1. Solve the following logarithmic equation. Be sure to reject any value of \(x \) that is not in the domain of the original logarithmic expression. Give the exact answer.
\[9 + 5 \ln x = 39 \]

What is the solution in terms of \(e \)?

\[x = \square \]

2. Evaluate the expression without using a calculator.

\[\ln e^3 \]

\[\ln e^3 = \square \]

3. Solve the following exponential equation. Express the solution set in terms of natural logarithms.
\[5^{2x} + 5^x - 56 = 0 \]

What is the solution in terms of natural logarithms?

\[x = \square \]

(Type an exact solution, using logarithmic functions as needed.)

4. Solve the following exponential equation by expressing each side as a power of the same base and then equating exponents.

\[625^x = \frac{1}{\sqrt{5}} \]

\[x = \square \]

5. Find the exact value of the logarithm without using a calculator.

\[\log_{12} 144 \]

\[\log_{12} 144 = \square \]
6. Solve the following logarithmic equation. Be sure to reject any value of x that is not in the domain of the original logarithmic expression. Give the exact answer.

$$\log_2(7x + 6) = 2$$

$x = \square$ (Type an integer or a simplified fraction.)

7. Solve the following exponential equation. Express the solution set in terms of natural logarithms.

$$e^{4x} + 4e^{2x} - 32 = 0$$

What is the solution in terms of natural logarithms?

$x = \square$
(Type an exact solution, using logarithm functions as needed.)

8. Find the domain of the logarithmic function.

$$f(x) = \ln(x^2 - 2x - 8)$$

The domain of f is \square. (Type your answer in interval notation.)

9. Solve the logarithmic equation. Be sure to reject any value of x that is not in the domain of the original logarithmic expressions. Give the exact answer.

$$\log_3(x + 2) + \log_3(x - 6) = 2$$

Select the correct choice below and, if necessary, fill in the answer box to complete your answer.

- OA. $x = \square$ (Simplify your answer. Use a comma to separate answers as needed.)
- OB. There is no solution.

10. Solve the following exponential equation by expressing each side as a power of the same base and then equating exponents.

$$9^{x+7} = 243^{x-2}$$

$x = \square$