

In addition, the final reverse transition is modeled as having a non-linear [ATP]-

dependence as

v0
1 = k′0[ATP]/(1 + [ATP]/c0)

1/2. (1.21)

In addition, non-Markovian structure was discussed by theoretically replacing the

transition rates with arbitrarily distributed waiting times. The Markov structure

would be recovered with exponentially distributed waiting times. Alternative models

within this framework provide for additional properties such as side branches as well

as death states that mightcorrespond to irreversible detachment of the motor from

the microtubule. However, we focus on the standard kinetic scheme for clarity.

Coupling the opposing force into the model occurs, again, through the use of

multiplicative factors on the transition rates that enforce detailed balance. However,

unlike Astumian and Derényi’s implementation, the displacement of a particular tran-

sition is not explicitly stated. Writing the external force as F and the lattice size as



40

d, the forward and backward transitions, respectively, take the functional forms

uk = u0
ke

−ϑ+
k Fd/kBT (1.22)

vk = v0
ke

+ϑ−k Fd/kBT . (1.23)

Again, considering the ratio of corresponding forward and backward transitions be-

tween states k and k + 1, we observe

uk

vk+1

=
u0

k

v0
k+1

e−(ϑ+
k +ϑ−k+1)Fd/kBT . (1.24)

Consequently, the sum εk = ϑ+
k + ϑ−k+1 might be interpreted as an effective partial

step-size by comparison with Equation 1.15. Although a corresponding physical dis-

placement may be suggested by this form, it is not necessarily implied, as strains

in the protein may account for some load dependence. We will return to this point

in the next chapter. We note that the use of both ϑ+ and ϑ− allows the effect of

the load to be distributed unequally between the forward and backward transitions.

Essentially, this implementation assumes that the load dependence can be reasonably

approximated by an exponential of a linear function of the force.

Using the parametrization for transition rates and their dependence on load, Fisher

and Kolomeisky (FK) used this model to fit (Fisher and Kolomeisky, 2001) the ex-

perimental single-molecule results (Visscher et al., 1999; Schnitzer et al., 2000). By

varying the parameters u, v, ϑ+, ϑ−, they found global fits for the experimentally

determined [ATP]-velocity, force-velocity relationships, and stall forces, as well as

randomness. By including side branches and death states, they also fit the proces-

sivity results. When N = 2, they were able to fit the velocity results and stall

forces reasonably well. However, the randomness dependencies required more de-

tailed models. One approach they used to account for randomness was to introduce a

non-exponential waiting time for the second state. However, they also expanded the

model to N = 4, which results in good agreement with the published experimental re-

sults for both velocity and randomness. Interpreting the detailed balance parameters
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ϑ± as corresponding directly to a physical size of a substep, the predicted effective

displacement arising from ATP binding is 1.8 nm for the two-state model and 2.1 nm

for the four-state model.

Recalling the SVB model, it seems as though the composite state model might be

considered as a particular case of the FK model. In both cases, the underlying models

have Markov structure and incorporate the load-dependence through the transition

rates. By using two separate states in the FK model to correspond to the single

composite state of the SVB model, the isomerization can be accomplished by making

the forward and reverse rates between these two states sufficiently large relative to

the outgoing rates. Consider the following portion of a Markov jump process Xt:

· · · 1
u1



v′2

2−
kf



kr

2+

u′2


v3

3 · · · . (1.25)

The equilibrium constant for the composite state is equal to the ratio of the forward

and reverse rates K =
kf

kr
. We represent the forward and backward rates as

kf =
1

η
k̃f , kr =

1

η
k̃r, (1.26)

where η � 1 represents a scaling parameter with the remaining transition rates ui

and vi unchanged. Then the limiting behavior as η → 0, corresponding to making the

isomerization rates much larger than the other rates while holding the equilibrium

fixed, is equivalent, in terms of transition rates, to the simpler model (Schnitzer et al.,

2000)

· · · 1
u1



v2

2
u2



v3

3 · · · . (1.27)

with transition rates

u2 =
u′2K

K + 1
, v2 =

v′2
K + 1

. (1.28)

Because of the success of the SVB model and the FK model, as well as the compu-

tation tools available for Markov processes, tightly-coupled models seem well-suited in

describing the motion of kinesin. With a motivation for considering Markov processes,

we next turn to the implementation of filtering algorithms.
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1.4 Hidden Markov Models

Hidden Markov models (HMMs) (Rabiner, 1989; Elliott et al., 1997) attempt to de-

scribe a random sequence of observations that are generated from an unobservable

Markov process. That is, we have a hidden Markov state process, {Xk; k ≥ 1}, and

an observation process, {Yk; k ≥ 1}. The state space for the Markov process, Xk, will

consist of a finite number of states, which we can label 1, 2, . . . , N , and the dynam-

ics are characterized by a transition matrix A and an initial distribution π1. To be

consistent with the notation of standard Markov processes, we let the ith row of A

contain the probability distribution of Xk+1 given that Xk = i,

P [Xk+1 = j|Xk = i] = a(i, j). (1.29)

If πk represents the distribution of Xk as a row vector, then the distribution πk+1 of

Xk+1 is given by the product of the transition matrix A and the initial distribution

πk, according to

πk+1 = πkA. (1.30)

Successive iterations are given by repeated multiplication by the transition matrix

A. The observation process, Yk, will also be a stochastic process, except that the

distribution of Yk depends only on the state Xk. Consequently, the sequence {Yk}

will be a conditionally independent sequence given the sequence {Xk}. In the simplest

case, this distribution will depend only on the value of Xk and not on the time index

k. Typically, the distribution of Yk given Xk will be absolutely continuous with

respect to some common reference measure, ν. If the observation space is finite, then

ν can be chosen to be counting measure on the state space. If the distribution is a

continuous distribution, the reference measure might be Lebesgue measure. Given

that Xk = i, we denote the density of Yk with respect to ν as bi(y). We will let B

denote the collection of all of the conditional densities. Consequently, the complete

model is characterized by the triple (π1, A,B). Typically, the transition matrix A
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and the conditional densities B will be functions of some collection of parameters,

collectively denoted θ.

Following the example of the classic tutorial by Rabiner (Rabiner, 1989), we in-

troduce three fundamental problems for HMMs. There are three typical questions

that might be asked given the observation sequence, ~y = (y1, . . . , yK):

1. Given a model (π1, A,B) (or, equivalently, the parameter θ), what is the like-

lihood of observing this sequence? Equivalently, what is the likelihood of the

model given the observations?

2. Given a model and the observations, what is the best sequence of states, ~x =

{x1, . . . , xK} for the hidden state process Xk?

3. Given a parametrization for the model, what is the best choice of parameters θ

to describe the observations?

We will discuss the classic solutions to each of these problems, as well as adaptations

of the techniques to accommodate more general hidden Markov models. The ideas

presented are essentially the same as the classic references (Baum and Petrie, 1966;

Baum et al., 1970; Rabiner, 1989), but the presentation is designed to make later

developments in the present work more natural.

1.4.1 Computing Likelihood: Forward-Backward Algorithm

We begin by considering the first problem, computing the likelihood of the obser-

vations. First, let x1, . . . , xK represent an arbitrary, fixed sequence of states for the

state process Xk. The likelihood of the model for the complete system given the state

sequence ~x and the observation sequence ~y is given by the product

L(θ; ~x, ~y) = π1(x1)bx1(y1)a(x1, x2)bx2(y2) · · · a(xK−1, xK)bxK
(yK). (1.31)
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However, since the actual sequence for the state process is unknown, we must sum

over all possible sequences ~x that the state process might go through. Of course, enu-

merating the list of all such sequences and then computing the individual likelihoods

is a particularly inefficient method, requiring the computation of the likelihood for

each of the NK different sequences. Instead, it is more effective to observe that if we

define the matrix-valued function B(y) : R → GL(R, N) as the diagonal matrix with

diagonal entries given by

Bi,i(y) = bi(y), (1.32)

then the sum over paths can be interpreted as the matrix product

L(θ; ~y) =
∑

~x

L(θ; ~x, ~y) (1.33)

= π1B(y1) · AB(y2) · · ·AB(yK)~1, (1.34)

where ~1 is an N -dimensional vector containing all ones. The full-system likelihood

L(θ; ~x, ~y) represents the probability density with model parameter θ for the state pro-

cess Xk and the observation process Yk, 1 ≤ k ≤ K, relative to the reference measure

(χ × ν)K , where χ represents counting measure. Then the hidden Markov model

likelihood L(θ; ~y) is the marginal density with respect to νK , with the summation

over all states representing integration over the counting measure.

The forward algorithm (Baum et al., 1970) simply implements this matrix formu-

lation, although it is typically presented as an inductive algorithm. Of interest are

the forward variables αk(i). Here is the standard description:

1. Initialization:

α1(i) = π1(i)bi(y1), 1 ≤ i ≤ N, (1.35)

2. Induction:

αk+1(j) =
N∑

i=1

αk(i)a(i, j)bj(yk+1),
1 ≤ k ≤ K − 1,

1 ≤ j ≤ N,
(1.36)
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3. Termination:

L(θ; ~y) =
N∑

i=1

αK(i). (1.37)

The matrix interpretation of this result is that at each time k, we inductively define

the row vector αk as

1. Initialization: α1 = π1 ·B(y1),

2. Forward Induction: αk+1 = αk · AB(yk+1),

and the likelihood is given as the inner product of αK with the vector of ones, L(θ; ~y) =

αK · ~1. Each vector αk actually represents the unnormalized conditional probability

distribution for the state at time k, given the observations through time k under the

model specified by θ. That is,

Pθ[Xk = i|~yk] =
1

αk ·~1
αk(i), (1.38)

gives the conditional probability of the state at time k, given the forward partial

observation sequence ~yk, where ~yk represents the partial observation sequence Y1 =

y1, . . . , Yk = yk. Alternatively, the quantity αk(i) can be interpreted directly as the

likelihood of the partial sequence,

αk(i) = L(θ;Xk = i, ~yk). (1.39)

Whereas computation of the likelihood by direct enumeration of all paths for the state

process grows exponentially in the length of the data, the forward algorithm requires

only O(KN2) multiplications, with the complexity of the calculation growing linearly

with the length of the data.

While the forward computation corresponds to computing a particular length of

the left-hand side of the matrix calculation in Equation 1.34, a similar backward

computation corresponds to the remaining right-hand side. Rather than present the

standard inductive formulation, we simply state the algorithm in terms of the matrix
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calculation. We define a sequence of column vectors βk, the backward variables,

according to the inductive relationship:

1. Initialize: βK = ~1,

2. Backward Induction: βk = AB(yk) · βk+1.

Consequently, we obtain for each k that the product of the forward and backward

vectors will yield the hidden Markov model likelihood, αk · βk = L(θ; ~y). The inter-

pretation of the backward variable βk(i) is as the conditional likelihood of the tail

observations given Xk = i,

βk(i) = L(θ; ~y\~yk|Xk = i), (1.40)

where ~y\~yk represents Yk+1 = yk+1, . . . , YK = yK .

In practice, subsequent iterations of the forward and backward relations tend to

cause the terms of the vectors to geometrically decay, since a typical term in the

product is less than one. This would lead to numerical underflow. Consequently,

a rescaling of these vectors must occur, at least occasionally. One especially useful

approach is to rescale the forward variables at each iteration, α̃k = ckαk, with ck =

1/(αk ·~1) so that α̃k becomes the normalized conditional probability distribution for

the state at time k given the first k observations. The backward variables can also

be rescaled using the same scaling factors according to the relation β̃k = ck+1βk for

k < K. The induction steps are modified to use the rescaled variables:

αk+1 = α̃k · AB(yk+1), (1.41)

βk = AB(yk+1) · β̃k+1. (1.42)

Because all of the induction steps are simply linear transformations, the effect of the

rescaling can be factored out to obtain a relationship between the scaled forward and
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backward variables with the original, unscaled variables, denoted by a prime (′):

α̃k =
k∏

l=1

clα
′
k, (1.43)

β̃k =
K∏

l=k+1

clβ
′
k. (1.44)

Therefore, we also obtain another method of calculating the likelihood as

L(θ; ~y) =
1∏K

k=1 ck
. (1.45)

In most cases this is exponentially small, so that the numerical calculation still leads to

underflow for the likelihood. However, having written the likelihood as a product, we

now also have a natural method to compute the log-likelihood as a sum of logarithms,

logL(θ; ~y) = −
K∑

k=1

log ck. (1.46)

By considering the term-wise product of αk and βk, we also obtain the following useful

equalities, which we will use later in the context of the EM algorithm,

γθ,k(i) ≡ Pθ[Xk = i|~y] =
αk(i)βk(i)

L(θ; ~y)
= α̃k(i)β̃k(i), (1.47)

for the condition distribution of the state process, as well as the conditional probability

of particular jumps at each time k,

Ĵθ,k(i, j) ≡ Eθ[Jk(i, j)|~y] = Pθ[Xk = i,Xk+1 = j|~y]

=
αk(i)a(i, j)bj(yk+1)βk+1(j)

L(θ; ~y)
(1.48)

= ck+1α̃k(i)a(i, j)bj(yk+1)β̃k+1(j), (1.49)

with Jk(i, j) = Ii(Xk)Ij(Xk+1) representing the occurrence of a jump at time k from

state i to state j.
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1.4.2 Best Sequence: Viterbi Algorithm

The second common question relating to a hidden Markov model is to determine the

sequence ~x = (x1, . . . , xK) for the hidden state process that are the best states given

the model θ and the observations ~y. To answer the question, one must explain what

is meant by the best sequence. One common solution, the maximum a posteriori

(MAP) sequence, is to determine for each time index k, the state xk that is most

likely given the observations. That is, we choose xk so that

P [Xk = xk|~y] = max
i
P [Xk = i|~y]. (1.50)

Using the scaled forward and backward variables, α̃k and β̃k, and the formula in

Equation 1.47, we can compute all of the individual posterior probabilities of each

state for each index k. The disadvantage of this approach is that there is no relation

between different indexes. In fact, the sequence which results may not even be a

valid sequence, in that it may have zero likelihood. Another solution, the maximum

likelihood (ML) sequence, is to ask for the sequence, out of all possible sequences, for

which the full likelihood L(θ; ~x, ~y) is maximized.

The ML sequence can be determined through a dynamic algorithm known as the

Viterbi algorithm (Viterbi, 1967). The fundamental premise of the algorithm is that

the partial sequences of an optimal sequence are also optimal. The algorithm can be

explained as follows. For each time index k and state value i, we define the maximum

likelihood of partial sequences with final state i,

δk(i) = max
~xk:xk=i

L(θ; ~xk, ~yk). (1.51)

Because the likelihood factors, we also obtain the following inductive relationship:

δk+1(j) = max
i
δk(i)a(i, j)bj(yk+1). (1.52)

The Viterbi algorithm recursively generates the partial sequence maximum likeli-

hoods, and stores for each final state of the subsequence the previous state that led

to the maximum likelihood path.
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1. Initialization:

δ1(i) = π1(i)bi(y1), (1.53)

2. Recursion:

δk+1(j) = max
i
δk(i)a(i, j)bj(yk+1),

1 ≤ k ≤ K − 1,
1 ≤ j ≤ N,

(1.54)

ψk(j) = arg max
i

δk(i)a(i, j)bj(yk+1),
1 ≤ k ≤ K − 1,

1 ≤ j ≤ N,
(1.55)

3. Termination:

L∗ = max
i
δK(i), (1.56)

x∗K = arg max
i

δK(i), (1.57)

4. Backtracking:

x∗k = ψk(x
∗
k+1), k = K − 1, K − 2, . . . , 1. (1.58)

The resulting sequence ~x∗ = (x∗1, . . . , x
∗
K) will then satisfy the maximum likelihood

condition

L(θ; ~x∗, ~y) = L∗ = max
~x

L(θ; ~x, ~y). (1.59)

In terms of computation, we note that it is more practical to actually replace the

maximum likelihood δk(i) with the maximum log-likelihood, analogous to the scaling

that occurred in the forward-backward algorithm.

1.4.3 Model Estimation: Expectation-Maximization (EM) Algorithm

The final challenge in hidden Markov models is to find the best model within a

particular parametrization for the given observation sequence. The most common

choice for defining the best model is to find the parameter for which the likelihood
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of the corresponding model is greatest. That is, we define the maximum likelihood

estimator of the parametrization θ,

θ̂ = arg max
θ

L(θ; ~y). (1.60)

In statistics, maximum likelihood estimators (MLEs) are particularly useful for many

models because of their beneficial properties of consistency and asymptotic normality.

If we write θ̂n as the MLE given data of length n and suppose that θ0 is the true

parameter, then consistency means that the MLE converges to the true value θ̂n → θ0,

almost surely. Asymptotic normality refers to a central limit theorem-like behavior,

so that natural error bounds can be placed around the estimates. Consistency and

asymptotic normality of MLEs for HMMs in the case of a finite observation space was

given by Baum and Petrie (1966), consistency for more general HMMs was proved

by Leroux (1992), and asymptotic normality has been demonstrated for a variety of

conditions (Bickel et al., 1998; Jensen and Petersen, 1999; Douc and Matias, 2000).

Of course, these theorems require that certain assumptions on the models hold, such

as appropriate continuity and differentiability conditions of the likelihood, ergodicity

of the Markov state process, and identifiability of the model (up to labeling of the

states).

There are two main challenges in finding MLEs for hidden Markov models. The

first of these is the difficulty of maximizing the likelihood L(θ; ~y), given by Equation

1.33. Although maximization of the likelihood can be directly performed (Fredkin

and Rice, 1992; Qin et al., 2000), the Expectation-Maximization (EM) algorithm

(Dempster et al., 1977) provides an alternative technique which generates a sequence

of parameter estimates that are guaranteed to increase the likelihood. However, both

direct maximization and the EM algorithm can potentially converge to local maxima

which are not the true maximum. No known solution exists to this problem, and the

general strategy is to try a number of different starting points for the maximization

algorithms and select the best of the ending points.
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The Baum-Welch algorithm (Baum et al., 1970) is a special case of the more gen-

eral EM algorithm that applies for standard hidden Markov models. The algorithm

consists of two fundamental steps: the expectation step (E-step) and the maximiza-

tion step (M-step). Consider the simple example of an HMM consisting of a state

process governed by the transition matrix A = (a(i, j)) where the observation pro-

cess takes values in a finite collection o1, . . . , oM . For each state i, the conditional

probability that Yk = om given Xk = i will be parametrized by the vector bi:

P [Yk = om|Xk = i] = bi(m). (1.61)

Then given an initial model parametrized by

θ = {π1(i), a(i, j), bi(m) : 1 ≤ i ≤ N, 1 ≤ j ≤ N, 1 ≤ m ≤M}, (1.62)

the Baum-Welch algorithm gives a new model θ′ using the following steps, recalling

the formulas for γθ,k and Ĵθ,k given in Equations 1.47 and 1.49, respectively:

E: Use the Forward-Backward algorithm with model θ to compute the scaled for-

ward and backward variables α̃k and β̃k.

M: Compute new model parameters using the following formulas:

π′1(i) = γθ,1(i), (1.63)

Ôθ,k(i,m) = γθ,k(i)Im(yk), (1.64)

a′(i, j) =

∑K−1
k=1 Ĵθ,k(i, j)∑K−1

k=1 γθ,k(i)
, (1.65)

b′i(m) =

∑K
k=1 Ôθ,k(i,m)∑K

k=1 γθ,k(i)
. (1.66)

If the observation process is not from a finite set, but instead Yk has a Gaussian

distribution with mean µi and variance σ2
i given that the state Xk = i. Then the

model is parametrized by θ = {π1(i), a(i, j), µi, σ
2
i : 1 ≤ i ≤ N, 1 ≤ j ≤ N}. In this

case, Equation 1.66, the update of bi, of the M-step is replaced with the corresponding

M′-step updates for µi and σ2
i ,
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M′:

µ′i =

∑K
k=1 ykγθ,k(i)∑K

k=1 γθ,k(i)
, (1.67)

σ′i
2

=

∑K
k=1 y

2
kγθ,k(i)∑K

k=1 γθ,k(i)
− µ′i

2
. (1.68)

In order to justify the use of the Baum-Welch algorithm, as well as the more general

EM algorithm, we still need to show that the likelihood is nondecreasing, namely that

L(θ′; ~y) ≥ L(θ; ~y). This is a consequence of an inequality that was originally proved

in the context of the Baum-Welch algorithm (Baum and Petrie, 1966; Baum et al.,

1970), but which was then generalized by Dempster, Laird and Rubin as part of the

general EM algorithm (Dempster et al., 1977), which is suited for finding the MLE

of a broad class of incomplete data problems, with HMMs becoming a special case.

Introducing the auxiliary function Q(θ, θ′),

Q(θ, θ′) =
∑

~x

L(θ; ~x, ~y)

L(θ; ~y)
logL(θ′; ~x, ~y), (1.69)

we have the following inequality:

Theorem 1.4.1. If Q(θ, θ′) ≥ Q(θ, θ) then L(θ′; ~y) ≥ L(θ; ~y).

Proof: We follow the standard proof (Dempster et al., 1977). This is simply

an application of Jensen’s inequality, applied to the concave function log t, and the

conditional probability fX|Y,Θ(~x|~y, θ) = L(θ; ~x, ~y)/L(θ; ~y). We write

Q(θ, θ′)−Q(θ, θ) =
∑

~x

fX|Y,Θ(~x|~y, θ) log
L(θ′; ~x, ~y)

L(θ; ~x, ~y)

=
∑

~x

fX|Y,Θ(~x|~y, θ) log
L(θ′; ~x, ~y)/L(θ′; ~y)

L(θ; ~x, ~y)/L(θ; ~y)

+
∑

~x

fX|Y,Θ(~x|~y, θ) log
L(θ′; ~y)

L(θ; ~y)

= S(θ, θ′|~y) + log
L(θ′; ~y)

L(θ; ~y)
, (1.70)
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where we have introduced the conditional relative entropy S(θ, θ′|~y) for the model θ′

relative to θ given the observations,

S(θ, θ′|~y) =
∑

~x

fX|Y,Θ(~x|~y, θ) log
fX|Y,Θ(~x|~y, θ′)
fX|Y,Θ(~x|~y, θ)

. (1.71)

Note that the quantity −S is also known as the conditional Kullback-Leibler infor-

mation (Schervish, 1995). By Jensen’s inequality, S(θ, θ′|~y) ≤ 0 (or, equivalently,

conditional Kullback-Leiber information is non-negative), resulting in

logL(θ′; ~y)− logL(θ; ~y) = Q(θ, θ′)−Q(θ, θ)− S(θ, θ′|~y)

≥ Q(θ, θ′)−Q(θ, θ). (1.72)

This completes the proof. �

We finally show that the EM algorithm is equivalent to the Baum-Welch algorithm,

so that the Baum-Welch algorithm has non-decreasing likelihood. If we consider the

likelihood of the full model as given in Equation 1.31, then the log-likelihood can be

written

logL(θ′; ~x, ~y) = log π′1(x1) +
K−1∑
k=1

log a′(xk, xk+1) +
K∑

k=1

log b′xk
(yk)

=
∑

i

Ii(x1) log π′1(i) +
K−1∑
k=1

∑
(i,j)

Ii(xk)Ij(xk+1) log a′(i, j)

+
K∑

k=1

∑
i

Ii(xk) log b′i(yk)

=
∑

i

Ii(x1) log π′1(i) +
∑
(i,j)

log a′(i, j)

(
K−1∑
k=1

Ii(xk)Ij(xk+1)

)

+
∑

i

K∑
k=1

Ii(xk) log b′i(yk). (1.73)
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Computing the conditional expectation of the log-likelihood can then be written as

Q(θ, θ′) =
∑

i

log π′1(i)Pθ[X1 = i|~Y = ~y]

+
∑
(i,j)

log a′(i, j)Eθ[
K−1∑
k=1

Ii(Xk)Ij(Xk+1)|~Y = ~y]

+
∑

i

Eθ[
K∑

k=1

Ii(Xk) log b′i(Yk)|~Y = ~y]. (1.74)

Notice that the parameters π′1 and a′(i, j) are factored out of the conditional expec-

tation, so that we can maximize Q over these parameters directly. However, these

parameters have constraints because they must represent probability distributions:∑
j

π′1(j) = 1, (1.75)∑
j

a(i, j) = 1, for 1 ≤ i ≤ N. (1.76)

Performing a constrained optimization on these parameters, we obtain precisely the

Baum-Welch formulas given in Equations 1.63 and 1.65.

The formulas for the observation process parameters b′i were presented for the two

situations of either a finite number of observation values or a Gaussian density. Both

cases center on the expectation term

Qb(θ, θ
′) =

∑
i

Eθ[
K∑

k=1

Ii(Xk) log b′i(Yk)|~Y = ~y].

For the case of a finite observation space, we rewrite Qb as

Qb(θ, θ
′) =

∑
i

∑
m

Eθ[
K∑

k=1

Ii(Xk)Im(Yk) log b′i(m)|~Y = ~y]

=
∑

i

∑
m

log b′i(m)Eθ[
K∑

k=1

Ii(Xk)Im(Yk)|~Y = ~y]. (1.77)

Again, we have a constraint on the parameter because
∑

m b
′
i(m) = 1 for each i.

Maximizing Qb subject to this constraint leads to the Baum-Welch update Equation
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1.66. For the case of a Gaussian density with mean µ′i and variance σ′i
2, we have

b′i(y) =
1√
2πσ′i

exp(−(y − µ′i)
2

2σ′i
2 ), (1.78)

so that Qb(θ, θ
′) is rewritten as

Qb(θ, θ
′) =

∑
i

Eθ[
K∑

k=1

Ii(Xk)

(
−1

2
log(2πσ′i

2
)− (Yk − µ′i)

2

2σ′i
2

)
|~Y = ~y]

=
∑

i

[
−1

2
log(2πσ′i

2
)Eθ[

K∑
k=1

Ii(Xk)|~Y = ~y]

− 1

2σ′i
2Eθ[

K∑
k=1

Ii(Xk)(Y
2
k − 2µ′iYk + µ′i

2
)|~Y = ~y]

]
. (1.79)

The maximum occurs when each of the summands is maximized individually. Rem-

iniscent of the calculations to perform least squares fitting for linear regression, we

find the critical point (µ′i, σ
′
i) of the summand for each i, which corresponds exactly

with the Baum-Welch update formulas of Equation 1.67 and 1.68. Note that the

formula for µ′i is independent of σ′i, so that the maximum must occur on the line

defined by Equation 1.67, where σ′i is allowed to vary. Applying the one-dimensional

second derivative test on σ′i verifies that when σ′i satisfies Equation 1.68, Qb(θ, θ
′) is

globally maximized.

We note that Q(θ, θ′) is actually the conditional expectation of the log-likelihood

for the full model under θ′, but calculated under the model θ,

Q(θ, θ′) = Eθ[logL(θ′; ~X, ~Y )|~Y = ~y]. (1.80)

The generalization of the Baum-Welch algorithm, which is just a particular imple-

mentation of the EM algorithm, is to compute the conditional expectation Q(θ, θ′) for

fixed θ, which gives the E-step its name. Then, the M-step involves maximizing over

θ′. Because maxθ′ Q(θ, θ′) ≥ Q(θ, θ), this maximization will guarantee that the likeli-

hood cannot decrease. The implementation of the EM algorithm for an HMM where

the transition probabilities and observation densities depend on arbitrary parameters
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is a direct extension of the Baum-Welch calculations, although the maximization may

be more complex, particularly for parametrized transition probabilities (Michalek and

Timmer, 1999).

1.4.4 Discussion of Hidden Markov Models

One of the primary obstacles to standard HMMs comes from the nature of the depen-

dence of the observations on the hidden state process. In particular, the distribution

of an observation Yk depends only on a single state value Xk, conditionally inde-

pendent of all other observations. If the distribution of Yk depends on the recent

history of the state process, {Xk, Xk−1, . . . , Xk−p}, through a deterministic function

f(x0, . . . , xp) in addition to an additive white noise sequence εk,

Yk = f(Xk, Xk−1, . . . , Xk−p) + εk, (1.81)

then a corresponding meta-state Markov process can be used. By defining

X̃k = (Xk, Xk−1, . . . , Xk−p), (1.82)

the meta-state process X̃k is also a Markov process, but with an enlarged state space

of size Np+1. Transitions involve shifting all coordinates to the right, and inserting a

new coordinate in the first position according to the original transition probabilities.

An especially important application of meta-states is when observations are modeled

as a deterministic function of the hidden state with the addition of an autoregressive

noise (Venkataramanan et al., 1998b,a; Qin et al., 2000). For noise modeled as a

simple AR(1) process, it is possible to treat the problem without introducing meta-

states (Qin et al., 2000), thus avoiding the general penalty of an exponentially growing

state space.

Additional benefits arise by considering the likelihood in a more general context.

The more general definition of likelihood arises in the context of a reference measure.

The law governing the state and observation processes of the HMM must be absolutely
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continuous with respect to this reference measure for every parameter. The Radon-

Nikodym derivative of the law Pθ with respect to the reference measure ν, dPθ/dν,

represents the likelihood of the model. It is beneficial for the reference measure to also

represent a probability measure, P0. Typically, this probability measure represents

the law of a simpler model. Such a generalization allows for implementations of

continuous time filtering (Dembo and Zeitouni, 1986; Zeitouni and Dembo, 1988).

In the context of discretized HMMs, a convenient reference measure corresponds

to a trivial state and observation process, such as allowing both Xk and Yk to be

independent and identically distributed sequences, independent of each other (Elliott

et al., 1997). That is, the observation Yk is trivially dependent only on Xk by being

independent of the entire state sequence. If π0 represents the distribution of each state

Xk under P0, and b0 represents the density of each observation Yk and θ = (π1, A,B)

represents the parametrized model, then the Radon-Nikodym derivative of Pθ with

respect to P0 subject to the knowledge of X1, . . . , Xk and Y1, . . . , Yk, which we denote

by Fk (the σ-algebra generated by these random variables), is given by

dPθ

dP0

∣∣∣∣
Fk

=
π1(X1)bX1(Y1)a(X1, X2)bX2(Y2) · · · a(XK−1, XK)bXK

(YK)

π0(X1)b0(Y1)π0(X2)b0(Y2) · · ·π0(XK)b0(YK)
, (1.83)

which has the form of a likelihood ratio. Under this formulation, the likelihood of

partial information corresponds to a conditional expectation under P0 of dPθ/dP0

conditioned on the available information. To be mathematically precise, if G repre-

sents the partial information (G is a sub σ-algebra of Fk), then the likelihood given

G is
dPθ

dP0

∣∣∣∣
G

= E0[
dPθ

dP0

|G], (1.84)

which corresponds in the earlier formulation to summing over the unknown states.

A number of recursive techniques have been developed by taking advantage of

the reference measure approach through the use of martingale techniques (Elliott,

1994; Elliott et al., 1997). The general idea behind these techniques is to replace the

forward-backward estimation procedure with a single forward, recursive sweep. In
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order to complete the EM steps, however, the sums involved in the M-step (such as∑K
k=1 γθ,k(i) and

∑K−1
k=1 Ĵθ,k(i, j)) are replaced with conditional expectations of the

actual sums, such as for the case of a finite observation space:

K∑
k=1

γθ,k(i) = Eθ[
K∑

k=1

Ii(Xk)|~y], (1.85)

K−1∑
k=1

Ĵθ,k(i, j) = Eθ[
K−1∑
k=1

Jk(i, j)|~y], (1.86)

K∑
k=1

Ôθ,k(i,m) = Eθ[
K∑

k=1

Ok(i,m)|~y], (1.87)

where Ok(i,m) = Ii(Xk)Im(Yk) indicates that at time k the state is i and the ob-

servation m. By working in the reference measure P0 and converting results to the

true measure Pθ by an application of a version of Bayes Theorem, these sums can be

directly computed recursively by adding the effect of one observation at a time. There

are two primary advantages to this approach. Perhaps the most significant of these

is that it allows for on-line estimation. The forward-backward algorithm requires the

complete set of data in order to do the backward iteration. Adding a new data point

would require updating all of the backward variables βk. The recursive approach only

involves updating each of the required sums as well as the forward variable αk, allow-

ing parameters to be updated as data arrives (Ford and Moore, 1998). The second

advantage is a reduced requirement for memory. The forward-backward calculation

requires essentially 2KN memory locations to account for the forward and backward

variables, where K is the data-length and N is the size of the state space. The recur-

sive techniques essentially require N memory locations for each quantity which must

be updated. As an example, in the case of the standard Baum-Welch update with

M different possible observation values, we need to update the forward variables α,

the N2 different jump counts
∑K−1

k=1 Ĵ(i, j), for (i, j) ∈ N2, and the NM different ob-

servation counts
∑K

k=1 Ô(i,m). The sum of occupation times can be recovered from

the jumps. This results in a memory requirement of N(N2 +NM + 1), but which is
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independent of the length of the data. The primary disadvantage is that each quan-

tity being updated has roughly the same computational load as a single step in the

update of the forward variables, although these calculations are essentially decoupled

so that parallelizing might compensate for some of the increased burden.

Finally, because of the asymptotic properties of MLEs, confidence intervals and

hypothesis tests can be constructed for the model parameters. For example, the

negative of the Hessian of the likelihood, which measures the curvature, evaluated

at the MLE θ̂ gives the inverse of the covariance matrix of the estimator θ̂ (Qin

et al., 2000). The diagonal terms give the variance, while off-diagonal terms provide

information about the correlation. The asymptotic normality of the MLE allows for

the computation of confidence intervals using standard statistical techniques using

the normal distribution. In addition, it formally justifies the use of hypothesis tests

for nested models (Giudici et al., 2000). Suppose that θ̂1 is the MLE over all models

under a particular parametrization, and let θ̂0 be the MLE for a restricted class of

models within this parametrization. A likelihood ratio test determines whether the

inequality L(bθ1;~y)

L(bθ0;~y)
≥ 1 is significant enough to reject the null hypothesis that the

restricted class represents the model. Asymptotic normality converts this question

into a χ2 test, using the asymptotic result that

2(logL(θ̂1; ~y)− logL(θ̂0)) ∼ χ2
k, (1.88)

where the degrees of freedom k specifies the difference in the number of free parameters

between the two hypotheses. In addition to requiring the two models to be nested,

this technique further requires that the parameters are in the interior of the parameter

space and that the models are identifiable, although there are situations where a more

general parametrization can provide a suitable nesting (Wagner and Timmer, 2001).
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Chapter 2

A Mathematical and Statistical Model

The extensive measurements of single-molecule assays of kinesin contain information

about the protein’s mechanical cycle. While past analyses of these data have suc-

cessfully extracted some information about average behavior of the cycle, the highly

detailed recordings suggest that more precise analysis might yield even more infor-

mation. One approach to tracting the fine-scale information is to use model-based

filtering. Hidden Markov models implement many of the features of the kinesin-bead

assay and, therefore, promise to provide a useful implementation of a model-based

filter.

Two major aspects distinguish the hidden Markov model that will be used for

analyzing kinesin experiments from standard hidden Markov models. First, sequential

measurements of the bead position will be correlated because of the viscous drag

through the fluid and the elastic behavior of the bead relative to the kinesin and

the trap. Fortunately, the correlation can be represented as a simple autoregressive

model, which is easily incorporated into hidden Markov model theory without needing

to expand the state space (Qin et al., 2000). Second, because the microtubule track

creates a periodic lattice on which kinesin steps directionally, the hidden Markov

model structure must be adapted to incorporate a lattice structure. Strictly speaking,

the model will not be recurrent, as kinesin only rarely makes backward steps. The key

to this adaptation lies in the chemical equivalence of all lattice sites resulting from

the use of a force clamp. Consequently, information about a single mechanochemical

state can be gathered from brief visits to different, but equivalent lattice sites.

This chapter focuses on the mathematical details required to implement a hid-

den Markov model filtering procedure to extract information from the experimental
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data. In particular, we first discuss a physical model in continuous time for a kinesin

molecule and an attached bead. Next, we discuss how to discretize this continuous

time model to establish an appropriate discrete time model. Third, using this dis-

crete model, we extend the framework of hidden Markov models to accommodate

the non-recurrent, periodic structure of the kinesin-microtubule interaction. This in-

volves explicitly defining the likelihood of the model, demonstrating how to compute

the conditional relative log-likelihood function Q(θ, θ′), and implementing the EM

algorithm by maximizing the function Q relative to θ′.

2.1 Continuous Time Model for Kinesin

The use of Markov processes to model motor proteins has been well established (Hux-

ley and Simmons, 1971; Leibler and Huse, 1991; Schnitzer et al., 2000; Fisher and

Kolomeisky, 2001). Traditionally, each state in the Markov process corresponds to a

particular stage of the enzymatic cycle. Transitions between these stages are mod-

eled as occurring after exponentially distributed times, characterized by corresponding

transition rates. Typical chemical events for kinesin attached to a microtubule include

the binding of ATP, hydrolysis of ATP, and the subsequent release of the products

ADP and Pi. Furthermore, kinesin has two heads, each with an ATP-binding site

and capable of catalyzing hydrolysis. However, whether both heads perform hydrol-

ysis and how they might interact remains unclear (Hua et al., 2002). During the

process of this uncertain chemical cycle, kinesin also undergoes a net displacement

of approximately 8.2 nm for each ATP hydrolyzed. It is generally believed that dif-

ferent chemical states correspond to different physical conformations of the protein

structure. The sequence of conformations corresponding to the chemical cycle in-

duce the motion, but the conformations themselves remain unclear. Consequently,

we model kinesin using a Markov process with a small, finite number (N ≤ 4) of

mechanochemical states. We will not assign an a priori physical interpretation to
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the modeled states, which will be characterized only in terms of their parameters.

Further, we remark that we model kinesin as a whole and not the individual heads.

We now state the mathematical model for kinesin. We assume that kinesin can be

modeled as proceeding through N mechanochemical states for each overall step along

the microtubule, which we will simply label with the numbers {1, 2, . . . , N}. We will

denote this state as a function of time by C(t), where t ∈ [0, tmax] identifies the time

during the experiment. We also introduce X(t), which will take on integer values, to

represent the lattice site at time t, with X(0) = 0 and positive values corresponding

to the plus direction of the microtubule. We will let the joint stochastic process

Z(t) = (X(t), C(t)) represent the complete state of kinesin at time t. The state space

for Z(t) is then Z = Z× ZN .

We model the stochastic process {Z(t); t ≥ 0} as a Markov jump process. To

characterize the dynamics of this process, we must specify, for each state z ∈ Z, the

instantaneous rate of a transition λz > 0 and the jump distribution µz. The rate λz

is the rate of an exponential random variable which represents the dwell time for the

process Z(t) to remain in the state z. In other words, suppose Z(t0) = z and define

the random variable Tz = inf{t > 0 : Z(t + t0) 6= z}, the amount of time until Z(t)

leaves z. Then Tz is exponentially distributed with a mean time Eθ[Tz] = 1/λz. The

jump distribution µz gives the distribution of the process at the time of the jump,

Pθ[Z(t0 + Tz) = zf |Z(t0) = z] = µz(zf ). (2.1)

The probability distribution for the process Z(t) is determined from these transition

rates according to the initial value problem involving the linear system of differential

equations, known as the Kolmogorov forward equation, and an initial condition,

d

dt
Pθ[Z(t) = zf ] =

∑
z 6=zf

µz(zf )λzPθ[Z(t) = z]− λzf
Pθ[Z(t) = zf ], (2.2)

Pθ[Z(0) = z] = π0
θ(z). (2.3)

The specifics of our model place various restrictions on these modeling parameters.
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Because of the periodicity of the model, the transition rates λz depend only on the

state of the model, and not the site x: λ(x,c) = λc. Similarly, the jump distribution can

only depend on the initial and final states, c and c′, respectively, and the difference

in lattice sites:

µ(x,c)(x
′, c′) = µ(0,c)(x

′ − x, c′) = µc(∆x, c
′). (2.4)

The structure, or topology, of the process is determined by identifying which tran-

sitions are allowed. The simplest model, which the present work adopts, imposes

the restriction that transitions only occur between neighboring states. That is, if we

define a distance between two states z = (x, c) and z′ = (x′, c′) as

d(z; z′) = |N(x− x′) + (c− c′)|,

then the jump distribution will vanish, µz(z
′) = 0, for states farther apart than a unit

length, d(z; z′) > 1. That is, for each state c, there is only the probability of going

forward pc = µc(0, c + 1) and the probability of going backward qc = µc(0, c − 1) =

1− pc. We have introduced the extended states c = 0 and c = N +1 according to the

equivalence relations (x, 0) ≡ (x−1, N) and (x,N+1) ≡ (x+1, 1) to simplify notation.

An equivalent representation for this model is to introduce forward and backward

transition rates, uc and vc, respectively, according to the invertible relationship

uc = pcλc

vc = qcλc
⇐⇒

λc = uc + vc

pc = uc/λc

qc = vc/λc,
(2.5)

which is illustrated by the standard kinetic scheme,

· · · (x− 1, N)
uN



v1

(x, 1)
u1



v2

(x, 2)
u2



v3

· · ·
uN−1



vN

(x,N)
uN



v1

(x+ 1, 1) · · · . (2.6)

In addition to specifying the topology of the Markov process Z(t), we must also

indicate how the process depends on the experimental conditions, particularly the

ATP concentration and the external load being exerted by the optical force clamp.

In order to motivate and understand these modeling constraints, it is helpful to discuss
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briefly some thermodynamic ideas for enzymatic cycles. The Markov process C(t) can

also be considered as representing an enzymatic cycle, where X(t) represents the net

number of forward cycles that have occured. Thermodynamics impose constraints

on the transition rates, in that all transitions must be reversible such that under

equilibrium conditions, detailed balance must be satisfied.

In order to consider properly the thermodynamic constraint of detailed balance,

we briefly discuss the energetics of the enzymatic cycle (Hill, 1989). The different

mechanochemical states of the model, c = 1, . . . , N , will each have a corresponding

energy level, Ec. The presence of an external force creates stresses within the protein,

so that these energy levels may depend on the force F . In addition, we let `c represent

the size of the conformational shift for the corresponding transition, with
∑

c `c = d.

By moving a distance, `c, against a force, F , the protein expends the energy F`c in

work. Thus, the energy during a transition c → c + 1 subject to an isotonic force F

will decrease by the amount

∆Ec(F ) = Ec − Ec+1 − F`c. (2.7)

If the transition involves binding ATP, then we must also subtract the chemical

potential of ATP, µATP. Similarly, the release of ADP or phosphate would require the

addition of the chemical potential of ADP or Pi, given by µADP or µPi
, respectively.

The transition rates governing this transition, uc and vc+1, will depend on the force

as well. The detailed balance condition requires that the rates satisfy

uc(F )

vc+1(F )
= e∆Ec(F )/kBT . (2.8)

By completing a full cycle, we obtain the requirement that∏
c uc(F )∏
c vc(F )

= e(XATP−Fd)/kBT , (2.9)

where XATP here represents the thermodynamic force, XATP = µATP − µADP − µPi
,

arising from the hydrolysis of ATP. The thermodynamic force does not depend on
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the motor protein at all; it depends only on the concentrations of the ATP, ADP,

and phosphate relative to the equilibrium constant. Thus, any thermodynamically

consistent model must have the relation∏
c uc(F )∏
c vc(F )

=

∏
c uc(0)∏
c vc(0)

e−Fd/kBT , (2.10)

independent of the chemical concentrations.

The model of Fisher and Kolomeisky (Fisher and Kolomeisky, 2001) implements a

Markov model for kinesin that satisfies this constraint in a reasonably straight-forward

manner. As this model matched the global behavior of the VSB kinesin experiments,

we adopt the FK parametrization for load dependence using (recall Equations 1.22

and 1.23)

uc = u0
ce
−ϑ+

c Fd/kBT , (2.11)

vc = v0
ce

+ϑ−c Fd/kBT . (2.12)

The rate suppression factors, ϑ+ and ϑ−, incorporate the sizes of the substeps for the

transitions as well as the load-dependence of the energy levels of the macromolecule.

That is, recalling the original detailed balance condition for transitions in Equation

2.8 with loads 0 and F , we must have

ϑ+
c + ϑ−c+1 =

`c
d

+
Ec(0)− Ec+1(0)

Fd
− Ec(F )− Ec+1(F )

Fd
. (2.13)

Thus, if the relative energy levels do not depend on the applied force, then the sum

ϑ+
c + ϑ−c+1 corresponds to the fractional size of the substep for the transition.

Because kinesin must bind and subsequently hydrolyze an ATP molecule to pro-

ceed through the mechanical cycle, we will arbitrarily designate the first internal state

C = 1 as the state before kinesin binds ATP and C = 2 as the state after kinesin

has bound ATP. Thus, this first transition rate u1 will be a second-order rate which

depends on the concentration of ATP, so that we will model it as

u0
1 = k0[ATP]. (2.14)
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Since passing through the chemical cycle in reverse would correspond to formation

of ATP by combining ADP and a phosphate, a reverse rate should depend on these

concentrations as well. In principle, if one of the products, say ADP, were released in

the transition c→ c+ 1, then the reverse rate vc+1 would have an analogous second-

order relation depending on [ADP]. However, these concentrations are not measured,

and experimentally are controlled to be very dilute by an ATP-regenerating system.

Furthermore, we have no ability in the present work to identify which transitions

might correspond to product release. To account for these problems, Fisher and

Kolomeisky also introduce [ATP]-dependence in the reverse rate, leaving state C = 1

to return to C = N , by using a phenomenological form (Fisher and Kolomeisky,

2001),

v0
1 = k′0

[ATP]√
1 + [ATP]/c0

. (2.15)

The nonlinear dependence was primary introduced in that model to account for an

[ATP]-dependence in the stall force, by reducing the probability of reverse cycles for

high ATP concentrations.

2.2 Continuous Time Model for the Bead

Having specified a model for kinesin, we now turn to establishing a model for the

attached bead. Forces exerted on the bead come from three sources. First, the

kinesin exerts a force pulling the bead forward. Second, the optical trap exerts a

force in the opposite direction. Finally, the bead interacts with the surrounding fluid.

This interaction creates a viscous drag that opposes motion through the fluid in

combination with a diffusive scattering because of the random collisions with thermal

fluid particles. One way to incorporate these physical aspects is to model the position

of the bead as a forced Ornstein-Uhlenbeck process.

The use of a force clamp in the experimental design makes a number of simplifica-

tions possible. In particular, the elasticity of the stalk of kinesin is rather complicated.
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However, the force clamp maintains a relatively constant stretch in the stalk so that

the force exerted by the stalk due to deviations from the equilibrium position can be

approximated with a linear response, or in other words as a simple spring. The force

of the optical trap is also well-approximated as being proportional to displacement.

Thus, the coupled system of the force-clamp and the kinesin stalk can be modeled as

a single spring, characterized by an effective spring stiffness ktrap and an equilibrium

position.

The equilibrium position of the bead, Y 0(t), will depend on the position of the

kinesin on the microtubule, Y 0(t) = f(Z(t)), because the bead is connected to the

kinesin through the stalk and anchored at the neck. By assuming that each state c

in the kinesin cycle corresponds to a particular physical conformation of the protein

molecule, transitions between two states will correspond to a physical shift in the

position of the anchor site which, in turn, translates into an equivalent shift in the

equilibrium position of the bead. After a complete cycle finishes, the new equilibrium

position will have moved by a total distance d, the size of a lattice increment. Thus,

we let ε(c) = εc represent the cumulative fraction of a step that has occurred between

state 1 and state c. Defining κ as the equilibrium position of the bead for the initial

lattice site X = 0 and state C = 1, the equilibrium position can be modeled as

Y 0(t) = f(Z(t)) = κ+ d
(
X(t) + ε(C(t))

)
. (2.16)

The fluid interaction leads to two contributions to the model. First, the fluid exerts

a force proportional to and in the opposite direction of the velocity of the bead, with

a viscous drag coefficient of γ. Second, the fluid imparts thermal fluctuations to the

bead. We will model these fluctuations as an additional white noise force, ξ(t). The

scale of this force depends on the viscosity as well as the thermal energy of the system,

kBT , according to the Einstein relation. Together, these forces combine to form the

Langevin differential equation

γ
dY

dt
(t) = −ktrap

(
Y (t)− f(Z(t))

)
+
√

2γkBTξ(t). (2.17)
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Mathematically, we rewrite this as a stochastic differential equation subject to Ito

calculus with a Wiener process (Brownian motion) W (t),

dY (t) = −α
(
Y (t)− f(Z(t))

)
dt+ η dW (t), (2.18)

where we have introduced the rescaled parameters

α =
ktrap

γ
, (2.19)

η2 =
2kBT

γ
. (2.20)

We can directly calculate a strong solution to the stochastic differential equation

governing Y (t). Using the method of variation of parameters, we find that

Y (t) = Y (0)e−αt + α

∫ t

0

e−α(t−s)f(Z(s))ds+ η

∫ t

0

e−α(t−s)dW (s). (2.21)

If we label τ0 = 0 and τi as the time of the ith transition, then for s in the interval

[τi, τi+1), Z(s) = Z(τi) and we have f(Z(s)) = f(Z(τi)). Let N(t) represent the

number of transitions that occur in the interval [0, t]. Define ∆fi as the size of the

change in kinesin position at time τi,

∆fi = f(Z(τi))− f(Z(τi−1)), (2.22)

so that we can write f(Z(s)) as a weighted sum of indicator functions IA,

f(Z(s)) = f(Z(0)) +

N(t)∑
i=1

∆fiI[τi,t](s). (2.23)

Thus, we can rewrite the solution for Y (t) as

Y (t) = f(Z(t))−
N(t)∑
i=1

e−α(t−τi)∆fi + U(t), (2.24)

where

U(t) =
(
Y (0)− f(Z(0))

)
e−αt + η

∫ t

0

e−α(t−s)dW (s). (2.25)
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Note that U(t) is an Ornstein-Uhlenbeck process satisfying the stochastic differential

equation (van Kampen, 1981)

dU(t) = −αU(t)dt+ η dW (t), (2.26)

U(0) = Y (0)− f(Z(0)), (2.27)

so that U(t) is a Gaussian random variable with mean and variance,

E[U(t)] = U(0)e−αt, (2.28)

Var[U(t)] =
η2

2α
(1− e−2αt). (2.29)

If f(Z(t)) were constant in time, then Y (t) would also be an Ornstein-Uhlenbeck

process. Including the sudden changes in position ∆fi from transitions by kinesin,

we introduce an exponentially decaying memory effect of when these jumps occur.

2.3 Discrete Time Approximate Models

Although the natural physical processes associated with the kinesin and bead system

occur continuously in time, the experimental constraints for observations dictate that

measurements occur at discrete times separated by a constant time interval. We let

∆t represent the sampling interval, and t0 be the time of the first observation. Then

the subsequent sampling times differ from t0 by integer multiples of ∆t. In particular,

the kth observation takes place at time tk = t0 + k∆t. So rather than having access

to the position of the bead at all times during the experiment, we are limited to the

sampled positions, {Yk = Y (tk); k = 0, . . . , K}, where K+1 is the number of recorded

observations. The states of Z at the corresponding times, {Zk = Z(tk); k = 0, . . . , K},

remain hidden. Thus, we consider the models for Y and Z in discrete time.

Creating the discrete time hidden process Zk is straightforward. Because Z(t) is

a Markov jump process, the discretized sequence {Zk} is a Markov chain which is

specified by its transition probability matrix A = (a(z; z′)),

Pθ[Zk+1 = z′|Zk = z] = a(z; z′), (2.30)
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and the initial distribution π0
θ . If we consider the system of differential equations

given by Equation 2.2, then for each fixed z, the matrix entries a(z; z′) = πz(z
′,∆t)

will be the solution to the initial value problem

d

dt
πz(z

′, t) =
∑
z∗ 6=z′

µz∗(z
′)λz∗πz(z

∗, t)− λz′πz(z
′, t), z′ ∈ Z, (2.31)

πz(z
′, 0) = δz;z′ . (2.32)

Introducing the generator matrix Q = (q(z, z′)), where

q(z; z′) =

{
λzµz(z

′) if z 6= z′

−λz if z = z′,
(2.33)

the system of equations can be succinctly stated as a matrix problem. Let πz(t) be the

row vector-valued function of time that contains the transition probabilities πz(z
′, t).

Then Equation 2.31 can be rewritten as

d

dt
πz(t) = πz(t)Q. (2.34)

A well-known result of the theory of systems of linear differential equations is that

the transition matrix will be the matrix exponential A = exp(∆tQ). In the simple

case where transitions occur only between nearest neighbors, as given by Equation

2.5, Q can be represented as a tri-diagonal matrix.

Although the actual transition matrix A is infinite, there are a number of sim-

plifications that make a finite representation appropriate. Because of the periodicity

induced by the lattice structure, the rows of A will be shifted copies of each other

a(x, c;x′, c′) = a(0, c;x′ − x, c′) = πc(∆x = x′ − x, c′) (2.35)

so that only N rows, πc, c = 1, . . . , N need to be calculated. Each of these rows

is also infinite in each direction, which cannot be physically implemented. However,

because of the topology imposed on the transitions, the probability of hopping to

sites in time ∆t becomes exponentially small except for sites sufficiently close to the
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initial site. Thus, for implementation, we will replace the original, infinite model for

the transition matrix with an approximate bounded jump model where transitions

with |∆x| > Xmax are prohibited.

We next consider Yk+1, the observation of the bead at time tk+1, as it relates

to earlier observations and the state of the hidden process Z. Recalling the earlier

formula, we have an exact representation

Yk+1 = f(Zk+1)−
Nk+1∑
i=1

∆fie
−α(tk+1−τi) + Uk+1, (2.36)

where the sum

−
Nk+1∑
i=1

∆fie
−α(tk+1−τi) (2.37)

represents the exponentially decaying memory in the system of all past position in-

crements. This memory term presents a serious complication. First of all, the sum

includes information about events that occur at times in between sampling, including

the possibility of leaving and returning to the state without being observed. Secondly,

the sum includes the increments for each of the sampling intervals represented in the

data, exponentially damped by the time elapsed from the event. These two issues

have prevented our finding an implementation to account for the memory term. In

principle, this memory term might be modeled as a third hidden process. But the

increased complexity for our algorithms would make the computations too costly to

be effective. Consequently, we model the bead as though the memory term were

absent so that the observation process takes a particularly simple form,

Yk+1 = f(Zk+1) + Uk+1. (2.38)

When the Ornstein-Uhlenbeck process U(t) is discretely sampled with a time interval

∆t, the resulting process Uk is a simple autoregressive process (AR(1)) (van Kampen,
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1981). That is, we can write

ρ = e−α∆t, (2.39)

σ =
η2

2α
(1− e−2α∆t), (2.40)

Uk+1 = ρUk + σεk+1, (2.41)

where εk is a Gaussian white noise—an independent, identically distributed sequence

of standard normal random variables. Thus, an alternative representation for Yk+1,

in the absence of the memory term, would be

Yk+1 = f(Zk+1) + ρ(Yk − f(Zk)) + σεk+1. (2.42)

If the initial error term U0 = Y0 − f(Z0) has a normal distribution with mean zero

and the stationary variance,

σ2
0 =

σ2

1− ρ2
=
η2

2α
, (2.43)

then the sequence Uk of errors will be a stationary process.

Before proceeding with the discussion, we wish to discuss the role of the memory

term in more detail. For each time at which the kinesin makes a transition, τi, the

equilibrium position of the bead spontaneously changes by a displacement ∆fi. An

equivalent (nonphysical) system would correspond to a bead that was instantaneously

displaced by the opposite amount −∆fi while the equilibrium position remains fixed.

The bead would continue to relax toward the equilibrium, while fluctuations continued

to add random perturbations. For each step kinesin takes, the bead requires some

time to relax in that direction. During this time, observations of the bead will include

a bias towards the previous position. Next, suppose that kinesin takes a step and then

returns. The bead will have already begun to relax to compensate for the original step

when the kinesin returned to the original position. Then, at the subsequent sampling

time, the state of kinesin would remain unchanged but there would be a bias in the

bead position in the direction of this missed event. For states in rapid equilibrium,
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caused by fast forward and backward transition rates, the effect of the memory term

would be to average the two positions, as though the effective equilibrium position of

the bead were somewhere between the two positions. The amount of information lost

by neglecting this memory term is predominantly controlled by the relaxation time

of the bead relative to the transition rates.

In addition to characterizing the models for kinesin and for the bead, we also must

consider the amount of information available, which corresponds to the mathematical

concept of a σ-field. A σ-field provides the mathematical description to determine

for which sets one can compute a probability. When information increases as time

progresses, the increasing family of σ-fields is known as a filtration. An ideal observer

would have knowledge of the true position and mechanochemical state of the kinesin

protein as well as the position of the bead. Thus, at time tk, an ideal observer

would have full information of all prior states, so that the full filtration, {Fk} is the

increasing sequence of σ-fields created by completing

F0
k = σ({Z0, . . . , Zk, Y0, . . . , Yk}). (2.44)

However, the experimentalist only has access to the position of the bead at these

times. Thus, the experimentalist’s filtration, {Yk}, corresponds to the σ-field at time

k given by the completion of

Y0
k = σ({Y0, . . . , Yk}). (2.45)

The state process Zk is Fk-measurable, while Yk is measurable with respect to both

Yk and Fk. Any mathematical estimates based on the first k observed data points

will also need to be Yk-measurable. Similarly, we define the hidden information

filtration Hk as the complete filtration generated by σ(Z0, . . . , Zk). It will also be

useful to define another family of σ-fields Mi,j = σ(Hi,Yj) which corresponds to the

information of the hidden process through step i and the observations through step

j. Note that Mk,k = Fk.
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2.4 Hidden Markov Model Likelihood

The class of models described above is characterized by a number of parameters. To

describe the mechanochemical cycle of kinesin, we must specify a total of 2N forward

and backward transition rates,

~u = (u1, . . . , uN), (2.46)

~v = (v1, . . . , vN). (2.47)

To describe the displacement of kinesin, and hence the equilibrium position of the

bead, we require the lattice step-size d as well as the cumulative relative steps εc for

each of the mechanochemical states c = 2, . . . , N . By definition, we always have ε1 =

0. To complete the description of the equilibrium position, we also need the baseline

position κ corresponding to the kinesin in state Z = (0, 1). To parametrize the

autoregressive behavior of the bead observations, we finally need the autocorrelation

coefficient ρ and the noise scale σ. The stationary noise scale, which appears for the

first bead observation, will be given by

σ2
0 =

σ2

1− ρ2
. (2.48)

The collection of all such parameters will be summarized by the notation θ. When

these quantities are further parametrized, such as to account for detailed balance,

θ will implicitly include the understood parametrization. We have, at our disposal,

extensive experimental data for the kinesin-bead system from the experiments of

Visscher et al. (1999). We wish to determine the parameter θ which best describes

the experimental data.

In fact, the experiment results in a number of independent recordings, each of

which is recorded in a separate data file. Thus the full parametrization must include

enough parameters to characterize all of these separate files. The files are naturally

grouped according to the experimental conditions of ATP concentration and force
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clamp load. Let G represent the set of all experimental groupings by [ATP] and

load. For each such experimental condition g ∈ G, we let Eg represent the listing of

all experimental runs, corresponding to individual data files, in the group g. When

transition rates are not parametrized, then each experimental condition will need a

separate set of rate parameters. When transition rates are parametrized to deal with

[ATP] but not the load, each common load will have a separate set of rate parame-

ters. If the load is parametrized by detailed balance, but without parametrizing ATP

concentration, then each ATP concentration level will have the base transition rates

u0
c , v

0
c as well as the detailed balance parameters ϑ+

c , ϑ
−
c . For rates that are completely

parametrized to deal with both load and [ATP], there will only be one set of rates

and detailed balance parameters for all experiments.

Parameters describing the observation process also will be categorized either at

the level of an experimental condition or by individual files. Because the stiffness of

the trap is changed in order to obtain different loads and because the stalk does not re-

spond uniformly to different loads, we will have a different autocorrelation coefficient

ρ and noise scale σ for each experimental grouping. In addition, each data file rep-

resents a different run of a kinesin-tethered bead along a microtubule. As such, each

file needs to identify a separate offset parameter κ to allow for the different starting

points. Furthermore, the recorded observations are actually a one-dimensional pro-

jection of a two-dimension trajectory. Experimentally, the microtubule was visually

aligned with one of the observation axes, and the positions of the beads in this direc-

tion is recorded in the data files. Errors in alignment or non-straight microtubules will

lead to an apparent shortening of the lattice size for the individual run. Thus, we also

allow a different lattice step-size parameter d for each data file. Nevertheless, when

computing transition probabilities, we will actually use d′ = 8.2 nm when dealing

with the detailed balance condition, which we do not consider to be a free parame-

ter as it is confounded with the parameters ϑ±c and merely sets a length scale. The

cumulative substep parameters εc will be allowed to vary by experimental condition.
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Parameter Description Global [ATP]‡, Load† File
d lattice step length ABCD
κ baseline offset ABCD
εc fractional substep ABCD
ρ autocorrelation ABCD
σ noise scale ABCD

u0
1/k0, v

0
1/k

′
0,

u0
2, v

0
2, . . . , u

0
N , v

0
N

transition rates D AB†C‡

ϑ+
1 , ϑ

−
1 , . . . , ϑ

+
N , ϑ

−
N det. bal. factors D C‡

Table 2.1. Parameters are grouped according to how they are classified for each of
four different possible implementations: (A) Each experimental condition is treated
independently, (B) [ATP] is parametrized, (C) Load is parametrized with detailed
balance, and (D) Both [ATP] and Load are parametrized. Superscripts (†, ‡) indicate
multiple experimental conditions grouped together by [ATP] or by Load, while the
other condition is parametrized.

This organization of the parameters is summarized in Table 2.1.

Preparing for the calculation of the likelihood of the parameter θ, we introduce an

appropriate reference probability measure P0 relative to which all of the parametrized

probability measures Pθ will be absolutely continuous. Under P0, the sequence of

observations Y0, Y1, . . . will be a sequence of independent and identically distributed

standard normal random variables. Also, the state sequence Z0, Z1, . . . will be a

sequence of independent and identically distributed sequence of random variables

taking values in the state space Z with the distribution

P0[Zl = (x, c)] =
2−x

3N
, (2.49)

which is chosen based on its property that it assigns positive probability to every

possible state. To account for each of the experiments, identified by g ∈ G and

e ∈ Eg, we will assume that there is an independent and identically distributed pair

of sequences, (Zg,e
l , Y g,e

l ) for each experiment to be considered, and we similarly define

the corresponding specific filtrations Fg,e
k and Yg,e

k .

Given a parameter θ, an experimental condition g ∈ G, and a particular experi-
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ment e ∈ Eg, we introduce the Fg,e
k -measurable random variable Λg,e

k (θ) which depends

on Zg,e
0 , . . . , Zg,e

k , Y g,e
0 , . . . , Y g,e

k according to the relation

Λg,e
k (θ) =

π0
θ(Z

g,e
0 )φσ0(U

g,e
0 )

π0(Z
g,e
0 )φ1(Y

g,e
0 )

k∏
l=1

a(Zg,e
l−1;Z

g,e
l )φσ(U g,e

l − ρU g,e
l−1)

π0(Z
g,e
l )φ1(Y

g,e
l )

, (2.50)

where we write the abbreviation U g,e
l to represent the autoregressive residual

U g,e
l = Y g,e

l − f(Zg,e
l ), (2.51)

and φσ is the density for a zero-mean Gaussian random variable with variance σ2,

φσ(ξ) =
1√

2πσ2
e−ξ2/2σ2

. (2.52)

The transition matrix elements a(z; z′), the bead equilibrium position f(z), and the

autoregressive parameters ρ and σ also depend on the experiment (g, e) as discussed

above, but we will suppress this dependency to reduce notational clutter. Noting

that each experiment has only a finite duration, we let Kg,e be the index of the

last observation of experiment (g, e). Finally, using the independence of different

experiments, we define the reference likelihood ratio Λ(θ) as the product

Λ(θ) =
∏
g∈G

∏
e∈Eg

Λg,e
Kg,e

(θ). (2.53)

If the parameter under consideration is obvious from the context, then we suppress

the dependence on θ.

Before continuing, we state the Conditional Bayes’ Theorem (Elliott et al., 1997),

which specifies how to compute conditional expectations under a change in measure.

Lemma 2.4.1 (Conditional Bayes’ Theorem). Let H be a random variable, let F ′

be a sub-σ-field of the underlying σ-field F , and let dPθ/dP0 be the Radon-Nikodym

derivative of Pθ with respect to P0. Then

Eθ[H|F ′] =
E0[H

dPθ

dP0
|F ′]

E0[
dPθ

dP0
|F ′]

. (2.54)
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We are now ready to justify the existence of the random variable Λ(θ).

Theorem 2.4.1. Λ(θ) represents the Radon-Nikodym derivative of the parametrized

model probability Pθ with respect to the reference measure P0.

That is, Λ(θ) provides the transformation giving Zg,e and Y g,e the distributions

which govern the proposed models.

Proof : Define P̃θ as the measure which does have Radon-Nikodym derivative

given by Λ(θ), and we consider the distribution under P̃θ of the processes Zg,e and Y g,e.

Because of the independence of the experiments, it is sufficient to show that under P̃θ,

Zg,e is a Markov process with transition matrix A and initial distribution π0
θ and that

Y g,e − f(Zg,e) is a stationary, simple autoregressive sequence with parameters ρ and

σ for an arbitrary experiment (g, e). We now fix the experiment under consideration.

We write Ẽθ to represent expectation with respect to the measure P̃θ.

First of all, under P0, the sequence Λg,e
k is a martingale with respect to the filtration

Fg,e
k . To see this, we consider the conditional expectation,

E0[Λ
g,e
k+1|F

g,e
k ] = E0[Λ

g,e
k

a(Zk;Zk+1)φσ(Uk+1 − ρUk)

π0(Zk+1)φ1(Yk+1)
|Fg,e

k ]

= Λg,e
k E0[

a(Zk;Zk+1)φσ(Uk+1 − ρUk)

π0(Zk+1)φ1(Yk+1)
|Fg,e

k ], (2.55)

which shows that we must only demonstrate that this final conditional expectation

has a value of 1. To compute this, we use the fact that under P0, all of the sequences

are independent. Thus, we find

E0[
a(Zk;Zk+1)φσ(Uk+1 − ρUk)

π0(Zk+1)φ1(Yk+1)
|Fg,e

k ]

=
∑
z′

π0(z
′)

∫
R
dy′ φ1(y

′)
a(Zk; z

′)φσ(y′ − f(z′)− ρUk)

π0(z′)φ1(y′)

=
∑
z′

a(Zk; z
′)

∫
R
dy′ φσ(y′ − f(z′)− ρUk). (2.56)

Because φσ is a probability density, for each fixed z′, the integral over y′ will be 1.

Then because A is a transition probability matrix, the remaining sum over z′ will
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also be 1. Consequently, Λg,e
k is a martingale. Furthermore, we compute in a similar

manner

E0[Λ
g,e
0 ] =

∑
z

π0(z)

∫
R
dy φ1(y)

π0
θ(z)φσ0(y − f(z))

π0(z)φ1(y)

=
∑

z

π0
θ(z)

∫
R
φσ0(y − f(z))

= 1. (2.57)

Consequently, because the density Λg,e
k is non-negative, P̃θ is actually a probability

measure.

Next, we compute the distributions of the stochastic processes under P̃θ. First,

we consider the hidden state process Zk. The probability that Zk = z given the

information contained in Fk−1 can be computed using the conditional Bayes’ rule,

along with the martingale property of Λg,e
k :

P̃θ[Zk = z|Fk−1] = Ẽθ[Iz(Zk)|Fk−1] =
E0[Iz(Zk)Λ

g,e
k |Fk−1]

E0[Λ
g,e
k |Fk−1]

=
Λg,e

k−1

Λg,e
k−1

E0[Iz(Zk)
a(Zk−1;Zk)φσ(Uk − ρUk−1)

π0(Zk)φ1(Yk)
|Fk−1]

=
∑
z′

π0(z
′)

∫
R
dy φ1(y) Iz(z

′)
a(Zk−1; z

′)φσ(y − f(z′)− ρUk−1)

π0(z′)φ1(y)

= a(Zk−1; z)

∫
R
dy φσ(y − f(z)− ρUk−1) = a(Zk−1; z), (2.58)

which depends only on Zk−1. Thus, the sequence Zk is a Markov process with tran-

sition probability matrix A under the law P̃θ. The initial distribution is easily seen

to be π0
θ , according to the calculation

P̃θ[Z0 = z] = E0[Iz(Z0)Λ
g,e
0 ]

=
∑
z′

π0(z
′)

∫
R
dy′φ1(y

′)Iz(z
′)
π0

θ(z
′)φσ0(y

′ − f(z′))

π0(z′)φ1(y′)

= π0
θ(z)

∫
R
dy′φσ0(y

′ − f(z))

= π0
θ(z). (2.59)
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We next turn to the observation process Yk. We must show that under P̃θ, the

distribution of Yk+1 given the the information of the state process Mk+1,k is a nor-

mal distribution with mean f(Zk+1) + ρ(Yk − f(Zk)) and variance σ2, and that the

distribution of Y0 given Z0 is a normal distribution with mean f(Z0) and variance

σ2
0 = σ2

1−ρ2 . Let Γ be an arbitrary Borel set in R. Starting with the initial distribution,

we find

P̃θ[Y0 ∈ Γ|Z0] = Ẽθ[IΓ(Y0)|Z0]

=
E0[IΓ(Y0)Λ

g,e
0 |Z0]

E0[Λ
g,e
0 |Z0]

=

E0[IΓ(Y0)
π0

θ(Z0)φσ0(Y0 − f(Z0))

π0(Z0)φ1(Y0)
|Z0]

E0[
π0

θ(Z0)φσ0(Y0 − f(Z0))

π0(Z0)φ1(Y0)
|Z0]

=

E0[IΓ(Y0)
φσ0(Y0 − f(Z0))

φ1(Y0)
|Z0]

E0[
φσ0(Y0 − f(Z0))

φ1(Y0)
|Z0]

, (2.60)

where the factors that depended only on Z0 come out of the conditional expectation

and cancel. Now, explicitly writing the expectation in P0 as an integral, we obtain

E0[IΓ(Y0)
φσ0(Y0 − f(Z0))

φ1(Y0)
|Z0] =

∫
Γ

dy φσ0(y − f(Z0)), (2.61)

which is precisely the probability for a normal random variable with mean f(Z0) and

variance σ2
0 to be in the Borel set Γ. The denominator of Equation 2.60 is 1, as seen

by setting Γ = R. Hence, the initial distribution under P̃θ corresponds to the initial

distribution under Pθ.

We finally consider the distribution of Yk+1 given the information Mk+1,k. Again,
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let Γ represent an arbitrary Borel set in R. Then, we find

P̃θ[Yk+1 ∈ Γ|Mk+1,k] = Ẽθ[IΓ(Yk+1)|Mk+1,k]

=
E0[IΓ(Yk+1)Λ

g,e
k+1|Mk+1,k]

E0[Λ
g,e
k+1|Mk+1,k]

=

Λg,e
k

a(Zk;Zk+1)

π0(Zk+1)
E0[IΓ(Yk+1)

φσ(Yk+1 − f(Zk+1)− ρUk)

φ1(Yk+1)
|Mk+1,k]

Λg,e
k

a(Zk;Zk+1)

π0(Zk+1)
E0[

φσ(Yk+1 − f(Zk+1)− ρUk)

φ1(Yk+1)
|Mk+1,k]

=

E0[IΓ(Yk+1)
φσ(Yk+1 − f(Zk+1)− ρUk)

φ1(Yk+1)
|Mk+1,k]

E0[
φσ(Yk+1 − f(Zk+1)− ρUk)

φ1(Yk+1)
|Mk+1,k]

. (2.62)

Again, it is sufficient to compute an expression for the numerator, as the denominator

immediately follows with Γ = R. Writing the numerator as an integral, we obtain

E0[IΓ(Yk+1)
φσ(Yk+1 − f(Zk+1 − ρUk))

φ1(Yk+1)
|Mk+1,k] =

∫
Γ

dy φσ(y − f(Zk+1)− ρUk),

(2.63)

which then demonstrates that, under P̃θ, Yk+1 has a normal distribution with mean

f(Zk+1) + ρUk.

Consequently, the sequences Zk and Yk under P̃θ have the same distribution as

the sequences defined for Pθ. �

The classical definition of the likelihood corresponds to the numerator of the

likelihood ratio Λ(θ). That is, suppose that for experiment (g, e), the ideal observer

knew that Zg,e
0 = z0, . . . , Z

g,e
k = zk as well as Y g,e

0 = y0, . . . , Y
g,e
k = yk. Then the

likelihood Lg,e(θ; ~z, ~y) for this experimental information with a model θ is given by

the numerator of Λg,e
k ,

Lg,e(θ; ~z, ~y) = π0
θ(z0)φσ0(u0)

k∏
l=1

a(zl−1; zl)φσ(ul − ρul−1), (2.64)

with ul = yl − f(zl). The overall likelihood is given by the product of the likelihoods
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of the individual experiments,

L(θ; ~z, ~y) =
∏
g∈G

∏
e∈Eg

Lg,e(θ; ~z, ~y), (2.65)

where we include ~z and ~y in the notation only to indicate explicitly the dependence

of the likelihood on the full information, a slight abuse of notation.

We now turn to the hidden Markov model likelihood. That is, we now consider

the experimentalist, who does not have access to the states of the hidden process

Zk. In the classical approach, when information is missing, a marginal density is

computed by integrating over the missing information. In our case, this corresponds

to summing over the possible states of Z0, . . . , Zk,

Lg,e(θ; ~y) =
∑
z0

· · ·
∑
zk

Lg,e(θ; ~z, ~y)

=
∑
z0

· · ·
∑
zk

π0
θ(z0)φσ0(u0)

k∏
l=1

a(zl−1; zl)φσ(ul − ρul−1). (2.66)

The reference measure approach follows a similar idea, except that rather than com-

puting a marginal density, one computes the conditional expectation of the Radon-

Nikodym derivative. That is, dPθ/dP0 = Λ(θ) represents the likelihood for the com-

plete information of the experiments. The likelihood for a partial observation Yg,e
k ,

corresponding to knowledge of the bead position Y g,e
0 , . . . , Y g,e

k in experiment (g, e) is

represented as the restriction of dPθ/dP0 to the Yg,e
k -measurable sets, which is written

dPθ

dP0

∣∣∣∣
Yg,e

k

. This is computed as the conditional expectation under P0 with respect to

Yg,e
k :

dPθ

dP0

∣∣∣∣
Yg,e

k

= E0[Λ
g,e
k |Y

g,e
k ]. (2.67)

To show that these two approaches are consistent with each other, we explicitly

compute this conditional expectation by partitioning the underlying probability space
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according to the hidden states (again suppressing dependence of Zk and Yk on (g, e)):

E0[Λ
g,e
k |Y

g,e
k ] =

∑
z0

· · ·
∑
zk

E0[Iz0(Z0) · · · Izk
(Zk)Λ

g,e
k |Y

g,e
k ]

=
∑
z0

· · ·
∑
zk

E0[Iz0(Z0) · · · Izk
(Zk)|Yg,e

k ]
π0

θ(z0)φσ0(Y0 − z0)

π0(z0)φ1(Y0)

×
k∏

l=1

a(zl−1; zl)φσ(Yl − f(zl)− ρ(Yl−1 − f(zl−1)))

π0(zl)φ1(Yl)
. (2.68)

However, under P0, the sequence Z is independent of the sequence Y , so that the

final conditional expectation is just the probability under P0 of the selected sequence,

E0[Iz0(Z0) · · · Izk
(Zk)|Yg,e

k ] = P0[Z0 = z0, . . . , Zk = zk] =
k∏

l=0

π0(zl). (2.69)

Consequently simplifying the conditional likelihood ratio, we obtain

E0[Λ
g,e
k |Y

g,e
k ] =

1∏k
l=0 φ1(Yl)

∑
z0

· · ·
∑
zk

π0
θ(z0)φσ0(Y0 − z0)

×
k∏

l=1

a(zl−1; zl)φσ(Yl − f(zl)− ρ(Yl−1 − f(zl−1))). (2.70)

Again, notice that the numerator of this sum is exactly the same as the unnormalized

hidden Markov model likelihood. The denominator will always be independent of the

parameter θ. Thus, we will make use of both expressions of the likelihood depending

on the context.

We remark that for practical computation, only the standard likelihoods, L(θ; ~z, ~y)

and L(θ; ~y), are used. The use of a reference probability measure, which leads to the

extra terms appearing in the likelihood ratio, Λ, serves the theoretical purpose of

putting all of the models generated by different parameters on a common foundation.

Additionally, theoretical calculations with Λ have the advantage of being already

normalized, and so we use this approach for the development of the theory. For the

implementations of the algorithms, however, we simply use the standard likelihoods.
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We next introduce an alternative way to write the unnormalized hidden Markov

model likelihood Lg,e(θ; ~y) for a particular experiment (g, e). Corresponding to the

initial distribution for Y0, we define a matrix-valued function Bg,e
0 : R → GL(Z)

which generates a diagonal matrix for each value y,

bg,e
0 (y)(z; z′) =

{
0, if z 6= z′,

φσ0

(
y − f(z)

)
, if z = z′,

(2.71)

where the dependence on the experiment (g, e) is implicit in f , ρ and σ. Similarly, we

define a matrix-valued function Bg,e : R2 → GL(Z) to deal with transitions, defined

as

bg,e(y, y′)(z; z′) = φσ

(
y′ − f(z′)− ρ(y − f(z))

)
. (2.72)

With these definitions, we can rewrite Lg,e(θ; ~y) as a matrix equation,

Lg,e(θ; ~y) = π0
θB

g,e
0 (y0) · (Ag,e ? Bg,e(y1, y0)) · · · (Ag,e ? Bg,e(yk, yk−1)) ·~1, (2.73)

where the operator ? represents term by term multiplication of the matrices,

(A ? B)(z; z′) = a(z; z′) · b(z; z′). (2.74)

The product with the vector of all ones, ~1, corresponds to the summation over the

final state zk. An intuitive interpretation of this formulation is that the matrices Bg,e

act as posterior weights on the original transition matrices A. That is, in the absence

of any information about the observations, the distribution of Zk would be given by

the matrix product

πk
θ = π0

θ · Ak+1. (2.75)

The observations provide additional information about which the transitions actually

occured. This information is incorporated by weighting each transition according to

how compatible the observations are with the transition, as given by the likelihood

factor b(y, y′)(z; z′).
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2.5 Parameter Estimation

Recall that the hidden Markov model maximum likelihood estimator θ̂ is defined

as the estimator for the parameter θ which maximizes the likelihood relative to the

observed data,

θ̂ = arg max
θ

L(θ; ~Y ) = arg max
θ

E0[
dPθ

dP0

|Y ], (2.76)

where Y represents the σ-field containing all of the observations over all experiments.

Again using the independence of separate experiments, we obtain

θ̂ = arg max
θ

∏
g∈G

∏
e∈E

E0[Λ
g,e(θ)|Yg,e

Kg,e ]. (2.77)

Because of the high computational cost in calculating the likelihood, scanning through

possible parameters to find a maximal choice is an ineffective procedure. Some efforts

have been made to use gradient information about the likelihood to create better

direct maximization procedures (Qin et al., 2000), but the dimension of the current

parameter space makes this difficult. The Expectation-Maximization (EM) algorithm

provides an iterative scheme to create a sequence of parameter estimates. Each suc-

cessive estimate has a likelihood at least as great as the previous estimate, so that

the likelihoods converge to a local maximum. We demonstrate how to implement this

classic procedure for the autoregressive model for the kinesin-bead system.

As discussed in the introduction, the EM algorithm focuses on maximizing an

auxiliary function Q(θ, θ′) which is defined as

Q(θ, θ′) = Eθ[log
dPθ′

dP0

|Y ] = Eθ[log Λ(θ′)|Y ]. (2.78)

Following the terminology of elliott97:hmm, we call the function Q(θ, θ′) the condi-

tional pseudo-log-likelihood of θ′ relative to θ. The essential feature of Q, as shown

in Theorem 1.4.1, is that the difference in the log-likelihoods of θ and θ′ is bounded

below by

logL(θ′; ~y)− logL(θ; ~y) ≥ Q(θ, θ′)−Q(θ, θ). (2.79)
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Thus, maximizing Q(θ, θ′) over θ′ to obtain θ̂′ guarantees that L(θ̂′; ~y) > L(θ; ~y). The

EM algorithm creates a sequence of parameter estimates {θn} in a recursive manner,

starting with an initial estimate, θ0. Given an estimate at the nth iterate, θn, a single

iteration of the EM algorithm consists of the following two steps:

E: Compute the conditional pseudo-log-likelihood Q(θn, θ) as a function of θ,

M: Choose θn+1 by maximizing Q(θn, θ)

θn+1 = arg max
θ

Q(θn, θ). (2.80)

When the likelihood is differentiable with respect to the parameter, fixed points of

the EM algorithm correspond to critical points of the likelihood (Dempster et al.,

1977). Unless the likelihood has only a single relative maximum, there is no guarantee

that the EM algorithm will converge to the maximum likelihood estimate. However,

the essentially intractable problem of directly maximizing the likelihood over the

entire parameter space is converted to maximizing the function Q for a sequence of

parameter estimates.

We next turn to computing the conditional pseudo-log-likelihood Q(θn, θ) for a

fixed parameter θn. By using the properties of logarithms, the products appearing in

Λ become summations,

Q(θn, θ) = Eθn [log Λ(θ)|Y ]

= Eθn [
∑
g∈G

∑
e∈E

log Λg,e(θ)|Y ]

=
∑
g∈G

∑
e∈E

Eθn [log Λg,e
Kg,e

(θ)|Yg,e
Kg,e

]. (2.81)

So, in order to compute Q, we can compute the contributions from each individual ex-

periment (g, e) separately. Thus, we consider the log-likelihood of a single experiment,
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log Λg,e
Kg,e

(θ), which has the form

log Λg,e
Kg,e

(θ) = log π0
θ(Z0) +

Kg,e∑
l=1

log a(Zl−1;Zl) + log φσ0(Y0 − f(Z0))

+

Kg,e∑
l=1

log φσ(Yl − f(Zl)− ρ(Yl−1 − f(Zl−1)))

−
Kg,e∑
l=0

log π0(Zl)−
Kg,e∑
l=0

log φ1(Yl). (2.82)

The final two sums which come from the reference measure P0 do not depend on the

parameter θ. Consequently, we only need to compute the conditional expectation of

qg,e(θ) = log π0
θ(Z0) +

Kg,e∑
l=1

log a(Zl−1;Zl) + log φσ0

(
Y0 − f(Z0)

)
+

Kg,e∑
l=1

log φσ

(
Yl − f(Zl)− ρ

(
Yl−1 − f(Zl−1)

))
. (2.83)

First, consider the term involving the jumps,
∑Kg,e

l=1 log a(Zl−1;Zl). Because tran-

sition probabilities only depend on the initial state, the final state, and the number

of lattice sites changed, we recall the equivalence of Equation 2.35,

a(x, c;x′, c′) = a(0, c;x′ − x, c′) = πc(∆x = x′ − x, c′). (2.84)

We define the jump function Jl(x, ci, cf ) to indicate that a jump occurred from initial

state ci at time l to a final state of cf with a change of x sites at time l + 1,

Jl(x, ci, cf ) = Ici
(Cl)Icf

(Cl+1)Ix(Xl+1 −Xl). (2.85)

Then we can rewrite the jump term of the log-likelihood as

K∑
l=1

log a(Zl−1;Zl) =
∑

x

∑
ci

∑
cf

log πci
(x, cf )

K−1∑
l=0

Jl(x, ci, cf ). (2.86)

The conditional expectation of this can be written

Eθn [
K∑

l=1

log a(Zl−1;Zl)|Yg,e
Kg,e

] =
∑

x

∑
ci

∑
cf

log πci
(x, cf )Eθn [

K−1∑
l=0

Jl(x, ci, cf )|Yg,e
Kg,e

].

(2.87)
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Note that the required conditional expectation, Eθn [
∑
Jl|Y ], depends only on the

current parameter θn and can be computed once for all possible parameters θ.

Next we consider the terms involving the observations. Using the density φσ of a

normal random variable given in Equation 2.52, the terms involving the sum of the

logarithms of the density become sums of squares. In particular, recalling the explicit

form of f(Z) from Equation 2.16,

f(x, c) = κ+ d
(
x+ ε(c)

)
, (2.88)

we obtain

log φσ0

(
Y0 − f(Z0)

)
+

Kg,e∑
l=1

log φσ

(
Yl − f(Zl)− ρ

(
Yl−1 − f(Zl−1)

))
= −Kg,e + 1

2
log 2π − (Kg,e + 1) log σ +

1

2
log(1− ρ2)

− 1− ρ2

2σ2

(
Y0 − d

(
X0 + ε(C0)

)
− κ
)2

− 1

2σ2

Kg,e∑
l=1

(
Yl − ρYl−1 − d

(
Xl + ε(Cl)

)
+ ρd

(
Xl−1 + ε(Cl−1)

)
− (1− ρ)κ

)2

. (2.89)

Because we have C ∈ {1, . . . , N}, it is convenient to use the representation

ε(C) =
N∑

c=1

εcIc(C), (2.90)

as well as to introduce a state-dependent absolute offset

κc = εcd+ κ. (2.91)
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This leads to an equivalent expression

log φσ0

(
Y0 − f(Z0)

)
+

Kg,e∑
l=1

log φσ

(
Yl − f(Zl)− ρ(Yl−1 − f(Zl−1))

)
= −Kg,e + 1

2
log 2π − (Kg,e + 1) log σ +

1

2
log(1− ρ2)

− 1− ρ2

2σ2

(
Y0 − dX0 −

∑
c

κcIc(C0)
)2

− 1

2σ2

Kg,e∑
l=1

(
Yl − ρYl−1 − d

(
Xl − ρXl−1

)
−
∑

c

κc

(
Ic(Cl)− ρIc(Cl−1)

))2

.

(2.92)

Motivated by these expressions, let Ul and Vl be two sequences and consider the

sum

(1− ρ2)(U0V0) +
k∑

l=1

(Ul − ρUl−1)(Vl − ρVl−1)

= (1− ρ2)U0V0 +
k∑

l=1

UlVl − ρ
k∑

l=1

(UlVl−1 + Ul−1Vl) + ρ2

k∑
l=1

Ul−1Vl−1

= (1 + ρ2)
k∑

l=0

UlVl − ρ2(U0V0 + UkVk)− ρ
k∑

l=1

(UlVl−1 + Ul−1Vl).

(2.93)

Defining the bilinear form

T ρ
k (U, V ) = (1 + ρ2)

k∑
l=0

UlVl − ρ2(U0V0 + UkVk)− ρ

k∑
l=1

(UlVl−1 + Ul−1Vl), (2.94)

we can rewrite the observation terms of the log-likelihood function as

log φσ0

(
Y0 − f(Z0)

)
+

Kg,e∑
l=1

log φσ

(
Yl − f(Zl)− ρ

(
Yl−1 − f(Zl−1)

))
= −Kg,e + 1

2
log 2π − (Kg,e + 1) log σ +

1

2
log(1− ρ2)

− 1

2σ2
T ρ

Kg,e

(
Y − dX −

∑
c

εcd Ic(C)− κ, Y − dX −
∑

c

εcd Ic(C)− κ
)
.

(2.95)
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Using the bilinearity of Tρ = T ρ
Kg,e

, we obtain the formula

T ρ
Kg,e

(
Y − dX −

∑
c

εcd Ic(C)− κ, Y − dX −
∑

c

εcd Ic(C)− κ
)

= Tρ(Y, Y )− 2d Tρ(X, Y )− 2
∑

c

εcd Tρ(Y, Ic(C))− 2κTρ(Y, 1)

+ d2 Tρ(X,X) + 2
∑

c

εcd
2 Tρ(X, Ic(C)) + 2dκTρ(X, 1)

+
∑

c

∑
c′

εcεc′d
2 Tρ(Ic(C), Ic′(C)) + 2

∑
c

εcdκTρ(Ic(C), 1) + κ2 Tρ(1, 1).

(2.96)

Because the bilinear form T ρ
k implicitly includes a dependence on ρ, it is more conve-

nient to express T ρ
k in terms of parameter free sums,

T ρ
k (V,W ) = (1 + ρ2)Sk(VW )− ρ2Bk(VW )− ρRk(V,W ), (2.97)

which are defined as

Sk(V ) =
k∑

l=0

Vl, (2.98)

Bk(V ) = V0 + Vk, (2.99)

Rk(V,W ) =
k∑

l=0

(VlWl−1 + Vl−1Wl). (2.100)

Therefore, just as for the term involving the jumps, the conditional expectation of the

terms coming from the observations can be written in terms of conditional expecta-

tions of various sums of the sequences Xl, Ic(Cl), and Yl, without any dependence on

the new parameters, so that the conditional expectation can be computed in a single

pass.

Combining the terms, we can now completely describe the conditional pseudo-log-

likelihood, Q(θn, θ). For arbitrary random sequences Vl and Wl, we abbreviate the
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conditional expectations

Ŝk(V ) = E[Sk(V )|Yk], (2.101)

B̂k(V ) = E[Bk(V )|Yk], (2.102)

R̂k(V,W ) = E[Rk(V,W )|Yk], (2.103)

T̂ ρ
k (V,W ) = (1 + ρ2)Ŝk(VW )− ρ2B̂k(VW )− ρR̂k(V,W ). (2.104)

This finally allows us to rewrite the Qg,e, ignoring terms that are independent of the

parameters, as

Q̃g,e(θn, θ) = Eθn [qg,e(θ)|Yk]

=
∑

c

log π0
θ(0, c)Eθn [Ic(C0)|Yg,e

Kg,e
]

+
∑

x

∑
ci

∑
cf

ŜKg,e−1

(
J(x, ci, cf )

)
log πci

(x, cf )

− Kg,e + 1

2
log 2π − (Kg,e + 1) log σ +

1

2
log(1− ρ2)

− 1

2σ2

[
T̂ ρ

Kg,e
(Y, Y )− 2d T̂ ρ

Kg,e
(X,Y ) + d2 T̂ ρ

Kg,e
(X,X)

− 2κ T̂ ρ
Kg,e

(Y, 1) + 2dκ T̂ ρ
Kg,e

(X, 1) + 2
∑

c

εcdκ T̂
ρ
Kg,e

(Ic(C), 1)

− 2
∑

c

εcd T̂
ρ
Kg,e

(Y, Ic(C)) + 2
∑

c

εcd
2 T̂ ρ

Kg,e
(X, Ic(C))

+
∑

c

∑
c′

εcεc′d
2 T̂ ρ

Kg,e
(Ic(C), Ic′(C)) + κ2

(
1− ρ2 + (1− ρ)2Kg,e

)]
.

(2.105)

Although we have written this in terms of T̂ to convey the formula, in reality, each such

term is composed of the corresponding sum of Ŝ, B̂ and R̂ as given in Equation 2.104.

Consequently, the expectation step consists of computing each of these conditional

expectations of various sums. As stressed earlier, this calculation will be independent

of the parameter θ which is maximized, as the parameters enter only as coefficients

to these sums.
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2.5.1 EM Step: Expectation

The conditional pseudo-log-likelihood, Q(θn, θ), is evaluated in terms of a number

of conditional expectations, each of which relies upon the application of the Con-

ditional Bayes’ Theorem, which we state in terms of the following lemma. Because

the conditional expectations are computed for each experiment separately, we assume

throughout this section that a particular experiment, (g, e), is being considered. Con-

sequently, we will suppress these indexes except where needed for clarity.

Lemma 2.5.1. Let H : ZK+1 × RK+1 → R be any measurable function. Write

~Z = Z0, . . . , ZK and ~Y = Y0, . . . , YK. Then

Eθn [H(~Z, ~Y )|YK ] =
∑
z0

· · ·
∑
zK

H(~z, ~Y )
Lg,e(θn; ~z, ~Y )

Lg,e(θn; ~Y )
. (2.106)

Proof of Lemma: Since Yk is a sub-σ-algebra of Fk, the Conditional Bayes’

Theorem leads to

Eθn [H(~Z, ~Y )|YK ] =
E0[H(~Z, ~Y )Λg,e

K (θn)|YK ]

E0[Λ
g,e
K (θn)|YK ]

. (2.107)

However, we also have

E0[H(~Z, ~Y )Λg,e
K (θn)|YK ]

= E0[
∑
z0

· · ·
∑
zk

H(~z, ~Y )Iz0(Z0) · · · Izk
(ZK)Λg,e

K (θn)|YK ]

=
∑
z0

· · ·
∑
zk

H(~z, ~Y )
Lg,e(θ; ~z, ~Y )∏k
l=0 π0(zl)φ1(Yl)

E0[Iz0(Z0) · · · Izk
(Zk)|Yk]

=
∑
z0

· · ·
∑
zk

H(~z, ~Y )
Lg,e(θ; ~z, ~Y )∏k

l=0 φ1(Yl)
.

The denominator is exactly the same, but with H = 1,

E0[Λθ(k)|Yk] =
∑
z0

· · ·
∑
zk

Lg,e(θ; ~z, ~Y )∏k
l=0 φ1(Yl)

=
Lg,e(θ; ~Y )∏k

l=0 φ1(Yl)
. (2.108)
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Simplifying the ratio completes the proof. �

Note that in principle, the formula suggests that the likelihood of each possible

sequence of states z0, . . . , zk should be computed, which then serves as the unnor-

malized conditional density of the trajectory. The hidden Markov model likelihood

Lg,e(θn; ~y), which normalizes the density, acts in a comparable role to a partition

function in statistical mechanics. Of course, enumerating all possible hidden states

is precisely what the classic forward algorithm for hidden Markov models helps to

avoid, and this algorithm is directly generalized to the autoregressive model. We

here establish an appropriate generalization of the forward algorithm to compute un-

normalized conditional expectations. The classical forward algorithm actually only

computes unnormalized conditional probabilities. The normalization factor is, as one

should expect, the hidden Markov model likelihood.

Theorem 2.5.1. Suppose that the measurable function H : ZK+1 × RK+1 → R can

be written in the form

H(~z, ~y) = h0(z0, ~y)
K∏

l=1

hl(zl−1, zl, ~y), (2.109)

and define the diagonal matrix-valued function H0(~y) with entries

H0(~y)(z; z
′) =

{
h0(z, ~y), if z = z′,

0, if z 6= z′,
(2.110)

as well as the matrix-valued functions Hl(~y), for l = 1, . . . , K, with entries

Hl(~y)(z; z
′) = hl(z, z

′, ~y). (2.111)

Let ? denote term-by-term multiplication of matrices. Then the unnormalized condi-

tional expectation of H can be written as a matrix multiplication,

E0[H(~Z, ~Y )Λg,e
K (θn)|Yk] =

1∏
l φ1(yl)

π0
θn
· (B0 ? H0(~y))

· (A ? B1 ? H1(~y)) · · · (A ? BK ? HK(~y)) ·~1, (2.112)
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where B0 = B0(y0) and Bl = B(yl−1, yl). Consequently, the Pθn conditional expecta-

tion of H is equal to the ratio of matrix products,

Eθn [H(~Z, ~Y )|YK ] =
π0

θn
· (B0 ? H0) ·

∏K
l=1(A ? Bl ? Hl) ·~1

π0
θn
· (B0) ·

∏K
l=1(A ? Bl) ·~1

. (2.113)

Proof: First of all, note that H = 1 corresponds exactly to the case of computing

the conditional likelihood
dPθn

dP0

∣∣∣
YK

. The first result, Equation 2.112, is just a matter

of commutativity, arranging the factors for H with the factors for Lg,e(θn; ~z, ~y):

E0[H(Z0, . . . , Zk, Y0, . . . , Yk)Λθ(k)|Yk]

=
1∏

l φ1(yl)

∑
~z

h0(z0, ~y)
K∏

l=1

hl(zl−1, zl, ~y)π
0
θn

(z0)φσ0(y0 − f(z0))

×
K∏

l=1

aθ(zl−1; zl)φσ (yl − f(zl)− ρ(yl−1 − f(zl−1)))

=
1∏

l φ1(yl)

∑
~z

π0
θn

(z0) · φσ0(y0 − f(z0)) · h0(z0, ~y)

×
K∏

l=1

aθ(zl−1; zl) · φσ (yl − f(zl)− ρ(yl−1 − f(zl−1))) · hl(zl−1, zl, ~y)

=
1∏

l φ1(yl)

∑
~z

π0
θn

(z0) ·B0(y0)(z0) ·H0(~y)(z0)

×
K∏

l=1

A(zl−1; zl) ·B(yl−1, yl)(zl−1; zl) ·Hl(~y)(zl−1; zl)

=
1∏

l φ1(yl)
π0

θn
· (B0(y0) ? H1(~y)) · (A ? B(y0, y1) ? H1(~y)) · · ·

· (A ? B(yK−1, yK) ? HK(~y)) ·~1.

The final result follows immediately by applying Lemma 2.5.1. �

The conditional pseudo-log-likelihood actually depends on sums of functions of

consecutive hidden states rather than products. Each term in the sum can be repre-

sented in terms of a product; all but one of the factors are simply the constant function

h = 1. Consequently, we can directly implement a forward-backward algorithm to

compute this type of expectation, as demonstrated in the following corollary.
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Corollary 2.5.1 (Forward-Backward Algorithm). Let the functions h0, . . . , hK be

defined as for Theorem 2.5.1. Let the experiment (g, e) be fixed. Introduce the rescaled

forward variables αl according to the recursive procedure

1. Initialize: α̃0 = π0
θn
·B0(Y0),

2. Scale Factor: cl = 〈α̃l,~1〉, for l = 0, . . . , K,

3. Normalize: αl = α̃l/cl, for l = 0, . . . , K,

4. Recursion: α̃l+1 = αl · (A ? B(Yl, Yl+1)), for l = 0, . . . , K − 1.

Similarly, define the rescaled backward variables βl according to

1. Initialize: βK = ~1,

2. Recursion: β̃l−1 = (A ? B(Yl−1, Yl)) · βl, for l = K, . . . , 1,

3. Normalize: βl−1 = β̃l−1/cl, for l = K, . . . , 1.

Then the Pθn-conditional expectation of h0 is given by

Eθn [h0(Z0, ~Y )|YK ] = α0 ·H0(~Y ) · β0, (2.114)

and for each l = 1, . . . , K, the Pθn-conditional expectation of hl is given by

Eθn [hl(Zl−1, Zl, ~Y )|YK ] =
1

cl
αl−1 · (A ? Bl ? Hl) · βl. (2.115)

Proof : The essential observation is to see that αl and βl represent different sides

of the matrix product defining the likelihood:

αl =
1∏l

i=0 ci
π0

θn
·B0 ·

l∏
i=1

(A ? Bi), (2.116)

βl =
1∏K

i=l+1 ci

K∏
i=l+1

(A ? Bi) ·~1. (2.117)
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Thus, as in the case of the classical HMM calculations, the vector product of cor-

responding forward and backward variables results in the likelihood divided by the

product of scaling factors,

αl · βl =
Lg,e(θn; ~y)∏

i ci
. (2.118)

Also, note that for every l, αl ·~1 = 1. Since l is arbitrary and βK = ~1, we find, exactly

analogous to classical HMM calculations,

K∏
l=0

cl = Lg,e(θn; ~y). (2.119)

Multiplying each function hl by K factors of 1, we apply Theorem 2.5.1 with

Hi = 1 for i 6= l to obtain for l = 0,

Eθn [h0(Z0, ~Y )|YK ] =
π0

θn
(B0 ? H0)

∏K
i=1(A ? Bi ? 1) ·~1

π0
θn

(B0)
∏K

i=1(A ? Bi) ·~1

=
π0

θn
B0

c0
·H0 ·

∏K
i=1(A ? Bi) ·~1∏K

i=1 ci

= α0 ·H0 · β0, (2.120)

and for l = 1, . . . , K,

Eθn [hl(Zl−1, Zl, ~Y )|YK ]

=
π0

θn
(B0 ? 1)

∏l−1
i=1(A ? Bi ? 1) · (A ? Bl ? Hl) ·

∏K
i=l+1(A ? Bi ? 1) ·~1

π0
θn

(B0)
∏K

i=1(A ? Bi) ·~1

=
π0

θn
B0 ·

∏l−1
i=1(A ? Bi ? 1)∏l−1
i=0 ci

· A ? Bl ? Hl

cl
·
∏K

i=l+1(A ? Bi) ·~1∏K
i=l+1 ci

=
1

cl
αl−1 · (A ? Bl ? Hl) · βl. (2.121)

�

In addition to obtaining a forward-backward procedure for computing expecta-

tions, we also obtain a recursive forward procedure for computing conditional expec-

tations of sums.
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Corollary 2.5.2. Let the functions h0, . . . , hK be defined as for the Theorem 2.5.1.

Define the partial sum

Sk(h) = h0(Z0, ~Y ) +
k∑

l=1

hl(Zl−1, Zl, ~Y ). (2.122)

In addition to the forward variables αk and the scaling factors ck defined in the

forward-backward algorithm, define the sequence of vectors γk(Sk(h)) according to

the recursive definition

1. Initialize:

γ0(S0(h)) = α0 ·H0, (2.123)

2. Recursion:

γk+1(Sk+1(h)) =
1

ck+1

(
γk(Sk(h)) · (A?Bk+1)+αk · (A?Bk+1 ?Hk+1)

)
. (2.124)

Then the conditional expectation of the sum is given by the vector product

Eθn [SK(h)|YK ] = γK(SK(h)) ·~1. (2.125)

In the special case that each hl is Fl-measurable, so that it is a function of the obser-

vations only of Y0, . . . , Yl rather than the full sequence, then we also have for each k,

the sequence of conditional expectations

Eθn [Sk(h)|Yk] = γk(Sk(h)) ·~1. (2.126)

Proof: Consider an individual term in the sum, hl for l ≤ K. Define γk(hl)

according to the recursion

1. Initialize:

γ0(hl) =

{
α0 ·H0, if l = 0,

α0, if l 6= 0,
(2.127)
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2. Recursion:

γk(hl) =


γk−1(hl) ·

(A ? Bk ? Hk)

ck
, if k = l,

γk−1(hl) ·
(A ? Bk)

ck
, if k 6= l.

(2.128)

Theorem 2.5.1 implies that

Eθn [hl(Z, Y )|YK ] = γK(hl) ·~1. (2.129)

Next, note that if l > k, then γk(hl) = αk. Consequently, we also have the

sequence of equalities

γk(Sk(h)) =
k∑

l=0

γk(hl), (2.130)

which is demonstrated by induction. The statement is clearly true for k = 0. So

suppose that it is true for k = k′. By construction, we have

γk′+1(Sk′+1(h)) =
1

ck′+1

γk′(Sk′(h)) · (A ? Bk′+1) +
1

ck′+1

αk′ · (A ? Bk′+1 ? Hk′+1)

=
1

ck′+1

k′∑
l=0

γk′(hl) · (A ? Bk′+1) +
1

ck′+1

γk′(hk′+1) · (A ? Bk′+1 ? Hk′+1)

=
k′∑

l=0

γk′+1(hl) + γk′+1(hk′+1), (2.131)

completing the induction step. Therefore, we have equality for k = K. By the linear-

ity of conditional expectation, we have proved Equation 2.125. The final conclusion

follows by realizing that if the functions hl depend only on the first l+1 observations,

then all of the previous results hold on the reduced data set Y0, . . . , Yk with k < K.

�

For the kinesin-bead HMM system, the functions hl actually only depend on Yl−1

and Yl, so that Equation 2.126 holds. We remark that this forward algorithm for

computing expectation exactly recovers the recursive algorithms developed within

the framework of a reference measure for standard hidden Markov models (Elliott,

1994; Elliott et al., 1997). The present derivation is much more transparent in its



99

relation with the forward-backward algorithms than the original works. As discussed

in the introduction, the primary advantages of the forward algorithm are the ability

to do on-line estimation without needing to recalculate the backward variables and

a major reduction in memory use. However, each sum being calculated must be

updated separately using Equation 2.124. The computational effort for each update

will thus be comparable to updating the forward variable αl. Therefore, this approach

is much more expensive computationally than a single pass of the forward-backward

algorithm.

We now recall the explicit quantities that need to be estimated to implement the

EM algorithm. In particular, the function Q(θn, θ), as expressed in Equation 2.105,

depends on the conditional expectation of the sums of jumps SK−1(J(x, ci, cf )) as well

the various sums SK(UV ), BK(UV ) and RK(U, V ) where U and V can each be any

of the processes X, Y , or Ic(C). Each of these computations can be calculated from

the forward and backward variables. That is, each of these sums can be expressed in

the form of the general sum

S(h) = h0(Z0, Y0) +
K∑

l=1

hl(Zl−1, Zl, Yl−1, Yl) (2.132)

for appropriate choices of the functions hl. Using the forward-backward algorithm,

we find that the posterior initial distribution is given by

Pθn [Z0 = z|YK ] = α0(z) · β0(z), (2.133)

and that the posterior probability of jumping from z to z′ at time l is given by

Ĵl(z; z
′) = Pθn [Zl−1 = z, Zl = z′|YK ] (2.134)

=
1

cl
αl−1(z)(A ? Bl)(z; z

′)βl(z
′). (2.135)

Therefore, the conditional expectation of each of the terms in the general sum can be
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computed as

Eθn [h0(Z0, Y0)|YK ] =
∑

z

h0(z, Y0)α0(z) · β0(z), (2.136)

Eθn [hl(Zl−1, Zl, Yl−1, Yl)|YK ] =
∑

z

∑
z′

hl(z, z
′, Yl−1, Yl) Ĵl(z; z

′). (2.137)

For functions hl that depend only on one of Zl−1 or Zl, it is useful to note the identities∑
z

Ĵl(z; z
′) = αl(z

′) · βl(z
′) = Pθn [Zl = z′|YK ], (2.138)∑

z′

Ĵl(z; z
′) = αl−1(z

′) · βl−1(z
′) = Pθn [Zl−1 = z|YK ]. (2.139)

In order to compute the required estimates of the number of relative jumps that go

from state ci to state cf with a change of x lattice sites, we use the relation

Ĵl(x, ci, cf ) =
∑
xi

Ĵl(xi, ci;xi + x, cf ). (2.140)

Thus, a single pass of the forward-backward algorithm computes all of the terms

required for the conditional pseudo-log-likelihood, Q(θn, θ), given the initial parameter

θn.

2.5.2 EM Step: Maximization

The function Q(θn, θ) is the sum of terms, each of which is the product of a func-

tion of the parameter θ times a conditional expectation of a statistic relative to the

measure Pθn . The maximization of Q with respect to θ is complicated because of the

relatively large number of individual data files. Table 2.1 summarizes the parameters

and whether they are specified for each experiment. Each data file representing the

experiment (g, e) introduces lattice parameters dg,e and κg,e to describe the lattice

step length and the initial offset, respectively. Additionally, each experimental con-

dition g introduces additional parameters to describe the autocorrelation ρg and the

noise σg. Further requiring parameters to describe the substep sizes and the transition
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rates, the number of parameters becomes quite large. When Q is viewed as a function

of all of these parameters at once, the number of parameters makes maximizing the

function challenging.

We implement a method that maximizes a subset of the parameters at a time, cre-

ating a sequence of parameter estimates which increase the value of Q. We restate the

functional form of Q showing explicitly how parameters are grouped by experimental

conditions as

Q(θn, θ) =
∑
g∈G

∑
e∈Eg

Eθn [qg,e(θ)|Yg,e
Kg,e

] (2.141)

=
∑
g∈G

∑
e∈Eg

{∑
c

log π0
θ(0, c)Eθn [Ic(C

g,e
0 )|Yg,e

Kg,e
]

+
∑

x

∑
ci

∑
cf

Ŝg,e
Kg,e−1(J(x, ci, cf )) log πci

(x, cf )

− Kg,e + 1

2
log 2π − (Kg,e + 1) log σg +

1

2
log(1− ρg

2)

− 1

2σg
2

(
T̂ ρ

Kg,e
(Y g,e − fg,e(Z

g,e), Y g,e − fg,e(Z
g,e))

)}
, (2.142)

where the function fg,e explicitly involves the parameters as

fg,e(x, c) = dg,e · (x+ εg(c)) + κg,e. (2.143)

The essence of our method is to group the parameters of θ into three updating clusters,

θ = (θ(1), θ(2), θ(3)), where θ(1) = {dg,e, κg,e : g ∈ G, e ∈ Eg} consists of the parameters

that vary for each experiment, θ(2) = {ρg, σg : g ∈ G} consists of parameters that

vary over experimental conditions, and θ(3) = {εgc , uc, vc, θ
+
c , θ

−
c : c = 1, . . . , N, g ∈

G} includes the remaining parameters to describe the size of substeps (which may

vary by experiment group) and to characterize the rates. The procedure is to hold

two parameter subgroups fixed while choosing parameters in the third subgroup to

maximize Q in this restricted parameter space. That is, starting with parameter θ,
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we define θ′ = (θ(1)′, θ(2)′, θ(3)′) according to

θ(1)′ = arg max
θ(1)∗

Q(θn, (θ
(1)∗, θ(2), θ(3))), (2.144)

θ(2)′ = arg max
θ(2)∗

Q(θn, (θ
(1)′, θ(2)∗, θ(3))), (2.145)

θ(3)′ = arg max
θ(1)∗

Q(θn, (θ
(1)′, θ(2)′, θ(3)∗)). (2.146)

By this construction, we guarantee that Q(θn, θ
′) ≥ Q(θn, θ). This procedure is

repeated until the parameter converges to a fixed point. The categorization of the

parameter clusters makes the partial maximizations easy to implement.

First, consider the update for θ(1), letting θ(2) and θ(3) remain fixed. The parameter

pair (dg,e, κg,e) only affects the contribution from a single experiment (g, e), Qg,e(θn, θ).

Furthermore, within this function, a number of terms have no dependence on the

lattice parameters. Neglecting the other fixed terms, for each experiment (g, e), we

seek to choose d′g,e and κ′g,e to maximize

Q(1)
g,e(d, κ) = − 1

2σg
2

(
T̂ ρ

Kg,e

(
Y g,e − d(Xg,e + ε(Cg,e))− κ, Y g,e − d(Xg,e + ε(Cg,e))− κ

))
(2.147)

over d and κ. Using the bilinearity and symmetry of T̂ ρ
Kg,e

, we can rewrite this as

Q(1)
g,e(d, κ) = − 1

2σg
2

(
T̂

ρg

Kg,e
(Y g,e, Y g,e)− 2d T̂

ρg

Kg,e
(Xg,e + ε(Cg,e), Y g,e)

− 2κ T̂
ρg

Kg,e
(Y g,e, 1) + d2 T̂

ρg

Kg,e
(Xg,e + ε(Cg,e), Xg,e + ε(Cg,e))

+ 2dκ T̂
ρg

Kg,e
(Xg,e + ε(Cg,e), 1) + κ2

(
1− ρ2

g + (1− ρg)
2Kg,e

))
.

(2.148)

Setting the derivative with respect to (d, κ) equal to zero leads to a system of linear

equations for d and κ,(
T̂ ρ

K(X + ε(C), X + ε(C)) T̂ ρ
K(X + ε(C), 1)

T̂ ρ
K(X + ε(C), 1) (1− ρ2 + (1− ρ)2K)

)(
d
κ

)
=

(
T̂ ρ

K(X + ε(C), Y )

T̂ ρ
K(1, Y )

)
.

(2.149)
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The solution to this system, (d′g,e, κ
′
g,e) is a local maximum of Q

(1)
g,e because the matrix

on the left is positive definite, arising from the bilinear operator T ρ, thus giving an

explicit method to calculate θ(1)′.

Next we consider updating the experimental condition parameters ρg and σg which

are included in θ(2). Whereas in the case of θ(1) we only needed to consider a single

experiment (g, e), this time, we must consider all experiments that share the common

experimental condition g. For a fixed g ∈ G, by again dropping any terms that do

not depend on these parameters and holding all other parameters fixed, we find that

ρ′ and σ′ must maximize the function

Q(2)
g (ρ, σ) = −

(∑
e∈Eg

(Kg,e + 1)
)

log σ +
#Eg

2
log(1− ρ2)

− 1

2σ2

(
(1− ρ2)

∑
e∈Eg

Ŝg,e − ρ2
∑
e∈Eg

B̂g,e − ρ
∑
e∈Eg

R̂g,e
)
, (2.150)

where we have abbreviated the terms which are independent of ρ and σ

Ŝg,e = Ŝg,e
Kg,e

(
(Y − d′g,e(X + ε(C))− κ′g,e)

2
)
, (2.151)

B̂g,e = B̂g,e
Kg,e

(
(Y − d′g,e(X + ε(C))− κ′g,e)

2
)
, (2.152)

R̂g,e = R̂g,e
Kg,e

(
Y − d′g,e(X + ε(C))− κ′g,e, Y − d′g,e(X + ε(C))− κ′g,e

)
, (2.153)

and #Eg is the number of experiments in the group g. For any choice of ρ, the value

of σ which maximizes Q
(2)
g will be

σ2 =
(∑

e∈Eg

(Kg,e + 1)
)−1(

(1− ρ2)
∑
e∈Eg

Ŝg,e − ρ2
∑
e∈Eg

B̂g,e − ρ
∑
e∈Eg

R̂g,e
)
. (2.154)

In principle, since σ2 has been expressed as a function of ρ, the maximization has

been reduced to a one-dimensional maximization, which can be shown to be a root

of a cubic polynomial. Alternatively, it is equally simple to implement a conjugate

gradient maximization routine in two dimensions, especially since we will need such

an algorithm in arbitrary dimensions for the final maximization step. The gradient
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of Q
(2)
g is computed to be

∂Q
(2)
g

∂ρ
= −ρ(#Eg)

1− ρ2
− 1

2σ2

(
− 2ρ

∑
e∈Eg

Ŝg,e − 2ρ
∑
e∈Eg

B̂g,e −
∑
e∈Eg

R̂g,e
)
, (2.155)

∂Q
(2)
g

∂σ2
= − 1

2σ2

(∑
e∈Eg

(Kg,e + 1)
)

+
1

2σ4

(
(1− ρ2)

∑
e∈Eg

Ŝg,e − ρ2
∑
e∈Eg

B̂g,e − ρ
∑
e∈Eg

R̂g,e
)
.

(2.156)

The third update to consider is for θ(3), which contains parameters that affect

every experiment such as rate parameters and relative substep positions. This involves

maximizing the function Q(3)(θ(3)) which is defined as

Q(3)(θ(3)) =
∑
g∈G

∑
x,ci,cf

(∑
e∈Eg

Ĵg,e
Kg,e

(x, ci, cf )
)

log ag(0, ci;x, cf )

+
∑
g∈G

{∑
c

εg(c)
1

σ′g
2

(∑
e∈Eg

d′g,eT̂
g,e
Kg,e

(
Ic(C), Y − d′g,eX − κg,e

))
−
∑

c

∑
c′

1

2
εg(c)εg(c

′)
1

σ′g
2

(∑
e∈Eg

d′
2
g,eT̂

g,e
Kg,e

(
Ic(C), Ic′(C)

))}
.

(2.157)

If the detailed balance parameters ϑ± are explicitly coupled to the size of the substep

positions εc, then the two components of this function must be maximized together.

However, when the positions of the substeps are decoupled from the transition rates,

then the two components of Q(3) can be maximized independently each other. This

is especially convenient, because the second component corresponds to minimizing a

quadratic form. That is, for each experiment (g, e), the (N − 1) × (N − 1) matrix

T g,e
C composed with entries

T g,e
C (c− 1, c′ − 1) = d′

2
g,eT̂

g,e
Kg,e

(
Ic(C), Ic′(C)

)
, c, c′ = 2, . . . , N, (2.158)



105

is a positive definite matrix, and consequently, so are the matrices

T g
C =

∑
e∈Eg

T g,e
C , (2.159)

TC =
∑
g∈G

1

σ′2g
T g

C . (2.160)

Also, introduce the vectors ~ζg,e ∈ RN−1 with entries

ζg,e(c− 1) = d′g,eT̂
g,e
Kg,e

(
Ic(C), Y − d′g,eX − κ′g,e

)
, c = 2, . . . , N, (2.161)

as well as the corresponding sums

~ζg =
∑
e∈Eg

~ζg,e, (2.162)

~ζ =
∑
g∈G

1

σ′2g
~ζg. (2.163)

If we write ~εg = (εg(2), . . . , εg(N)), then we can rewrite Q(3) as

Q(3)(θ(3)) =
∑
g∈G

∑
x,ci,cf

(∑
e∈Eg

Ĵg,e
Kg,e

(x, ci, cf )
)

log ag(0, ci;x, cf )

+
∑
g∈G

1

σ′g
2

{
〈~ζg,~εg〉 −

1

2
〈~εg, T g

C · ~εg〉
}
.

(2.164)

With the quadratic form now apparent, when the substep positions are decoupled

from the transition rates, the substeps can be directly determined by solving the

linear system,

T g
C · ~εg = ~ζg, g ∈ G, (2.165)

for the case that each group has separate substep positions. If the parameters are

constrained so that substep positions are the same over all experiments, ~εg = ~ε, then

the linear systems for each g is replaced with the single system

TC · ~ε = ~ζ. (2.166)
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The terms that include the logarithms of transition probabilities coming from the

matrices A also need to be maximized. To accomplish this, we simply use a conju-

gate gradient maximization routine over the transition rate parameters, computing

the gradient numerically. If the substep positions are coupled with the transition

rates through a detailed balance relationship, then we add to this numerical gradient

the corresponding analytic derivatives of the quadratic form(s). The repeated com-

putation of the transition probabilities A is typically the most costly computational

step in the maximization, particularly when the transition rates are parametrized to

satisfy detailed balance.

With these three partial maximizations, we update a current parameter choice θ

to θ′ such that Q(θn, θ
′) ≥ Q(θn, θ). Each of the steps maximizes a small collection of

parameters at a time, as opposed to attempting to maximize over all of the parameters

at once. Furthermore, most of the maximization routines can be computed explicitly,

although some of them must be performed numerically. The three maximizations are

repeated in turn until the parameter converges to complete the maximization step.

Consequently, the EM algorithm can be performed efficiently, with only a single pass

for the conditional expectation required per iteration, with a maximization step that

is also straight forward. The E- and M-steps are then repeated until the parameters

converge with the desired tolerance

2.5.3 Viterbi Algorithm

To round out the discussion of the hidden Markov model analysis, we give the exten-

sion of the Viterbi algorithm which was presented in the introduction. This algorithm,

given a model described by the parameter θ, identifies the path out of all possible

paths for the hidden Markov process {Zk} which maximizes the likelihood L(θ; ~z, ~y).

Because the ratio
L(θ; ~z, ~y)

L(θ; ~y)
represents the conditional density of the path ~z given the

observations ~y, this maximum likelihood path represents the best path conditioned
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on the observations.

The algorithm is generalized in the obvious manner. We also explicitly change

the algorithm to store the log-likelihood of the paths rather than the likelihood, as

the true likelihood is subject to underflow. For each time index k = 0, . . . , K and

state value z, we compute the maximum log-likelihood of partial sequences ending

with final state z, δk(z). This is defined by the inductive relationship

1. Initialization:

δ0(z) = log π0
θ(z) + log b0(y0)(z0; z0), (2.167)

2. Recursion:

δk+1(z
′) = max

z
δk(z) + log a(z; z′) + log b(yk, yk+1)(z; z

′). (2.168)

In addition, at each time k = 1, . . . , K and for each final state z′, we record the

previous site ψk(z
′) = z which leads to the corresponding maximum log-likelihood,

δk(z
′) = δk−1(z) + log a(z; z′) + log b(yk−1, yk)(z; z

′). (2.169)

The final path (z∗0 , . . . , z
∗
K) is constructed by first finding z∗K which maximizes δK and

backtracking using the path stored in ψ:

z∗K = arg max
z

δK(z), (2.170)

z∗k−1 = ψk(z
∗
k), k = 1, . . . , K. (2.171)

2.5.4 Bayesian Methods

Before concluding this chapter, it will also be useful to briefly discuss a Bayesian

approach to parameter values. The idea is that one or more of the parameters are

treated as additional unobserved random variables. So, we augment the probability

space that has reference measure P0 to include a random variable, Θ, representing
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a parameter taking values in a discrete set Ω, and which has some specified prior

distribution ν(θ),

P0[Θ = θ] = ν(θ). (2.172)

Each possible parameter value, θ ∈ Ω, corresponds to a specific choice of parameters.

The likelihood ratio Λ(θ) that induced the change of measure to Pθ is now interpreted

as a conditional expectation on the partition of possible values of Θ,

Λ(θ) =
dPθ

dP0

= E0[
dPΘ

dP0

|Θ = θ]. (2.173)

The posterior probability that Θ = θ given the observations can then be calculated

using Bayes’ rule,

P0[Θ = θ|Y ] =
E0[Iθ(Θ)

dPΘ

dP0

|Y ]

E0[
dPΘ

dP0

|Y ]

=
ν(θ)L(θ; ~y)∑
θ′ ν(θ

′)L(θ′; ~y)
. (2.174)

Adaptations of the forward algorithm to compute posterior probabilities of param-

eters directly have been derived elsewhere for standard hidden Markov models (Elliott

et al., 1997), and are generalized easily to the current situation. Instead of computing

a single vector of forward variables αl, one computes a forward variable αl(θ) for each

possible θ ∈ Ω as described in the Forward-Backward Algorithm 2.5.1, where the

transition matrix A and the observation weight matrix B are constructed using the

parameter θ. The initialization of each αl(θ) incorporates the prior distribution of Θ,

α̃0(θ) = ν(θ)π0
θ ·Bθ,0, (2.175)

with the recursive step remaining

α̃l+1(θ) = αl(θ) · (Aθ ? Bθ,l+1). (2.176)

The only fundamental change in the algorithm is the scaling factor cl, which renor-

malizes the forward variables αl(θ),

αl(θ) =
1

cl
α̃l(θ). (2.177)
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Because there is an entire family of forward variables, the scaling factor cl will be the

calculated using the sum over Ω,

cl =
∑
θ∈Ω

αl(θ) ·~1. (2.178)

Consequently, we no longer have the identity that the sum of coordinates of αl(θ)

would be 1. Instead, the sum now computes the posterior probability,

P0[Θ = θ|Yl] = αl(θ) ·~1. (2.179)

Similar modifications can be applied to the backward variables βl to obtain βl(θ),

thereby allowing calculations of conditional expectations.

However, our interest is not so much in computing in a Bayesian framework.

Rather, we wish to compare different parameter choices. For example, our main

application will be to create a grid of possible lattice step-sizes d and/or base offset

positions κ. One approach of determining the best parameter on the grid is to compute

the likelihoods of each grid point and to choose the grid point with the greatest

likelihood. The other approach would be to perform a Bayesian calculation, and

choosing the maximum a posteriori parameter. In fact, the Bayes’ formula 2.174 for

computing the posterior probabilities in terms of likelihood ties the two approaches

together. Let θ and χ be two possible parameters and consider the ratio of their

posterior probabilities:
P0[Θ = θ|Y ]

P0[Θ = χ|Y ]
=
ν(θ)L(θ; ~y)

ν(χ)L(χ; ~y)
. (2.180)

Since computing the log-likelihood is more common, we re-express this with loga-

rithms,

logL(θ; ~y)− logL(χ; ~y) = log(
P0[Θ = θ|Y ]

ν(θ)
)− log(

P0[Θ = χ|Y ]

ν(χ)
). (2.181)

When the prior distribution is uniform on Ω, then maximum likelihood parameters

correspond exactly with maximum a posteriori parameters.
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Chapter 3

Simulation Results

Having established the theoretical foundation for hidden Markov model analysis of

single-molecule assays of the protein kinesin in the previous chapter, we now proceed

to analyze the effectiveness of the implementation through the use of a simulated

data set based on the two-state Fisher-Kolomeisky model. We also briefly look at a

simulated data set with the four-state Fisher-Kolomeisky model, which pushes the

limits of the algorithm as currently implemented so that we were unable to complete

the analysis. This chapter will discuss the generation of the simulated data, details

of implementing the filtering algorithms, and a discussion of results on analyzing the

simulated data sets.

3.1 Generating Data

Creating simulated hidden Markov model data consists in generating the Markov

process corresponding to the hidden state, Z0, . . . , ZK , followed by generating the

observation process Y0, . . . , YK . The Markov process is determined through the tran-

sition rates, and the observation process is determined from the lattice parameters d

and κ, the relative substep positions εc, and the noise parameters ρ and σ. For the

context of this discussion, we assume that these parameters are fixed. Their actual

values will be given during the discussion of the results.

Randomness will be introduced using a pseudo-random number generator, imple-

mented in the GNU Scientific Library (Galassi et al., 2001) and described in Nu-

merical Recipes (Press et al., 1988). We use Park and Miller’s MINSTD generator

with Bayes-Durham shuffle to generate a sequence of pseudo-random numbers dis-

tributed uniformly on the interval [0, 1]. Random variables with other distributions
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were generated from the sequence of uniform variables. Normally distributed random

variables can be generated using the Box-Müller transform (Press et al., 1988).

Random variables with an arbitrary cumulative distribution function FV (v) can

also be generated as a function of uniform random variables. The cumulative distri-

bution function is defined as

FV (v) = P [V ≤ v], (3.1)

and has the properties that it is non-decreasing, takes values between zero and one,

inclusive, and has the limits

lim
v→−∞

FV (v) = 0, (3.2)

lim
v→+∞

FV (v) = 1. (3.3)

Because uniform random variables take values in the interval [0, 1], which corresponds

to the range of cumulative distribution functions, we convert uniform random vari-

ables through the function V (u) defined as

V (u) = sup{v ∈ R : FV (v) < u}. (3.4)

If U is a uniform random variable, then V (U) will have the distribution function FV , as

desired (Williams, 1991). When the cumulative distribution function is invertible, this

function corresponds to the inverse V (u) = F−1
V (u). For example, an exponentially

distributed random variable T with rate parameter λ has a cumulative distribution

function, FT , which is given by

FT (t) = P [T ≤ t] = (1− e−λt)I[0,∞)(t). (3.5)

The inverse of this function maps a number u ∈ (0, 1) to the value

F−1
T (u) = −1

λ
log(1− u). (3.6)
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Since 1−U has a uniform distribution when U does, an exponential random variable

can be generated by taking the negative logarithm of U and dividing by the rate

parameter,

T = −1

λ
logU. (3.7)

As another example, consider a discrete random variable. In this case, the cumulative

distribution function is a step function with jumps at each of the possible discrete

values. The prescription, then, says to find the jump at which the function FV starts

below u and ends above or at u,

FV (V−) < u and FV (V ) ≥ u. (3.8)

There are two approaches to computing the discretized Markov process. The first

approach is to simulate the discretized model itself. That is, given the transition rates

uc and vc and the length of the time interval ∆t between samples, one computes the

transition probabilities πci
(x, cf ), which depend only on the initial state ci, the final

state cf and the change in the number of lattice sites, and which are defined as

πci
(x, cf ) = Pθ[Z(t+ ∆t) = (xi + x, cf )|Z(t) = (xi, ci)], xi ∈ Z. (3.9)

Given the state of the hidden process Zk = (xi, ci) at the kth sample, the subsequent

state, Zk+1, is randomly selected from the distribution πci
. The second approach is to

simulate the original, continuous time Markov jump process, Z(t), and then use the

state of the continuous process Zk = Z(tk) at the sampling times tk = k∆t Gillespie

(1976). To simulate the jump process, we generate the sequence of visited states

{zn = (xn, cn) : n ≥ 0} as well as the amount of time between transitions {τn : n ≥ 0}.

The random time τn has an exponential distribution with rate parameter λcn , the total

outgoing transition rate for the current state zn. The subsequent state zn+1 will move

one state forward, zn+1 = (xn, cn + 1), with probability pcn or one state backward,

zn+1 = (xn, cn − 1) with probability qcn = 1− pcn , which are defined in terms of the
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forward and backward transition rates uc and vc according to (recall Equation 2.5)

λc = uc + vc,

pc = uc/λc,

qc = vc/λc.

(3.10)

Transition times Tn specify when the transitions occur,

Tn =
n−1∑
i=0

τi, (3.11)

with T0 = 0. Then for each t ∈ [Tn, Tn+1), the jump process takes the value Z(t) = zn.

Even though the hidden process Zk = Z(tk) can be generated without requiring

the transition probabilities πci
(x, cf ) for a given sampling time ∆t, these probabilities

will be required later to implement the forward-backward algorithm. Consequently,

we now discuss how to compute these probabilities. Recall that the transition proba-

bilities are defined as the solutions of the N initial value problems of the same linear

system of differential equations (recall Equation 2.2), where for each ci = 1, . . . , N ,

d

dt
πci

(t)(x, c) = uc−1πci
(t)(x, c− 1) + vc+1πci

(t)(x, c+ 1)− λcπci
(t)(x, c), (3.12)

πci
(0)(x, c) = I0(x)Ici

(c), (3.13)

and integrating until time ∆t,

πci
(x, c) = πci

(∆t)(x, c). (3.14)

One method of computing transition probabilities is to directly implement a numerical

solution to the initial value problem, such as with a Runge-Kutta algorithm. At least

one challenge to this technique is that the system becomes stiff when transition rates

have significantly different time scales, requiring a very short time step to retain

stability.

Instead of finding a generic algorithm for stiff systems, we instead use an algorithm

that takes advantage of the fact that the system describes transition probabilities,
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known as the uniformization procedure (Stewart, 1994). This method is based on the

use of a fundamental solution for the system of differential equations. If Q represents

the infinite matrix with transition rates from a given state on the corresponding row,

Q(xi, ci;xf , cf ) =


uci
, if xf = xi, cf = ci + 1,

−λci
, if xf = xi, cf = ci,

vci
, if xf = xi, cf = ci − 1,

0, otherwise,

(3.15)

where the cases of the boundaries ci = 1 or ci = N should be obvious. Then, the

system of differential equations of Equation 3.12 can be written using matrix notation,

d

dt
πci

(t) = πci
(t) ·Q. (3.16)

The fundamental solution to this equation, etQ, maps the initial condition to the

solution of System 3.12 at time t,

πci
(t) = πci

(0)etQ. (3.17)

When the state space is finite, the fundamental solution corresponds to the matrix

exponential,

etQ =
∞∑

n=0

tn

n!
Qn. (3.18)

In our case, we really only need finite dimensional approximations to the N vectors,

πci
= πci

(∆t) = πci
(0)e∆tQ. (3.19)

The uniformization procedure provides a numerically stable method to compute

these vectors. Letting λ = maxc λc, we define a new matrix P , which will commute

with Q, according to

P = I +
1

λ
Q, (3.20)

where I is the identity matrix. The uniformization procedure is based on the equality

etQ = e−λteλtP , (3.21)
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which can be alternately expressed as the series

etQ =
∞∑

n=0

e−λt (λt)
n

n!
P n. (3.22)

Because the sum of elements in the rows of Q add to zero, the sum of the elements

in the rows of P add to one, with all of the elements non-negative. Thus, P is a

stochastic matrix. Recall that λc represents the rate at which the process Z(t) will

make a transition out of the current state Z(t) = (x, c). Then λ ≥ λc, which represents

a faster rate, would lead to more frequent transitions. The stochastic matrix P

corresponds to the jump distributions for each of the states with this higher transition

rate, corrected to account for pseudo-transitions which leave the state unchanged. The

uniformization equation (3.22) expresses etQ in terms of making a random number

of transitions, Nλ, each occuring at the rate λ, and where each of the transitions are

determined by the matrix P . The numerical implementation of the uniformization

procedure is to compute a truncated series, followed by multiplying by e−λ∆t,

πci
(∆t) = e−λ∆t(πci

(0)
nmax∑
n=0

(λ∆t)n

n!
P n). (3.23)

Since P is stochastic, one can determine nmax so that the approximate transition prob-

abilities are uniformly within a predetermined ε of the true transition probabilities

(Stewart, 1994) by choosing nmax to satisfy

e−λ∆t

nmax∑
n=0

(λ∆t)n

n!
≥ 1− ε. (3.24)

3.2 Two-State Data

The primary set of simulated data that we discuss is for a simple model with two

states, N = 2. These data were generated using the first proposed method for simu-

lating data, based on the discrete time transition probabilities and without simulating

each of the transitions. The rate parameters are modeled with the two-state model
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[ATP]
Approximate Load

1 pN 3.5pN 5.5 pN

10 µM 1.05 pN 3.54 pN 5.61 pN
100 µM 1.05 pN 3.59 pN 5.61 pN
2 mM 1.06 pN 3.64 pN 5.76 pN

Table 3.1. Load vs [ATP] conditions for simulated and experimental data.

of Fisher and Kolomeisky (Fisher and Kolomeisky, 2001), as that model gave good

fits to the observed velocity profiles of the experimental data under consideration.

The model uses the detailed balance parametrization of Equations 2.11 and 2.12 and

[ATP] dependence given by Equations 2.14 and 2.15, with parameters

k0 = 1.8 µM−1s−1, k′0 = 2.8× 10−4 µM−1s−1, c0 = 16 µM,
u0

2 = 108 s−1, v0
2 = 6.0 s−1,

(3.25)

and load factors

ϑ+
1 = 0.135, ϑ−1 = 0.75, ϑ+

2 = 0.035, ϑ−2 = 0.08. (3.26)

The data were generated for nine different conditions chosen to match nine exper-

imental conditions selected from the true kinesin assay data which we will use for

filtering later. These conditions were selected to come from the three ATP concen-

trations of 10, 100 and 2000 µM, and the imposed opposing loads of approximately 1,

3.5, and 5.5 pN. The precise values of the load for each of the three concentrations are

given in Table 3.1. For each experimental condition, parameters for the autocorre-

lation and noise scale were chosen to be reasonably close to preliminary results on the

experimental data, and are shown in Table 3.2. We also generated different numbers

of runs for the different ATP concentrations, as the lower concentrations had longer

individual run lengths than the higher concentrations, also shown in Table 3.2. The

positions of the substep corresponding to the second state of the model was chosen

as ε2 = 0.215 for each of the different experimental conditions, which corresponds to

the literal interpretation of detailed balance coming only from spatial transitions,

ε2 − ε1 = 0.215 = 0.135 + 0.08 = ϑ+
1 + ϑ−2 . (3.27)
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Load 1 pN 3.5 pN
[ATP] 10 µM 100 µM 2 mM 10 µM 100 µM 2 mM

ρ 0.3 0.3 0.3 0.25 0.25 0.25
σ [nm] 7.0 6.8 7.0 4.5 4.5 4.5
# runs 8 16 24 8 16 24

Load 5.5 pN
[ATP] 10 µM 100 µM 2 mM

ρ 0.18 0.18 0.25
σ [nm] 3.0 3.0 3.0
# runs 8 16 24

Table 3.2. Autocorrelation (ρ), noise scale (σ), and the number of simulated runs
for each of the experimental conditions.

The remaining parameters to characterize the model provide the lattice step-size d

and offset position κ for each of the generated runs. The step-sizes d were selected

from a normal distribution with a mean of 8.1 nm and a standard deviation of 0.05 nm,

to provide some variability in the projected lattice spacing yet remaining reasonably

close to the theoretical lattice length of 8.2 nm. The offsets κ were selected from a

normal distribution with a mean of −80 nm and a standard deviation of 4 nm.

3.2.1 Identifying Lattice Parameters

These data were then analyzed using the EM algorithm for the hidden Markov model

described in Chapter 2. Estimates of the lattice parameters d and κ for individual runs

often did not converge to the externally known true values. Upon more careful exam-

ination, this behavior was found to be a consequence of the likelihood function having

many local maxima caused by the lattice structure of the problem. Holding all other

parameters fixed, the likelihood function can be visualized as a surface parametrized

by d and κ. Figure 3.1 demonstrates a typical surface of the log-likelihood with all

other parameters fixed at the true values for a particular data set from the 1 pN load

and 100 µM [ATP] group. If the initial parameter estimate starts in the wrong part

of a valley, the algorithm will send the sequence of estimates toward the top of the



118

Figure 3.1. .
] A contour relief plot of the log-likelihood surface as a function of lattice step-size d
and offset position κ for a simulated run selected from the experimental grouping of
1 pN load and 100 µM [ATP]. The true parameter position is marked with ×.
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wrong peak.

The general features of this surface can be understood by considering how changing

the step-size and offset position affect likelihood through the alignment of the true

and modeled lattices. For simplicity in discussion, we consider a model that only

has a single state. The log-likelihood can be regarded as a score for the extent of

matching between the data and the model: the greater the match, the greater the

score. First, consider the influence of the offset position κ for a fixed model lattice

step-size d, which in general will not match the true lattice step-size. As κ varies, one

might visualize the proposed lattice sliding relative to the true lattice. When sites on

the proposed lattice align with the sites on the true lattice, the likelihood increases,

whereas the likelihood decreases for sites out of alignment. The total likelihood

accounts for the overall synchronization of sites on the true lattice relative to the

model lattice. The likelihood as a function of κ, with d fixed, represents a vertical

cross-section of the likelihood surface, such as in Figure 3.1. Changing the offset by

the lattice step-size d does not change the location of lattice sites, but it does shift

the labels on the model lattice by one position. This explains the near-periodicity of

the likelihood in the κ-direction. The model assumes the initial condition X0 = 0,

so the first few observations of the bead will penalize the likelihood unless the model

lattice has X = 0 near these observations. The highest peak in the log-likelihood as

a function of κ corresponds to the best match for the initial lattice site.

Next consider the influence of the step-size d. When d is the correct lattice size,

the two lattices can match exactly. As the model lattice size d increases, the alignment

between all of the lattice sites degrade and the likelihood decreases. However, as d

continues to increase, sites on the model lattice far from the origin will begin to align

with the true lattice sites, even though they will not be a correct match. For a fixed

offset position κ, this alignment continues to improve until the model lattice is off

by one site relative to the true lattice over the sites that are visited by the run. A

similar argument holds when d is decreased. As a rough guide, we expect peaks in



120

the likelihood to occur at step-sizes d when the span of the model lattice corresponds

to the span of the true lattice with step-size d0,

Md = M0d0, (3.28)

where M0 is the number of lattice sites visited in the true lattice and M is the number

of corresponding sites on the model lattice. If the offset position κ is allowed to vary

when the lattice step-size d changes, then if d is increased, the alignment can be

improved by causing κ to decrease, so that there is a smaller mismatch over a larger

number of lattice sites. This accounts for the prominent directionality to the axes of

the likelihood peaks.

Although this rough picture explains the prominent features of the likelihood

surface, other factors influence the quality of fit as well. For instance, because of

the inherent stochastic nature of the model, all sites on the lattice are not created

equal. Different sites on the lattice will influence the likelihood with different weights,

depending on how long the kinesin stays at the site. Also, the noise in the observations

tends to smear the peaks out. Finally, the presence of intermediate steps due to the

internal states leads to additional mismatch, particularly when different states have

comparable lifetimes. Thus, the positions of the maxima in d-κ space is likely to

change as the other parameters vary. The quantity and quality of data also influence

the character of the likelihood surface. If either the number of samples at each lattice

site increases or the scale of noise decreases, the separation in likelihood increases,

both in terms of the difference in height between the peaks and the valleys, as well

as the difference in height between neighboring peaks. This can be seen clearly by

considering a second likelihood surface shown in Figure 3.2, coming from a slower

experimental condition with [ATP]= 10 µM. If the number of sites visited increases,

then the positions of the peaks move closer together in the d direction, in harmony

with Equation 3.28.

Therefore, if the initial parameter estimates begin heading up the wrong peak, as
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Figure 3.2. .
] A contour relief plot of the log-likelihood surface as a function of lattice step-size d
and offset position κ for a simulated run selected from the experimental grouping of
1 pN load and 10 µM [ATP]. The true parameter position is marked with ×.
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the EM algorithm progresses the lattice parameters will not converge to the correct

position. One method we use to attempt to overcome this challenge is to evaluate the

likelihood on a grid of points in d-κ space and then select that parameter from this

collection which has the highest likelihood as the current parameter. Unfortunately,

this is a costly procedure that grows proportionally to the number of points in the

grid. Thus, a search for the maximum using a very refined grid is computationally

expensive, particularly when dealing with all of the data runs. One possibility is to

use a coarse, two-dimensional grid, so that one hopes at least to find the side of one

of the higher peaks. If the EM algorithm has put the lattice parameters near the top

of one of the peaks, one can choose to leave one of the lattice parameters fixed and

see if the other parameter can be improved. Examining the log-likelihood profiles of

Figures 3.1 and 3.2, we observe that the peaks occur on the lines of constant step-size

d. But the peaks for approximately constant offset κ are not quite on horizontal lines.

If the step-size d is held fixed, then a one-dimensional grid in the κ-direction should

find the peaks corresponding to the offset positions κ ± d. If the offset position κ

is held fixed, then a one-dimensional grid in the d-direction runs the strong risk of

missing the other peaks and only sampling the edges. To avoid this problem, one can

instead search a narrow two-dimensional lattice.

3.2.2 Model Estimates

In addition to the lattice parameters d and κ, we also need the HMM algorithms

to estimate effectively the transition rates and fractional positions of substeps. We

will primarily discuss the results for the two-state model, both with uncoupled tran-

sition rates as well as with transition rates that obey detailed balance. With some

exceptions, the estimated parameters were quite reasonable.

The theoretical substep of the generating model, ε2 = 0.215, was approximately

recovered for nearly all of the nine experimental conditions. Figure 3.3 illustrates the
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Figure 3.3. Estimated substep position for a two-state model with unconstrained
transition rates. The true value is ε2 = 0.215.

estimated substep positions for each of the nine experimental conditions, clustered

by load (since noise decreased as load increased), for the two-state model with un-

constrained rate parameters. As expected, the low noise conditions do better than

high noise. A similar illustration for the two-state model with rates described by de-

tailed balance is shown in Figure 3.4, with the parameters very similar to the previous

model.

Transition rates were estimated reasonably well, except for the experimental con-

dition of 1 pN and 2 mM [ATP], which we discuss later. Figure 3.5 shows the es-

timated second order transition rate, k0 for all of the experimental conditions. The

scatter points represent point estimates coming from the unconstrained two-state

model, while the curves represent the parametrized rate relative to the true underly-

ing model and the estimated model with rates obeying detailed balance. Figure 3.6

shows the pseudo-second order transition rate k′0, and Figures 3.7 and 3.8 give the
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Figure 3.4. Estimated substep position for a two-state model with detailed balance.
The true value is ε2 = 0.215.

forward and backward rates, u2 and v2, for the second state. Table 3.3 shows the

estimated parameters for the detailed balance model with two states.

The experimental grouping of 1 pN and 2 mM [ATP] presented an interesting

circumstance. Because the noise was relatively high and the time spent in a given

state was relatively short, the one-state model did nearly as well as the two-state

model, with a log-likelihood ratio of 8.377. If the corresponding χ2 statistic were

computed, χ2 = 16.75, with three degrees of freedom, then the P-value would be

0.00079. In a standard hypothesis test, this would be a significant result. As these

models are not really nested, such a comparison is not technically justified, although it

does suggest that the second state explains at least some aspect of the data. However,

the improvement in likelihood is rather small compared to the improvements seen for

other groups. Other experimental conditions often saw improvements of 100 or more,

while the 3.5 pN, 2 mM [ATP] group had the second smallest change of approximately
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Figure 3.5. Estimated second-order transition rate k0 for each experimental condi-
tion. The solid line represents the true underlying parametrization. The dashed line
represents the parametrization given by the estimated model with detailed balance,
but which is nearly exactly aligned with the true model. Scatter points represent
unconstrained rate estimates for each of the separate conditions.

Parameter True Value Estimated Value
k0 1.8 µM−1s−1 1.793 µM−1s−1

k′0 2.8× 10−4 µM−1s−1 1.4× 10−4 µM−1s−1

u0
2 108 s−1 102.39 s−1

v0
2 6.0 s−1 10.83 s−1

ϑ+
1 0.135 0.1353
ϑ−1 0.750 0.8114
ϑ+

2 0.035 0.0298
ϑ−2 0.080 0.0235

Table 3.3. Maximum likelihood parameter estimates for the two-state detailed
balance model.
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18. The estimated transition rates for the problematic group took an extremely

long time to even come close to stabilizing, requiring over 4500 iterations including

attempts to manually guess where the parameters were headed. Most of the other

groups required only a few hundred iterations, with the other 1 pN groups needing

just over a thousand iterations. The likelihood was extremely insensitive to the faster

of the two backward transition rates, which was found to vary over nearly three

orders of magnitude while the log-likelihood changed by less than 3.0 (although the

two forward rates also changed, though to a much lesser degree, to accommodate the

average velocity). The final rates for this model, which do not appear on the earlier

graphs because of these complications, are

u1 = 139.9 u2 = 2371.2
· · · 
 1l 
 2l 
 1l+1 
 · · · .

v2 = 1× 10−11 v1 = 1003.8
(3.29)

These rapid forward and backward transitions are similar to a rapid equilibrium, and

compatible with the likelihood’s minimal improvement over the one-state model.

3.2.3 Model Selection

To consider the question of model selection, the EM algorithm was repeated on the

two-state simulated data for several different models. To provide a reference point,

the first model implemented for filtering was a one-state model. The transition rates

remained unconstrained, so that each experimental condition was modeled indepen-

dently of the data runs coming from other conditions. Subsequent models included

a two-state model with unconstrained rate parameters, a two-state model with rate

parameters constrained to the hypothesized [ATP]-dependence and detailed balance

load-dependence as described in Chapter 2, and a three-state model with uncon-

strained rate parameters. The resulting log-likelihoods for fitting these models with

the EM algorithm are summarized in Table 3.4, which we now discuss in more depth.
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N Rate Model logL
1 unconstr. -1524061.9
2 unconstr. -1515855.5
2 det. balance -1515868.3
3 unconstr. -1515852.3

Table 3.4. Log-likelihood results for the two-state simulated data sets.

Typically, models with greater complexity will be able to fit the data more closely.

In fact, if a simpler model is a special case of a complex model, then the more

complex model is guaranteed to do at least as well, with the worst case scenario

being to simply use the simpler model. However, to describe the more complex

model, one requires a larger number of descriptive parameters. Consequently, one

needs a criterion to determine when the addition of complexity can be justified by

a significant increase in the quality with which the model fits the data. When two

models are nested, in which case one model is a sub-case of the other model but with

a constraint on the parameters, then the difference in the log-likelihoods provides a

natural measure for determining whether the more general model (with unconstrained

parameters) provides a significantly better description of the data than the nested

model. This is codified in the χ2 test of the likelihood ratio. For models which are

not nested, particularly when they have a different number of states, the χ2 test

does not technically apply. Assuming that the maximum likelihood estimator for the

extended hidden Markov model is asymptotically normal, which has been proved for

the standard hidden Markov model cases when the model is recurrent (Bickel et al.,

1998; Jensen and Petersen, 1999; Douc and Matias, 2000) but has not yet been proved

for the current case where the model is transient but periodic, the test statistic

χ2 = 2(logL(θ̂1; ~y)− logL(θ̂0; ~y)) (3.30)

will asymptotically have a χ2 distribution with n degrees of freedom, where θ̂0 repre-

sents the maximum likelihood estimator for the nested model and θ̂1 represents the

maximum likelihood estimator for the generalized model and n is the difference in
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the number of independent parameters required for the two models.

First, consider the difference between the models with one and two states and

unconstrained rate parameters. Adding a second state adds a forward and backward

rate and a relative position for a substep for each of the nine experimental conditions,

an increase of 27 parameters. Because models with different numbers of states are

not nested models, using a χ2-test to determine the significance of the likelihood ratio

is not technically appropriate, although it may give a general sense of significance.

The change in log-likelihood between the one- and two-state models, corresponding

to the test statistic χ2 = 2× 8206.4, is several orders of magnitude greater than the

reference value of χ2
27 = 63.16447, which would be the 99.99 percent confidence cut-

off for nested models. Most of this likelihood increase comes from the 5.5 pN data

sets, although most of the individual groups improve the log-likelihood by at least

100. Consequently, there is significant evidence that the two state model is a better

choice than the one state model. Next, we consider whether it is advantageous to

add a third state to model the data. Introducing the new state requires 27 additional

parameters to account for the three extra parameters for each experimental group.

However, in this case, the increase in the log-likelihood is not nearly so dramatic,

with the likelihood only improving by a few points, so that we would not reject the

two state model for the three state model.

We remark that the addition of a third state and the corresponding parameters

was computationally a serious challenge, as both the time for each iteration and

the number of iterations required grew dramatically. As such, we were unable to

try a variety of starting points to get a true optimal parameter set for this model.

Nevertheless, the fact that the three-state models that were attempted did not signif-

icantly increase the likelihood suggests that other three-state models would similarly

be moderately close in likelihood. In each instance that a second state was added to

a one-state model, the likelihood increased immediately and dramatically. But when

the third state was added, the likelihood only barely surpassed the original likelihood.
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In addition, we note that lattice parameters have a significant impact in the likelihood

values. At one point in the analysis, the apparent final likelihood of the three-state

model was worse than the likelihood for two states. By comparing the likelihoods

of individual files, we identified a single file that accounted for the entire difference.

After we performed a more in-depth search for the lattice parameters for this file, the

order of the two models reversed back to what one should expect.

We can also compare the two state model with rates parametrized by detailed

balance and [ATP]-dependence to the two-state model with unconstrained rates dis-

cussed above. In this case, the detailed balance model represents a constrained model

within the more general unconstrained model, so that a likelihood-ratio test using

the χ2 statistic will be appropriate. The null hypothesis is that detailed balance is

satisfied, while the alternative is that it is not satisfied. The test statistic for this

hypothesis test is χ2 = 2× 12.8. To model the detailed balance model, we have two

rates and two load factors for each state, with a single constraint on the load factors

that they add to 1. Thus, the detailed balance model has 7 independent parameters.

The unconstrained model needs four rates for each of the nine experimental groups,

leading to 36 independent parameters. Thus, the χ2 test will have 29 degrees of free-

dom. The P-value of the hypothesis test is 0.647, so that we do not reject the null

hypothesis that the constrained model with detailed balance and [ATP]-dependence

is sufficient to describe the data. Of course, since the data were generated from this

class of models, this is what one would hope results from the analysis.

3.2.4 Velocity and Randomness

Another interesting comparison between the different models is how well they estimate

the velocity v and randomness r of the experimental data. Recall from Chapter 1 that

these quantities characterize the mean and variance of the random time required to

complete a full stepping cycle. That is, if T is the random time for a complete cycle
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with mean τ and variance ν2, then the expected mean velocity is v = d/τ and the

randomness is the squared coefficient of variation r = ν2/τ 2. The rate models com-

pletely characterize the Markov process as it moves through the intermediate states

to complete a cycle, so that τ and ν2 can be computed directly from the estimated

rate parametrizations. There are a variety of ways to compute these moments based

on the rate parameters (Schnitzer and Block, 1995; Fisher and Kolomeisky, 1999b).

However, we found it easier to implement the calculations using two simple linear

systems motivated by the Markov property.

Suppose that the initial mechanochemical state is C(0) = c. The total cycle time

can be decomposed into the time it takes to arrive in state (1, 1) plus the time it

takes to go from (1, 1) to (1, c). By the strong Markov property, these times are

independent. In addition, because of the periodicity of the lattice, the time required

to go from (1, 1) to (1, c) has the same distribution as the time to go from (0, 1) to

(0, c). Consequently, the time to complete a forward cycle starting in an arbitrary

state c has the same distribution as the time required to start in state (0, 1) and end

in state (1, 1). In other words, the cycle time is independent of the initial state. We

define the random time S as the time when we arrive at (1, 1),

S = inf{t > 0 : Z(t) = (1, 1)}. (3.31)

Let F
(c)
S be the conditional distribution of S given C(0) = c. The distribution of T ,

the time to complete a cycle, or equivalently to start at (0, 1) and end at (1, 1), will

then be F
(1)
S . So, consider the distribution of S with an initial state C(0) = c. Let

S1 be the departure time,

S1 = inf{t > 0 : Z(t) 6= (0, c)}, (3.32)

and let S2 be the completion time

S2 = inf{t > 0 : Z(S1 + t) = (1, 1)}. (3.33)
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Again applying the strong Markov property, S1 and S2 are independent. Furthermore,

S1 has an exponential distribution with rate parameter λc, and S2 will have the

distribution F
(c+1)
S with probability pc and the distribution F

(c−1)
S with probability

qc. In the case of c = N , the distribution F
(N+1)
S corresponds to the random variable

always taking the value zero. The other case requiring special consideration is when

c = 1. Taking a backward step puts the new state at (−1, N). In order to complete

the cycle, one must first return to (0, 1) and then to (1, 1). This random time will have

a distribution that is equivalent to the sum of two independent random variables, one

with distribution F
(N)
S and the other with distribution F

(1)
S .

The linear system mentioned earlier establishes a linear relations for the mean and

variance of the distributions F
(c)
S ,

τc = E[S|C(0) = c], (3.34)

ν2
c = E[(S − τc)

2|C(0) = c]. (3.35)

By linearity of conditional expectation, we obtain a linear relation for each c

τc = E[S1 + S2|C(0) = c] =
1

λc

+ pcτc+1 + qcτc−1, (3.36)

which can be rewritten as

−qcτc−1 + τc − pcτc+1 =
1

λc

. (3.37)

The boundary case of c = 1 leads to

−q1(τ1 + τN) + τ1 − p1τ2 =
1

λ1

. (3.38)

By independence, we also obtain a linear relation for the variances,

ν2
c = Var[S1 + S2|C(0) = c] =

1

λ2
c

+ Var[S2|C(0) = c]. (3.39)

To compute the second variance, we apply a simple case of the conditional variance

formula to obtain

Var[S2|C(0) = c] = pcν
2
c+1 + qcν

2
c−1 + pcτ

2
c+1 + qcτ

2
c−1 − (pcτc+1 + qcτc−1)

2. (3.40)
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Combining the variances, we obtain a linear relation with the same form as for the

means,

−qcν2
c−1 + ν2

c − pcν
2
c+1 =

1

λ2
c

+ pcτ
2
c+1 + qcτ

2
c−1 − (pcτc+1 + qcτc−1)

2, (3.41)

with the special boundary case for c = 1 of

−q1(ν2
1 + ν2

N) + ν1 − p1ν2 =
1

λ2
1

+ p1τ
2
2 + q1(τ1 + τN)2 − (p1τ2 + q1(τ1 + τN))2. (3.42)

Solving for the mean times τc using Equations 3.37-3.38, these values can be substi-

tuted into the right hand side of Equations 3.41-3.42 to solve for the variances ν2
c .

Because the linear systems are the same, even these reasonably small matrices need

be inverted only once.

Tables 3.5 and 3.6 summarize the estimates for the velocity and randomness for

the various models describing the two-state data. In addition, the tables show the

theoretical velocity and randomness for the original model from which the data were

derived. They also display the velocity and randomness that were explicitly calcu-

lated based on the observed positions, using the methods given in chapter 1, using

Equations 1.3 and 1.8. For each of the estimated values, the maximum likelihood

parameters found through the EM procedure were used to compute the velocity and

randomness. The velocity is well-matched by all of the models. However, the random-

ness is not well-described by the one-state model. The randomness for the true model

takes values less than 1, but one-state models are constrained to have a randomness

of at least 1. Also, although the simulation-based observed randomness varied from

the theoretical values, based on a limited amount of data, the randomness based on

the fitted models remained very consistent with the true values.

3.2.5 Residual Analysis

Another possible tool to help evaluate the appropriateness of a given model is residual

analysis through the use of the Viterbi algorithm. Recall that the Viterbi algorithm
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Experimental 2 state simul. 1 state 2 state 2 state 3 state
Group predict observed unconstr. unconstr. det. bal. unconstr.

1 pN, 10 µM 92.2 93.2 94.2 93.6 88.1 93.4
3.5 pN, 10 µM 46.4 45.7 44.2 44.2 44.9 44.2
5.5 pN, 10 µM 11.5 13.2 12.7 12.6 11.4 12.6

1 pN, 100 µM 435.6 436.3 435.6 434.5 441.6 433.1
3.5 pN, 100 µM 283.5 262.9 269.0 268.6 277.4 267.4
5.5 pN, 100 µM 103.3 102.3 102.7 103.1 102.0 102.9

1 pN, 2 mM 790.8 780.1 777.2 778.6 766.0 775.7
3.5 pN, 2 mM 635.6 617.4 605.4 607.0 630.4 604.2
5.5 pN, 2 mM 367.4 361.1 363.6 365.0 365.2 363.6

Table 3.5. Estimated velocities (nm/s) for each experimental group according to 1,
2, and 3 state models, as they compare to the predicted and observed velocities for
simulated, two-state data.

Experimental 2 state simul. 1 state 2 state 2 state 3 state
Group predict observed unconstr. unconstr. det. bal. unconstr.

1 pN, 10 µM 0.814 0.691 1.000 0.827 0.823 0.826
3.5 pN, 10 µM 0.905 0.923 1.066 0.908 0.910 0.903
5.5 pN, 10 µM 3.019 3.342 10.007 2.895 3.028 2.893

1 pN, 100 µM 0.540 0.501 1.000 0.547 0.555 0.529
3.5 pN, 100 µM 0.590 0.609 1.056 0.625 0.598 0.616
5.5 pN, 100 µM 1.485 1.262 4.207 1.505 1.489 1.499

1 pN, 2 mM 0.931 0.690 1.000 0.924 0.933 0.903
3.5 pN, 2 mM 0.896 0.782 1.009 0.915 0.895 0.911
5.5 pN, 2 mM 1.089 0.953 1.276 1.088 1.090 1.086

Table 3.6. Randomness computed for maximum likelihood models with 1, 2, and
3 states, as they compare to the predicted and observed randomness for simulated,
two-state data.
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computes the maximum likelihood path for the hidden Markov process. Using the

maximum likelihood parameters for each proposed model for the Viterbi algorithm,

the estimated equilibrium position of the bead can be calculated. Subtracting the

estimated equilibrium position from the observed bead position, we compute an esti-

mated sequence for the residuals. If, instead of the Viterbi estimates, the true equilib-

riums position were used at each time step, then the residual sequence would behave

as a simple autoregressive process. Thus, as a qualitative exploration of model, we

considered how the behavior of the residuals arising from the estimated states relate

to a simple autoregressive process.

Given the residual sequence, which we denote {εk}, we look at the autocorrelations

of the residuals through the use of the autocorrelation function (ACF) and the partial

autocorrelation function (PACF). Theoretically, if the residuals {εk} were a simple

autoregressive process with an autocorrelation coefficient ρ, then the ACF would be

a geometrically decaying sequence,

ACF(k) = ρk, k = 0, 1, 2, . . . , (3.43)

while the PACF, which is defined for k ≥ 1, will have

PACF(k) =

{
ρ, k = 1,

0, k > 1.
(3.44)

(See a text on time series analysis, such as Brockwell and Davis (1996)). We used the

standard ts package of the R statistical programming language for computing and

graphing the ACF and PACF (Ihaka and Gentleman, 1996). In addition to plotting

the estimated autocorrelation and partial autocorrelation, this package also plots a

cut-off band, where values inside the band would fail to be significantly different from

zero (0) with 95 percent confidence. Thus, if one observes the PACF and sees more

than one or two indexes k > 1 with values outside of this band, then the model is

likely not sufficiently characterizing the data.
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Figure 3.9. The partial autocorrelation function for the Viterbi residuals of a single
data set in the 5.5 pN 100 µM group generated from a two-state model and esti-
mated using one- and two-state models. The one-state model (left) shows additional
structure in the residuals, while the two-state model (right) does not. The horizontal
dashed lines are approximate 95 percent confidence bounds for zero autocorrelations.
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Consider the effects of one- and two-state models on a particular data set from

the simulated set with a force of 5.5 pN and an ATP concentration of 100 µM. Figure

3.9 illustrates the PACF generated from estimated Viterbi residuals for the MLE

estimates described earlier. Note that for this data file, the one-state model shows

a significant number of partial autocorrelations outside of the cut-off band. This

suggests that the residuals coming from a single-state model still show significant

structure beyond a simple autocorrelation. However, examining the PACF for the

same data set but using the two-state model, nearly all of the partial autocorrelations

now lie within the cut-off band. Thus, the addition of the second state eliminated

the structure that the PACF was identifying.

By examining another simulated run, we see that the PACF does not always iden-

tify whether the model is sufficient. In this case, we consider a data set with a force of

3.5 pN and ATP concentration of 100 µM. The PACF for both the one- and two-state

models are illustrated in Figure 3.10. In both cases, the Viterbi residuals appear to

have simple autoregressive structure, with nearly all partial autocorrelations inside

of the cut-off region. One of the possible factors that will impact the effectiveness of

the PACF in identifying extra structure is the scale of the noise. In the 5.5 pN data

set, the noise had a scale of only 3 nm, while the scale was 4.5 nm for the 3.5 pN

data set. By reducing the scale of noise, observations will be more tightly clustered

about the equilibrium positions of the underlying model. This extra structure may be

interpreted as extra autocorrelation in the PACF. But for greater noise, the observa-

tions are only loosely clustered about the equilibrium positions, and the PACF may

fail to interpret the remaining structure as autocorrelation. If we consider the change

in log-likelihood for these individual data sets as the second state is added, then the

strength of the structure will determine how much improvement is seen. The 3.5 pN

data set increased the log-likelihood by 10.753, while the 5.5 pN data set increased

by 110.915 although it was only about three times longer in length.

Using the Viterbi algorithm to compute the estimated equilibrium position of the
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Figure 3.10. The partial autocorrelation function for the Viterbi residuals of a single
data set in the 3.5 pN 100 µM group generated from a two-state model and estimated
using one- and two-state models. The horizontal dashed lines are approximate 95
percent confidence bounds for zero autocorrelations. Neither of the two models show
significant structure beyond the simple autocorrelation for the noise.
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bead, and hence the residuals, does potentially introduce additional correlations in the

measurements. As the algorithm selects the sequence that maximizes the likelihood

rather than according to the properties of the residuals, the resulting residual sequence

will include artifacts arising from misspecified states. Fast events, such as a short-

lived forward and backward substep, will tend to be overlooked as the likelihood pays

less penalty for a slightly larger discrepancy in a residual arising from an erroneous

state assignment than it would pay for two relatively rare transitions. Nevertheless,

the apparent success of this procedure for at least some of the data suggests that it

might be a helpful tool to consider.

3.3 Four-State Data

In addition to the two-state data discussed above, we also attempted to analyze a

collection of simulations based on the four-state model of Fisher and Kolomeisky

(Fisher and Kolomeisky, 2001). For these simulations, we explicitly model the con-

tinuous time model, so that we have knowledge of all the transitions. This extra

information allows us to include the memory term describing the relaxation of the

bead position to the equilibrium position. Because the hidden Markov model does

not account for this aspect of the true behavior, we used this data set to explore the

impact of the existence of the memory term.

The most severe challenge to accomplish this analysis was the time required for

the computers to perform the EM algorithm, particularly for the models with three

and four states, where we managed only three to four iterations per hour. The max-

imization step, in particular, took quite a bit longer for the larger models due to the

increase in number of rate parameters needing to be estimated and the corresponding

cost to differentiate the transition probabilities. When it was clear that we would not

be able to complete the same thorough model comparison as was performed for the

two-state simulations, we directed the majority of our resources to completing the
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two-state analysis and to do as much analysis of the real data sets as possible.

By starting with the true four-state model and parameters, we performed the EM

algorithm for 200 iterations. While this is far from enough to complete any analysis—

applying a three-state model to filter the two-state data required approximately 2000

iterations before parameters really settled down—it did reveal that the true observa-

tion parameters, particularly the position of intermediate substeps, were not stable.

Figure 3.11 illustrates the evolution of these positions over these 200 iterations (solid

lines). In both the 1 pN and the 3.5 pN groups, at least one of the intermediate states

seems to be lost in the data. It should also be remarked that when the three offsets

maintain a common relative separation while still moving on the graph, that this can

also be interpreted as the first position ε1 moving in the opposite direction relative

to the other three, such as for the group with 5.5 pN force and 2 mM [ATP].

In order to determine how much the inclusion of the memory term controls this

unfortunate behavior, we generated the identical data set except that the memory

term was not included. In particular, we used the same seed for the pseudo-random

number generator. We verified that the data were the same by comparing the hidden

states in a number of different data files and observing that they were identical. We

repeated the EM algorithm for another 200 iterations with the same initial conditions.

The behavior was essentially identical to the results with the memory term, with the

evolution of substep positions showing similar trends. The most prominent effect in

several of the data sets was an overall offset between the substep positions with the

memory present relative to the positions with the memory absent. The effect is most

visible for the groups with force of 5.5 pN. The presence of the memory term causes

the bead position not to reflect the true equilibrium position near transition events,

mixing the information about neighboring states.

Because the overall behavior of the substep positions did not depend significantly

on the presence of the memory effect, it appears that the scale of noise and autocorre-

lation has a much more important role in identifying the positions of the intermediate
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Figure 3.11. Evolution of the offsets εc from the true values, ε2 = 0.25, ε3 = 0.40,
and ε4 = 0.55, for a four-state model for 200 iterations of the EM algorithm. Solid
lines are for data which include the memory term; dashed lines are for data which
have the memory term eliminated.
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states. The data sets were generated with progressively smaller sizes of noise and au-

tocorrelation, corresponding to the behavior of the original physical system where a

stiffer trap exerts a higher load and creates smaller autocorrelation times. The 1 pN

data sets were generated with a noise scale of approximately 7 nm, the 3.5 pN data

sets with 4.5 nm, and the 5.5 pN data sets with 3 nm. Similarly the autocorrelation

coefficients dropped as the load was increased, with values of 0.3, 0.25, and 0.18 for

the respective force levels, corresponding to respective autocorrelation times of 0.416

ms, 0.361 ms, and 0.292 ms. The sampling time used for the data was 0.5 ms. In

addition, the model caused the data with higher loads to spend more time in the un-

derlying states, due to the suppression of transitions due to load-dependence. Thus,

in all senses, the high-load experiments contained much more information about the

hidden model. The confounding of the autocorrelation with the scale of noise makes

it impossible from this experiment to determine whether the noise or autocorrelation

plays the more important role. The experiments do, however, suggest that the data

need to be sampled more frequently.
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Chapter 4

Kinesin Data Results

We finally discuss the results of applying the hidden Markov model filtering proce-

dures on the single-molecule kinesin data arising from the experiments of Visscher

et al. (1999). The data sets we used come from the same nine experimental condi-

tions selected for the simulated data, shown in Table 3.1, and the existence of the

actual data motivated the choice of simulated conditions. Because the speed at which

kinesin moves depends so strongly on the experimental conditions, the typical number

of data points in each file varied widely over the different experimental conditions.

With the original intent of performing a global fit to the detailed balance model, we

want each experimental condition to provide a comparable weight to the overall like-

lihood. With the slow conditions of high force and low ATP concentrations having

so many data points per file, we randomly selected data sets to exclude from these

conditions so that the overall likelihood does not come overwhelmingly from these

conditions.

In the process of performing the EM algorithm using the hidden Markov model

methods developed for this project, we realized that the data of the experiment were

not quite appropriate for the attempted analysis. Consequently, we do not believe that

the particular model parameters obtained from this analysis have physical relevance.

The results on the simulations initially suggest that a first problem is insufficient

data sampling, particularly for models with more than two states. This chapter will

discuss the results of our analysis on the kinesin with simple two-state models, and

the additional issues that arise. In the conclusion, Chapter 5, we suggest possible

improvements to the experimental design that will be better compatible with hidden

Markov model filtering.
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4.1 Step-Size Variation

Perhaps the most serious challenge in obtaining reliable parameter estimates for the

kinesin data was excessive variability in the estimates of d, the lattice step-size. Re-

call that the hidden Markov model estimates of the summary statistics, on which

all of the parameters are based, are computed using the observations weighted ac-

cording to their distance from the assumed lattice positions. If the model lattice is

reasonably close to the true lattice, then the EM algorithm will successfully converge

to consistent estimates of the true model parameters. But if the lattice is not valid,

then these summary statistics will represent mixtures of different states of the true

model. Consequently, if the lattice is improperly specified, then all other parameter

estimates become unreliable.

Physically, the lattice structure of the microtubule is known to have a step-size of

8.2 nm. Because the recorded observations come from projections of kinesin movement

in two dimensions into a single dimension, effective lattice step-sizes should be slightly

shorter than 8.2 nm. For example, an alignment error of 10 degrees would correspond

to a reduced length of 98.5 percent of the original, 8.075 nm. Lattice step-sizes larger

than 8.2 nm would not be expected, except perhaps for some slight error inherent in

statistical estimation. Additional errors might also come from instrument calibration.

Our earlier results for simulated data indicated that the lattice structure naturally

creates a multi-modal likelihood surface. Recall that changing the step-size enough

to add or remove a site on the lattice corresponded approximately with the positions

of the local maxima in the d-direction. The kinesin experiments typically involve

runs with a span of approximately 300 nm. This corresponds to a range of at least

36 different lattice sites. Thus, an error in the step-size larger than 0.22 nm ( 1
36

of

8.2 nm) would lead to a mismatch in the lattices, and consequently would invalidate

other parameter estimates.

When the EM algorithm was applied to the kinesin data, the estimated step-sizes
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Figure 4.1. Histograms of the estimated step-size d for the 80 data sets comprising
the experimental conditions of 3.5 pN and 100 µM [ATP] for both one- and two-state
models.

had much larger variability than allowed for consistent parameter estimates. For

example, consider the experimental condition with 100 µM concentration of ATP

and 3.5 pN load. This collection had 80 different data files. The histogram of step-

sizes for a one-state model, given in Figure 4.1, shows that the estimates are broadly

centered about a mean of 7.89 nm and standard deviation of 0.277 nm. The values

range from a low of 7.196 nm to a high of 8.404 nm. The second half of the figure

gives the histogram of step-sizes for a two-state model. This set has a mean of 8.20

nm and a standard deviation of 0.246 nm, with a range from 7.69 to 8.80 nm. Similar

results appeared for other experimental conditions (not shown). In both cases, the

range of step-sizes is much too wide. Particularly, the estimated step-sizes greater

than 8.2 nm cast serious doubt to their validity, as do the extremely low estimates.
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However, even a marginally low step-size, such as 7.8 nm, potentially creates a model

lattice sufficiently mismatched to the true lattice to cause problems with parameter

estimates.

4.2 Variability within Conditions

Concerned that the estimated step-sizes were simply a result of the multimodal nature

of the likelihood surface, we also explored the likelihood surface restricted to the two

dimensions of step-size d and starting offset κ. The expected behavior, established

by the previous simulations, would be for a band of maximum peaks near d = 8.1 nm

(because of the apparent shortening) with additional bands to either side that decrease

in likelihood. Holding all other parameters fixed at the final estimated values, we

varied the step-size and starting offsets for a few different data sets and examined

their likelihood surfaces. If the problem was that the algorithm accidentally selected

the wrong peak, in spite of our efforts to avoid this through occasionally using a

coarse grid for the lattice parameters, then a finer grid should reveal an appropriate

peak near the expected position.

Instead, the likelihood surfaces indicated that something else was occurring. The

first contour of Figure 4.2 shows the likelihood surface for a data set which had a step-

size estimate of 7.00 nm. Rather than having a likelihood centered around a value

near 8.1 nm, the surface displays a strong preference for short step-sizes. Similarly,

the first contour of Figure 4.3 shows the likelihood surface for a second data set which

led to an estimated step-size of 9.13 nm. This surface shows a preference toward large

step-sizes. Evidently, some information in the data causes step-size estimates for

particular data sets to move toward extreme values.

One possible cause for the observed behavior is that the underlying Markov model

varies between different observations within a given experimental condition. Each

experimental condition includes many different kinesin runs, coming from several
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Figure 4.2. Log-likelihood profile for a data set in the 1 pN 10 µM group which
estimated the step-size near 7 nm. The κ-axis is centered around the original MLE
κML. Subfigure (a) gives the surface when using transition rates derived from all of
the data sets in the group, while subfigure (b) gives the surface when using transition
rates optimized for the individual data set.
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Figure 4.3. Log-likelihood profile for a data set in the 1 pN 100 µM group which
estimated the step-size near 9 nm. The κ-axis is centered around the original MLE
κML. Subfigure (a) gives the surface when using transition rates derived from all of
the data sets in the group, while subfigure (b) gives the surface when using transition
rates optimized for the individual data set.
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different kinesin-bead systems. Additionally, these different runs may come from

different flow-cell preparations or even from different days. The amount of variability

in stepping behavior due to differences between individual proteins, as well as different

flow-cells, remains unclear. If a particular run has stepping statistics different from

the experimental group, then it may be beneficial to the likelihood for the model

artificially to increase or decrease the number of estimated steps to remain compatible

with the average transition rates.

In order to see if internal variability might influence the likelihood profile, we

isolated the data sets being examined and repeated the EM algorithm on each file

individually. To encourage the estimated model to be consistent with the physical

step-size of 8.2 nm, we ran the algorithm with the step-size constrained at 8.1 nm

for 200 iterations, allowing other parameters to accommodate this prior information.

Then we relaxed the constraint and repeated the EM algorithm, allowing the step-size

to converge to a local maximum. This provided each file with an independent estimate

of rate parameters for the underlying Markov model. Finally, we recreated the likeli-

hood surface over the original range of step-sizes to see what changed. These surfaces

based on individualized parameters are shown in the second half of the previously

mentioned figures, Figures 4.2 and 4.3.

The resulting surfaces showed some improvement, but did not necessarily position

the overall maximum likelihood near the expected 8.1 nm. First consider the likeli-

hood surfaces of Figure 4.2, which started with a bias toward small step-sizes. This

data set shows some progress, although the bias is still strongly apparent. We note

that the log-likelihood for this individual data set improved by about 100. With four

parameters to describe the transition rates and three parameters to describe the auto-

correlation ρ, noise scale σ, and intermediate substep position ε2, splitting each data

file out of an experimental group introduces seven new parameters. The 99.99 percent

cut-off for a χ2 test with 7 degrees of freedom is 29.878. Thus, statistical evidence

indicates that the data set is significantly different from the parameters derived from
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the full group. Next, consider the likelihood surfaces of Figure 4.3, where the bias

was toward larger step-sizes. In this instance, the strongest band for the likelihood

with individualized parameters now appears at approximately 8.2 nm. The overall

likelihood increase for this data set is 23.18, with a χ2 statistic value of χ2 = 46.36.

Again, the data demonstrate a statistically significant improvement for separating

the data set from the rest of the group. Finally, we remark that the amount that the

likelihood changed for these two data sets should not be directly compared with each

other, as the sets came from different experimental conditions.

4.3 Unexpected Noise Characteristics

Another issue that arose, at least in the high noise conditions of 1 pN load, was that

the data included some unexplained noise characteristics. When analyzing the two-

state model, the EM algorithm consistently selected an intermediate step position ε2

which was a moderately large, negative number. The values selected in the maximum

likelihood models for the 10 µM, 100 µM and 2 mM conditions are ε2 = −0.596,

−0.567 and −0.194, respectively. Because a backward substep as part of a forward

step seems physically problematic, we examined this behavior more carefully to iden-

tify the source.

Since the estimate for a given substep position will be based on a weighted average

of those observations that most likely come from that particular state, we used the

Viterbi algorithm to generate maximum likelihood paths of the kinesin state for the

data sets in question. Figure 4.4 illustrates a sample data set from the 1 pN 100

µM group, paralleled by the estimated equilibrium bead position, offset to separate it

from the original signal. Notice that the spikes in the equilibrium position correspond

with corresponding extreme positions in the bead position. Examining the original

data sets in the proximity of these spikes, one finds occasional sudden jumps for a

single observation of 20-30 nm, after which the observations immediately return to
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Figure 4.4. The estimated equilibrium position of the bead for a particular data
set in the 1 pN 100 µM experimental group, offset from the original sequence of
observations. The downward spikes are a modeling artifact arising from occasional
position measurements that are unexplained by noise or standard transitions.

values comparable to other nearby observations.

Evidently, as the EM algorithm progresses, the model must minimize the penalty

on the likelihood caused by spikes. One possibility is to treat the spike as though it

were caused by a complete cycle in one direction which was immediately followed by a

cycle in the opposite direction. The primary difficulty with this approach to dealing

with the spikes is that it would necessarily raise all of the backward transitions,

implying an increase in the rate of reverse cycles. But the majority of the data do

not support frequent backward cycles, as backward steps are relatively rare. An

alternative approach is for one of the states in a multi-state model to represent all

of the extreme spikes in a particular direction. By making the total transition rate
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sufficiently large, the time spent in the state will be kept short. This second method

minimizes the likelihood penalty better than the first, as the cost for the cycle to

proceed through the pike state without being observed is minimal. The most extreme

spikes eventually cause the model to use one of the states to account for spikes. As the

EM algorithm progresses, other observations which may be only moderately in the

direction of the spike gradually contribute additional weight to the state. A side effect

of this behavior is that true short-term backward steps might also be interpreted as

coming from the spike state.

We are unable to determine the physical source of these spikes. The data sets

with lower noise from the higher loads of 3.5 and 5.5 pN do not select for a state

corresponding to spikes. In fact, they estimate an intermediate fractional substep ε2

between 0.3 and 0.7. It may be that the spikes are present in the other data sets, but

due to the smaller noise scale, the model attains a better likelihood by incorporating

internal structure in the data other than the spikes. Alternatively, there may have

been specific, yet unknown experimental cause of the spikes that was present only

for some of the experiments. In any event, the unphysical nature of the fractional

substep positions indicates that these data sets are inadequate to identify internal

structure.

4.4 Additional Experimental Issues

In addition to the data characteristics already mentioned, a few other potential prob-

lems may also contribute to make the analysis ineffective—kinesin slippage and exper-

imental drift—although it was unclear whether they occurred in the nine conditions

considered.

Early during the project, we did perform one complete iteration of the EM al-

gorithm on every data set available from the experiments of Visscher et al. (1999).

Occasionally, extremely rare, large backward events would occur, causing a serious
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penalty to the likelihood of the particular data set. By recording which data set and

for which time index the event occurred, we examined the original data to observe that

occasionally the data show a sudden drop in the bead position. Some of these events

represented extremely strong spikes, where the bead position would subsequently re-

turn to the neighborhood of the original position. But other times, the kinesin simply

made a sudden shift without recovering the loss. One possibility is that the kinesin

performed a rare sequence of backward cycles. However, it seems more likely that the

kinesin slipped. This would occur if the kinesin detached from the microtubule and

then reattached at another site before the bead drifted away from the microtubule.

The second possibility would necessarily be interpreted as backward cycles, as the

present model provides no alternative pathways for backward motion. Consequently,

the hidden Markov model estimation would artificially inflate the backward rates to

compensate for any data with the presence of slippage.

Another issue that we observed in some experimental conditions was the possibility

of drift, particularly for conditions with very slow velocity. When kinesin remained at

particular lattice sites for time intervals on the scale of several seconds, the average

position appeared to vary slowly in time. This drift arises, at least in part, from

the slow motion of the experimental equipment, such as the microscope stage and

tracking system. The nine experimental conditions selected for analysis had velocities

fast enough that drift was not visibly apparent at individual lattice sites, although

the possibility of drift can not be rejected. If drift were significant, then it would

corrupt the estimates of the step-size d as well as the positions of the intermediate

states. This, in turn, would affect the transition rates between these states.
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Chapter 5

Conclusion

Hidden Markov model analysis of single-molecule assays provides a promising tool

to extract information about the internal states of the chemical cycles. Although

simulations indicate that the method should work for appropriate data, current ex-

perimental data for the motor protein kinesin are not quite adequate for the present

implementation of the algorithm. The experiments under consideration did not pro-

vide enough data points sampling the underlying states relative to the size of noise

and autocorrelation. In addition, the speed of the algorithm provided a major obsta-

cle to pursuing more extensive analysis. Both of these issues likely need to be resolved

in order to make this form of analysis helpful to understanding the mechanochemical

cycle of proteins such as kinesin.

5.1 Experimental Suggestions

The results of analyzing the kinesin data suggest that future experiments must be

designed for the needs of hidden Markov model analysis rather than simply applied

post hoc. In particular, bead positions need to be recorded more frequently, so that

the number of observations per underlying state can increase. Sampling rates should

ideally be at least several factors larger than the fastest transition rates in the model.

In addition, the autocorrelation time caused by the viscous drag of the bead through

the fluid needs to be reduced so that the additional data points will be able to

contribute significant new information. The possibility of variability of the underlying

transition rates for different kinesin molecules suggests that experiments should be

undertaken to increase the number of repeated runs for individual molecules, rather

than relying on many different proteins within a particular experimental condition. In
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addition, it would be helpful to extend the length of the runs, to increase the number

of sites visited on the lattice. Some control or tracking of the experimental drift during

the course of an experiment would help make any estimates more reliable. Preliminary

analysis of bead records might also help identify irregular noise characteristics during

the experiment.

5.2 Model Suggestions

In addition to needing more refined experiments, the experimental results indicated

that the model might need some additional adjustments. The appearance of irregular

noise suggests that if the experimental source can not be identified, then some adapta-

tion to the model might be required. In addition, the appearance of slippage suggests

that some effort might be needed to allow this type of behavior. Introducing these

additional transitions would, unfortunately, increase the complexity of the model and

transition rates. A simple alternative would be to use the existing hidden Markov

models to identify the occurrence of these rare events, and then split the data set into

different runs separated at the slip times. This has the disadvantage of reducing the

number of data points available for each of the resulting sets, although this would

be reduced with faster sampling rates. Finally, the current model entirely neglects

the memory term which arises from the spatial transitions of kinesins to which the

bead responds with a viscous delay. The model would benefit from the inclusion of

the memory term, if it could be added with seriously increasing the complexity of the

algorithms.

5.3 Implementation Issues

The final area that needs serious resolution deals with the computational effort to

complete the EM algorithm. Two issues to address are the time to compute the

derivatives of the transition probabilities and the number of iterations required to
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obtain convergence. Rather than compute the derivatives numerically by repeatedly

computing the transition probabilities, one might find a method to compute them

directly. Some work has been done in this direction (Michalek and Timmer, 1999),

but it is presently unclear how to implement this effectively for the number of states

introduced with an underlying lattice. The second challenge, reducing the number

of iterations required for convergence, might also be solved using a direct approach.

The apparent challenge to the EM algorithm is that the likelihood surface is relatively

flat in certain directions. Consequently, sequential estimates remain close together.

To overcome this challenge, more information about the likelihood surface needs to

be incorporated than the EM algorithm uses. Direct maximization of the likelihood

surface can take advantage of both the gradient and curvature of the surface (Qin

et al., 2000), and an extension of these ideas may be possible to the lattice model.

The greatest obstacle to this approach is the large number of estimated parameters.

However, it may be possible to maximize the likelihood in stages, working first with

the lattice parameters and followed by the remaining parameters. In such an ap-

proach, care should be taken to minimize the number of times that the likelihood

must be calculated.
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Astumian, R. D. and Derényi, I. (1999). A chemically reversible Brownian motor:
Application to kinesin and ncd. Biophysical Journal, 77:993–1002.

Baum, L. E. and Petrie, T. (1966). Statistical inference for probabilitic functions of
finite state Markov chains. Ann. Math. Stat., 37:1554–63.

Baum, L. E., Petrie, T., Soules, G., and Weiss, N. (1970). A maximization technique
occurring in the statistical analysis of probabilistic functions of Markov chains.
Ann. Math. Stat., 41(1):164–71.

Bickel, P. J., Ritov, Y., and Rydén, T. (1998). Asymptotic normality of the maximum-
likelihood estimator for general hidden Markov models. Ann. Stat., 26(4):1614–35.

Block, S. M., Goldstein, L. S., and Schnapp, B. J. (1990). Bead movement by single
kinesin molecules studied with optical tweezers. Nature, 348(6299):348–52.

Brockwell, P. J. and Davis, R. A. (1996). Introduction to Time Series and Forecasting.
Springer-Verlag, New York.

Chung, S. H., Moore, J. B., Xia, L., Premkumar, L. S., and Gage, P. W. (1990).
Characterization of single channel currents using digital signal processing tech-
niques based on hidden Markov models. Philos. T. Roy. Soc. B, 329:265–85.

Churchill, G. A. (1989). Stochastic-models for heterogeneous DNA-sequences. B.
Math. Biol., 51(1):79–94.

Coy, D. L., Wagenbach, M., and Howard, J. (1999). Kinesin takes one 8-nm step for
each ATP that it hydrolyzes. J. Biol. Chem., 274(6):3667–71.

Crevel, I. M.-T. C., Lockhart, A., and Cross, R. A. (1996). Weak and strong states
of kinesin and ncd. J. Mol. Biol., 257(1):66–76.

Dembo, A. and Zeitouni, O. (1986). Parameter estimation of partially observed
continuous time stochastic processes via the EM algorithm. Stoch. Proc. Appl.,
23:91–113.



160

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. J. Roy. Stat. Soc., 39(1):1–38.

Douc, R. and Matias, C. (2000). Propriétés asymptotiques de l’estimateur de maxi-
mum de vraisemblance pour des modèles de markov cachés généraux. C. R. Acad.
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