Introduction to Mass-Action Kinetics and Chemical Reaction Network Modeling

Zev Woodstock

May 2016
Nonlinear Dynamics (Math 441) Final Presentation
Outline

- Model Description
 - Applied to one reaction
 - Applied to a reaction network
- Computational Example (Euler’s Method)
- Discussion on steady states of reaction networks
- Survey of methods to show multistationarity in CRN’s
Definitions & Assumptions

\[2H_2 + O_2 \xrightarrow{r} 2H_2O \]

Definitions: Species,

Assumptions:

- The speed of the reaction is proportional to the reactants present
- Necessary for Conservation of Mass

The Idea:

We get one differential equation for each species.

\[\dot{H}_2 = -2r(H_2)^2(O_2) \]
\[\dot{O}_2 = -r(H_2)^2(O_2) \]
\[\dot{H}_2O = 2r(H_2)^2(O_2) \]

I.V. ODEs:

\[H_2(0), O_2(0), H_2O(0) \]

Where \(H_2(t), O_2(t), \) and \(H_2O(t) \) are functions of time.
Definitions & Assumptions

\[2H_2 + O_2 \xrightarrow{r} 2H_2O \]

Definitions: *Species, Reactants,*
Definitions & Assumptions

2H₂ + O₂ \xrightarrow{r} 2H₂O

Definitions: \textit{Species, Reactants, Products},
Definitions & Assumptions

2H₂ + O₂ $\xrightarrow{r} 2H₂O$

Definitions: Species, Reactants, Products, Reaction Rate

Assumptions:
- The speed of the reaction is proportional to the reactants present
- Necessary for Conservation of Mass

Mass-Action Kinetics
Definitions & Assumptions

2H₂ + O₂ → 2H₂O

Definitions: Species, Reactants, Products, Reaction Rate
Assumptions:
- The speed of the reaction is proportional to the reactants present
- Necessary for Conservation of Mass

The Idea: We get one differential equation for each species.

\[\dot{H}_2 = -2r(H_2)^2(O_2) \]
\[\dot{O}_2 = -r(H_2)^2(O_2) \]
\[H_2O = 2r(H_2)^2(O_2) \]

I.V. ODEs: \(H_2(0), O_2(0), H_2O(0) \)
Definitions & Assumptions

\[2H_2 + O_2 \rightarrow 2H_2O \]

Definitions: Species, Reactants, Products, Reaction Rate

Assumptions:
- The speed of the reaction is proportional to the reactants present
- Necessary for Conservation of Mass

The Idea: We get one differential equation for each species.

\[
\begin{align*}
\dot{H}_2 &= -2r(H_2)^2(O_2) \\
\dot{O}_2 &= -r(H_2)^2(O_2) \\
\dot{H}_2O &= 2r(H_2)^2(O_2)
\end{align*}
\]

I.V. ODEs: \(H_2(0), O_2(0), H_2O(0) \)

Where \(H_2(t), O_2(t), \) and \(H_2O(t) \) are functions of time.
Example: Reaction Network Model

System of ODEs

\[\dot{A} = r_4 \cdot CD - r_1 \cdot AC \]
\[\dot{B} = r_1 \cdot AC + r_2 \cdot CD - r_3 \cdot B \]
\[\dot{C} = r_3 \cdot B - r_1 \cdot AC - r_2 \cdot CD \]
\[\dot{D} = r_3 \cdot B - r_4 \cdot CD - r_2 \cdot CD \]
Example: Reaction Network Model

System of ODEs

\[
\begin{align*}
\dot{A} &= r_4 CD - r_1 AC \\
\dot{B} &= r_1 AC + r_2 CD - r_3 B \\
\dot{C} &= r_3 B - r_1 AC - r_2 CD \\
\dot{D} &= r_3 B - r_4 CD - r_2 CD
\end{align*}
\]
Linearization

We can re-express the ODEs in a linear system of a Stoichiometric Matrix, Γ, and a Reaction vector, ρ.

\[
\begin{align*}
\dot{A} &= r_4 CD - r_1 AC \\
\dot{B} &= r_1 AC + r_2 CD - r_3 B \\
\dot{C} &= r_3 B - r_1 AC - r_2 CD \\
\dot{D} &= r_3 B - r_4 CD - r_2 CD
\end{align*}
\]

\[
\begin{pmatrix}
-1 & 0 & 0 & 1 \\
1 & 1 & -1 & 0 \\
-1 & -1 & 1 & 0 \\
0 & -1 & 1 & -1
\end{pmatrix}
\begin{pmatrix}
r_1 AC \\
r_2 CD \\
r_3 B \\
r_4 CD
\end{pmatrix}
\]
Model Description
Steady States in CRNs
Methods for proving multistationarity

Linearization

This is called the **Mass-Action Kinetics System**

\[
\frac{\dot{x}}{x} = \begin{pmatrix}
-1 & 0 & 0 & 1 \\
1 & 1 & -1 & 0 \\
-1 & -1 & 1 & 0 \\
0 & -1 & 1 & -1
\end{pmatrix} \cdot \begin{pmatrix}
r_1 AC \\
r_2 CD \\
r_3 B \\
r_4 CD
\end{pmatrix} = \Gamma \cdot \rho(\bar{r}, \bar{x})
\]

\(\bar{x}\) is the vector of species **concentrations**, \(\bar{r}\) is the vector of reaction rates
Natural Questions about Equilibria for CRN’s

Q: Will a given system converge to a steady state?
Natural Questions about Equilibria for CRN’s

• **Q:** Will a given system converge to a steady state?
 • What is the steady state?
 • *Is it independent of Initial Conditions?*
Natural Questions about Equilibria for CRN’s

- **Q:** Will a given system converge to a steady state?
 - What is the steady state?
 - *Is it independent of Initial Conditions?*

- **Q:** How do we determine the reaction rates?
 (Dimensional homogeneity is **necessary**!)
Natural Questions about Equilibria for CRN’s

Q: Will a given system converge to a steady state?
 - What is the steady state?
 - *Is it independent of Initial Conditions?*

Q: How do we determine the reaction rates?
 (Dimensional homogeneity is necessary!)
 - A: It’s hard.
Natural Questions about Equilibria for CRN’s

Q: Will a given system converge to a steady state?
 - What is the steady state?
 - Is it independent of Initial Conditions?

Q: How do we determine the reaction rates?
 (Dimensional homogeneity is necessary!)
 - A: It’s hard. These rates change with time, temperature, etc…
 There are complicated stochastic models on how to determine
 these rates. Long-term averages are used in practice.
Natural Questions about Equilibria for CRN’s

Q: Will a given system converge to a steady state?
 - What is the steady state?
 - Is it independent of Initial Conditions?

Q: How do we determine the reaction rates?
 (Dimensional homogeneity is necessary!)
 - A: It’s hard. These rates change with time, temperature, etc...
 There are complicated stochastic models on how to determine these rates. Long-term averages are used in practice.
 - A: Ask a different question!

Q: Which networks are multistationary?
Natural Questions about Equilibria for CRN’s

- **Q:** Will a given system converge to a steady state?
 - What is the steady state?
 - *Is it independent of Initial Conditions?*

- **Q:** How do we determine the reaction rates?
 (Dimensional homogeneity is **necessary**!)
 - **A:** It’s hard. These rates change with time, temperature, etc... There are complicated stochastic models on how to determine these rates. Long-term averages are used in practice.
 - **A:** Ask a different question!

- **Q:** Which networks are multistationary?

A CRN is **multistationary** if there exist reaction rates \bar{r} and distinct non-trivial steady states \bar{x}_1 and \bar{x}_2 such that

$$\Gamma \cdot \rho(\bar{r}, \bar{x}_1) = \Gamma \cdot \rho(\bar{r}, \bar{x}_2) = \bar{0}$$
Example: Reaction Network Modeling

Euler’s Method Simulations for \(r_i = 1 \)

System of ODEs

\[
\begin{align*}
\dot{A} &= r_4 CD - r_1 AC \\
\dot{B} &= r_1 AC + r_2 CD - r_3 B \\
\dot{C} &= r_3 B - r_1 AC - r_2 CD \\
\dot{D} &= r_3 B - r_4 CD - r_2 CD
\end{align*}
\]

Initial Conditions: \([1, 1, 1, 1]\).

Diagram

[Diagram showing the reaction network with conditions and variables depicted.]
MULTIPLE EQUILIBRIA IN COMPLEX CHEMICAL REACTION NETWORKS: I. THE INJECTIVITY PROPERTY*

GHEORGHE CRACIUN† AND MARTIN FEINBERG‡

Abstract. The capacity for multiple equilibria in an isothermal homogeneous continuous flow stirred tank reactor is determined by the reaction network. Examples show that there is a very delicate relationship between reaction network structure and the possibility of multiple equilibria. We suggest a new method for discriminating between networks that have the capacity for multiple equilibria and those that do not. Our method can be implemented using standard computer algebra software and gives answers for many reaction networks for which previous methods give no information.

Key words. equilibrium points, chemical reaction networks, chemical reactors, mass-action kinetics

AMS subject classifications. 80A30, 37C25, 65H10
Theorem Idea:

- If there exists a positive linear combination of columns in the stoichiometric matrix.*

* And a technical determinant property is satisfied (det(J) $<$ 0)*

Proof Idea:

Construct rates that satisfy det(J) $>$ 0, then use the IVT to force det(J) = 0. They create one degenerate steady state, and perturb it to create two steady states (Bifurcation).
Theorem Idea:

- If there exists a positive linear combination of columns in the stoichiometric matrix*
- And a technical determinant property is satisfied (\(\det(J) < 0 \))
Theorem Idea:

- If there exists a positive linear combination of columns in the stoichiometric matrix S
- And a technical determinant property is satisfied $(\det(J) < 0)$
- Then your network is multistationary
Theorem Idea:
- If there exists a positive linear combination of columns in the stoichiometric matrix*
- And a technical determinant property is satisfied (det(J) < 0 *)
- Then your network is multistationary

Proof Idea
- Construct rates that satisfy det(J) > 0, then use the IVT to force det(J) = 0.
Theorem Idea:

- If there exists a positive linear combination of columns in the stoichiometric matrix *
- And a technical determinant property is satisfied ($\det(J) < 0 ^*$)
- Then your network is multistationary

Proof Idea

- Construct rates that satisfy $\det(J) > 0$, then use the IVT to force $\det(J) = 0$.
- They create one degenerate steady state, and perturb it to create two steady states (Bifurcation)
Embedded Subnetworks (Joshi & Shiu)

If N is an embedded subnetwork of G, under certain hypotheses* then if N admits m positive non-degenerate steady states (for some fixed choice of reaction rates), then G also admits m positive, non-degenerate steady states (for some fixed choice of reaction rates).
Embedded Subnetworks (Joshi & Shiu)

- If N is an embedded subnetwork of G, under certain hypotheses then if N admits m positive non-degenerate steady states (for some fixed choice of reaction rates), then G also admits m positive, non-degenerate steady states (for some fixed choice of reaction rates).
If N is an embedded subnetwork of G, under certain hypotheses* then if N admits m positive non-degenerate steady states (for some fixed choice of reaction rates), then G also admits m positive, non-degenerate steady states (for some fixed choice of reaction rates).
Embedded Subnetworks (Joshi & Shiu)

- If N is an embedded subnetwork of G, under certain hypotheses* then if N admits m positive non-degenerate steady states (for some fixed choice of reaction rates), then G also admits m positive, non-degenerate steady states (for some fixed choice of reaction rates).
Embedded Subnetworks (Joshi & Shiu)

- If N is an embedded subnetwork of G, under certain hypotheses* then if N admits m positive non-degenerate steady states (for some fixed choice of reaction rates), then G also admits m positive, non-degenerate steady states (for some fixed choice of reaction rates).

- This allows us to determine information of a complicated system from a simpler system...
Embedded Subnetworks (Joshi & Shiu)

- If N is an embedded subnetwork of G, under certain hypotheses* then if N admits m positive non-degenerate steady states (for some fixed choice of reaction rates), then G also admits m positive, non-degenerate steady states (for some fixed choice of reaction rates).

- This allows us to determine information of a complicated system from a simpler system...

- ... As long as we know a lot about these smaller embedded networks.
Embedded Subnetworks (Joshi & Shiu)

- If N is an embedded subnetwork of G, under certain hypotheses* then if N admits m positive non-degenerate steady states (for some fixed choice of reaction rates), then G also admits m positive, non-degenerate steady states (for some fixed choice of reaction rates).

- This allows us to determine information of a complicated system from a simpler system...

- ... As long as we know a lot about these smaller embedded networks.

- This motivates creating a catalog of multistationary networks with positive non-degenerate steady states.
* The hypothesis we will consider is when “N is a CFSTR embedded in the fully open network G”
* The hypothesis we will consider is when “N is a CFSTR embedded in the fully open network G”

Our Network

\[
\tilde{K}_{m,n} = \begin{cases}
X_1 + X_2 \to 0 \\
\vdots \\
X_{n-1} + X_n \to 0 \\
X_1 \to mX_n \\
X_i \leftrightarrow 0 \quad \forall \ i \in \{1, 2, \ldots, n\}
\end{cases}
\]
* The hypothesis we will consider is when “\(N \) is a CFSTR embedded in the fully open network \(G \)"

Our Network

\[
\tilde{K}_{m,n} = \begin{cases}
X_1 + X_2 \rightarrow 0 \\
\vdots \\
X_{n-1} + X_n \rightarrow 0 \\
X_1 \rightarrow mX_n \\
X_i \leftrightarrow 0 \quad \forall \ i \in \{1, 2, \ldots, n\}
\end{cases}
\]

\(\tilde{K}_{m,n} \) is known to be multistationary for odd \(n \).
* The hypothesis we will consider is when “N is a CFSTR embedded in the fully open network G”

\[\tilde{K}_{m,n} = \begin{cases}
X_1 + X_2 \to 0 \\
\vdots \\
X_{n-1} + X_n \to 0 \\
X_1 \to mX_n \\
X_i \leftrightarrow 0 \quad \forall \ i \in \{1, 2, \ldots, n\}
\end{cases} \]

$\tilde{K}_{m,n}$ is known to be multistationary for odd n. However, non-degeneracy is required for this family to be added to the catalog.
* The hypothesis we will consider is when “N is a CFSTR embedded in the fully open network G”

Our Network

\[
\tilde{K}_{m,n} = \begin{cases}
X_1 + X_2 \to 0 \\
\vdots \\
X_{n-1} + X_n \to 0 \\
X_1 \to mX_n \\
X_i \leftrightarrow 0 \text{ } \forall \text{ } i \in \{1, 2, ..., n\}
\end{cases}
\]

Definition (Non-degneracy)

Intuitively, this means it is a “friendly” steady state. Mathematically, a steady state \bar{x} is **non-degenerate** if $\text{Im}(\Gamma) = \text{Im}(\text{Jacobian of } \bar{x})$
Definition (Non-degeracy)

A steady state \(\bar{x} \) is **non-degenerate** if \(\text{Im}(\Gamma) = \text{Im} \text{(Jacobian of } \bar{x}) \)

Conjecture (Joshi & Shiu)

For all \(m \in \mathbb{N} \) and odd \(n \), there exist multiple non-degenerate steady states for the chemical reaction network \(\tilde{K}_{m,n} \).
Definition (Non-degneracy)
A steady state \(\bar{x} \) is non-degenerate if \(\text{Im}(\Gamma) = \text{Im}(\text{Jacobian of } \bar{x}) \)

Conjecture (Joshi & Shiu)
For all \(m \in \mathbb{N} \) and odd \(n \), there exist multiple non-degenerate steady states for the chemical reaction network \(\tilde{K}_{m,n} \).

- We proved the Stoichiometric matrix \(\Gamma \) is always full rank, thus we need to show \(\det(\text{Jacobian}(\bar{x})) \neq 0 \) for both steady states.
Definition (Non-degeneracy)

A steady state \bar{x} is non-degenerate if $\text{Im}(\Gamma) = \text{Im}(\text{Jacobian of } \bar{x})$.

Conjecture (Joshi & Shiu)

For all $m \in \mathbb{N}$ and odd n, there exist multiple non-degenerate steady states for the chemical reaction network $\tilde{K}_{m,n}$.

- We proved the Stoichiometric matrix Γ is always full rank, thus we need to show $\det(\text{Jacobian}(\bar{x})) \neq 0$ for both steady states.
- **The Problem:** We need to characterize the steady states and reaction rates for $\tilde{K}_{m,n}$.
- Most methods of proving multistationarity are not even constructive... But in some cases (with some work) the Determinant Optimization Method of Craciun and Feinberg can produce closed forms.
We altered the Determinant Optimization Method to produce \textbf{closed-form} concentrations and reaction rate steady states for $\tilde{K}_{m,n}$.
We altered the Determinant Optimization Method to produce **closed-form** concentrations and reaction rate steady states for $\tilde{K}_{m,n}$.

2. We numerically verified the conjecture for small values of n and m.
1. We altered the Determinant Optimization Method to produce \textit{closed-form} concentrations and reaction rate steady states for $\tilde{K}_{m,n}$.

2. We numerically verified the conjecture for small values of n and m.

3. Then we considered the case for $n = 3$ and any m.
We altered the Determinant Optimization Method to produce closed-form concentrations and reaction rate steady states for $\tilde{K}_{m,n}$.

2. We numerically verified the conjecture for small values of n and m.

3. then we considered the case for $n = 3$ and any m.

4. ($n = 3$) We found the determinant as a function of m, and bounded it with a polynomial in m, proving non-degeneracy for infinitely many values of m.
It was messy

\[\delta_k = \delta_1 \lambda \cdot \frac{\left(\sqrt{4\lambda \epsilon + \epsilon^2} - (2\lambda + \epsilon) \right)^k - \left(-\sqrt{4\lambda \epsilon + \epsilon^2} - (2\lambda + \epsilon) \right)^k}{2^k \lambda^k \sqrt{4\lambda \epsilon + \epsilon^2}} \]

\[\eta_{2n}^0 = \frac{(m+1)(m\lambda^n + \lambda(m+1)\tilde{r}_{n-2})}{(\lambda(m+2)+\epsilon)\tilde{r}_{n-2} - \lambda^2 \tilde{r}_{n-3}} - \lambda(m+1) \]

... But when the smoke cleared, we proved this method for the case \(n = 3 \):

Theorem [Félix, Shiu & Woodstock]

The chemical reaction system \(\tilde{K}_{m,3} \) has multiple positive non-degenerate steady states for any \(m \geq 2 \).
Today, we discussed:

- The Law of Mass-Action applied to Chemical Reaction Networks
- Steady states of these reaction networks (and difficulties in determining their behavior)
- Several methods on how to show a CRN is multistationary
Thank you!