DIRECTIONS:

• **STAPLE** this page to the front of your homework (don’t forget your name!).
• Show all work, clearly and in order **You will lose points if you work is not in order.**
• When required, **do not forget the units**!
• Circle your final answers. **You will lose points if you do not circle your answers.**

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Problem 1: (2 points) Verify Green’s theorem for \(F = -x^2y \mathbf{i} + xy^2 \mathbf{j} \), where \(D \) is the disk \(x^2 + y^2 \leq 4 \).

First we note that \(D \) is simple and \(P = -x^2y \), \(Q = xy^2 \) are both \(C^1 \) on \(D \). Hence, Green’s theorem will apply. Green’s Theorem states that

\[
\int_{\partial D} P \, dx + Q \, dy = \int \int_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \, dy.
\]

A clockwise parametrization of \(\partial D \) is \(c(t) = (2 \cos t, 2 \sin t) \) with \(t \in [0, 2\pi] \). Then

\[
\int_{\partial D} P \, dx + Q \, dy = 32 \int_0^{2\pi} \cos^2 t \sin^2 t \, dt = 32 \int_0^{2\pi} \sin^2 t \, (1 - \sin^2 t) \, dt = 32 \left[\int_0^{2\pi} \sin^2 t \, dt - \int_0^{2\pi} (\sin^2 t)^2 \, dt \right].
\]

Using the formula \(\sin^2 t = \frac{1}{2} (1 - \cos 2t) \) the integral becomes

\[
32 \left[\frac{1}{2} \int_0^{2\pi} (1 - \cos 2t) \, dt - \frac{1}{4} \int_0^{2\pi} (1 - 2 \cos 2t + \cos^2 2t) \, dt \right] = 32 \left[\pi - \frac{\pi}{2} + \frac{1}{8} \int_0^{2\pi} (1 - \cos 4t) \, dt \right].
\]

Using the formula \(\cos^2 2t = \frac{1}{2} (1 + \cos 4t) \), the integral becomes

\[
32 \left[\frac{\pi}{2} + \frac{1}{8} \int_0^{2\pi} (1 + \cos 4t) \, dt \right] = 32 \left[\frac{\pi}{2} - \frac{\pi}{4} \right] = 8\pi.
\]
Now looking at the right hand side of greens theorem we find
\[
\int \int_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \, dy = \int \int_D \left(x^2 + y^2 \right) \, dA = \int_0^{2\pi} \int_0^2 r^3 \, dr \, d\theta = 2\pi \int_0^2 r^2 \, dr = 8\pi.
\]
Q.E.D.

Problem 2: (1 point) Let \(P(x, y) = -\frac{y}{x^2 + y^2} \) and \(Q = \frac{x}{x^2 + y^2} \). Assuming \(D \) is the unit disk, investigate why Green’s theorem fails for this \(P \) and \(Q \).

Green’s theorem is not applicable because it requires \(P \) and \(Q \) to be differentiable on the domain \(D = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \} \). However, we can see that these functions are not even bounded, so they certainly cannot be differentiable at the origin \((0, 0) \in D \). To show they are not bounded, consider the limit as \((x, y) \to (0, 0) \) along the y-axis for \(P \) (which is \(-\infty\)).

Problem 3: (2 points) Use Green’s theorem to find the area between the ellipse \(x^2/9 + y^2/4 = 1 \) and the circle \(x^2 + y^2 = 25 \).

We parametrize the outer boundary, the circle, in a positive, or counterclockwise, motion, so that the normal is outward to the circle and the boundary to inner boundary, the ellipse, in a negative, or clockwise direction. That is
\[
\partial D = \begin{cases}
 c_1(t) = (5 \cos t, 5 \sin t) & \text{for } t \in [0, 2\pi], \\
 c_2(t) = (3 \cos t, -2 \sin t) & \text{for } t \in [0, 2\pi].
\end{cases}
\]

Then the area of \(D \) is given by
\[
A = \frac{1}{2} \left(\int_{c_1} x \, dy - y \, dx + \int_{c_2} x \, dy - y \, dx \right) = \frac{1}{2} \left[25 \int_0^{2\pi} dt - 6 \int_0^{2\pi} dt \right] = 19\pi.
\]

Problem 4: (2 points) Verify Stokes’s theorem for the surface defined by \(x^2 + y^2 + 5z = 1 \) where \(z \geq 0 \), oriented by an upward normal for the vector field
\[
F = (xz, yz, x^2 + y^2).
\]

We first note that \(\partial S = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \} \) and \(F \) is continuous and differentiable on the \(S, \partial S \), and the domain \(D = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1 \} \). Since we may write
\[
z = f(x, y) = \frac{1}{5} \left(1 - x^2 - y^2 \right),
\]
the surface is a graph and the upward facing normal is given by
\[
N = \left(\frac{2}{5}x, \frac{2}{5}y, 1 \right).
\]

Stokes theorem states that
\[
\int \int_D \nabla \times F \cdot dS = \oint_{\partial S} F \cdot ds.
\]

Considering the left hand side, calculating \(\nabla \times F = (y, -x, 0) \), we see that
\[
\int \int_D \nabla \times F \cdot dS = \int \int_D (\nabla \times F) \cdot N \, dA = \int \int_D 0 \, dA = 0.
\]
Looking at the right hand side, we can parametrize the boundary of S with $c(t) = (\cos t, \sin t, 0)$ for $t \in [0, 2\pi]$. Hence $c'(t) = (-\sin t, \cos t, 0)$. So $F(c(t)) = (0, 0, 1)$. Hence

$$\oint_{\partial S} F \cdot ds = \int_c F(c(t)) \cdot c'(t) dt = 0.$$
Q.E.D.

Problem 5: (3 points) Let S be the surface defined by $y = 10 - x^2 - z^2$ with $y \geq 1$, oriented with a rightward pointing normal. Let $F = (2xyz + 5z, e^x \cos (yz), x^2 y)$. Determine

$$\int \int_S \nabla \times F \cdot dS.$$
(Hint: You will need to use an indirect approach.)

First we note that the surface, S, is a graph such that $y = f(z, x) = 10 - x^2 - z^2$ with $y \geq 1$ such that the boundary $\partial S = \{(z, x) \in \mathbb{R}^2 | x^2 + z^2 = 9\}$. This means that we have a rightward pointing normal of $N = (2z, 2x, 1)$. Now, we may define a new surface S' such that $y = 1$ and $x^2 + z^2 = 9$ (i.e. the disc at $y = 1$ of radius 3) such that $\partial S' = \partial S$. Then the normal to S' is simply $n = j$. Hence by Stokes’s theorem

$$\int \int_S \nabla \times F \cdot dS = \int \int_{S'} \nabla \times F \cdot dS = \int \int_{S'} (\nabla \times F) \cdot ndS.$$
Calculating $\nabla \times F = (x^2 + ye^x \sin xz, 5, e^x \cos yz - 2xz)$, the integral becomes

$$\int \int_{S'} 5dxdy = 45\pi.$$