One sample problem

Some notations for population parameters:
Population mean $E(y)=\mu$, where y is a random variable.
variance: $\operatorname{Var}(y)=V(y)=\sigma^{2}=E(y-\mu)^{2}$
standard deviation: $\sigma=\sqrt{\sigma^{2}}$.
Normal distribution: $y \sim N\left(\mu, \sigma^{2}\right)$. (\sim stands for distributed as)
Standard normal distribution: $z \sim N(0,1)$.
Fact: If $y \sim N\left(\mu, \sigma^{2}\right)$, then $z=\frac{y-\mu}{\sigma} \sim N(0,1)$.
Recall
sample mean: $\bar{y}=\frac{\sum_{i=1}^{n} y_{i}}{n}$. sample variance: $s^{2}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}{n-1}$, sample standard deviation: $s=\sqrt{s^{2}}$.

sampling distribution of the sample mean

$E(\bar{y})=\mu, \sigma_{\bar{y}}=\frac{\sigma}{\sqrt{n}}$.
If the population distribution is normal with mean μ and standard deviation σ, then $\bar{y} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$. If the population distribution is not normal but the sample size is relatively large ($n \geq 30$), then approximately $\bar{y} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$
standard error of the mean: $s_{\bar{y}}=\frac{s}{\sqrt{n}}$ which is an estimate of $\sigma_{\bar{y}}$. i.e., use s to replace unknown σ so $s_{\bar{y}}$ can be computed from data.

confidence interval for μ

Suppose a random sample $y_{1}, y_{2}, \cdots, y_{n} \sim N\left(\mu, \sigma^{2}\right)$, then $\frac{\bar{y}-\mu}{s / \sqrt{n}}$ has a t distribution with degrees of freedom $\nu=n-1$.
$(1-\alpha) 100 \%$ confidence interval for μ :
$\bar{y} \pm t_{\alpha / 2} \frac{s}{\sqrt{n}}$, where the critical value $t_{\alpha / 2}$ depends on the confidence level and the degrees of freedom. The area between $-t_{\alpha / 2}$ and $t_{\alpha / 2}$ equals $1-\alpha$.
Confidence interval often has the form point estimate \pm margin of error and margin of error $=$ multiplier \times standard error of point estimate In this example, point estimate for μ is \bar{y}, the standard error of \bar{y} is $\frac{s}{\sqrt{n}}$ and the multiplier is the t critical value.

t critical value

Note the area between $-t_{\alpha / 2}$ and $t_{\alpha / 2}$ is $1-\alpha$, the area to the left of $t_{\alpha / 2}$ is $1-\frac{\alpha}{2}$.

t distribution

t and z critical value

example

Seven subjects who identified themselves as Buddhist reported hours per week watching TV of:
2,1,1,3,2,3,2.
1). Estimate the sample mean \bar{y} and sample standard deviation s.
2). Construct a 90% confidence interval for μ, the mean TV watching time per week for all Buddhists.
$\bar{y}=2, s=0.816$
$n=7, d f=n-1=6, t_{0.05}=1.943$
A 90\% confidence interval for μ is:
$\bar{y} \pm t_{0.05} \frac{s}{\sqrt{n}}=2 \pm 1.943 * \frac{0.816}{\sqrt{7}}=[1.40,2.60]$ hours.

Use R to get t critical value

Download R from

https://www.r-project.org/
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin15.6.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help.
Type ' q ()' to quit R.
[R.app GUI 1.70 (7684) x86_64-apple-darwin15.6.0]
[Workspace restored from /Users/chen3lx/.RData]
[History restored from /Users/chen3lx/.Rapp.history]
$>q t(0.95,6)$
[1] 1.94318
Note this is the t critical value for $90 \% \mathrm{Cl}$. qt (p, d.f.) computes the quantile of a t distribution, here p is cumulative probability, that is, the area to the left of t under the t density curve.

If the confidence level is 95%, we should use $\mathrm{qt}(0.975,6)$ to get the t critical value.

exercise

To discover the nature of the earth's atmosphere long ago, we can examine the gas in bubbles inside ancient amber. Measurements on specimens of amber from the late Cretaceous era (75 to 95 million years ago) give these percent of nitrogen: 63.4, 65.0, 64.4, 63.3, 54.8, 64.5, $60.8,49.1,51.0$. (summary of data: $n=9, \bar{y}=59.59, s=6.26$). Assume these observations are a random sample from the late Cretaceous atmosphere. Get a $95 \% \mathrm{Cl}$ for μ, the population mean. Also perform a t test to examine if the mean nitrogen content in ancient air is equal to today's content, 78 percent.

A $95 \% \mathrm{Cl}$ is

$59.59 \pm 2.306 * \frac{6.26}{\sqrt{9}}=(54.78,64.40)$ percent.
R code: qt($0.975,8$).

t test

$H_{0}: \mu=78$
$H_{a}: \mu \neq 78$
$t=\frac{59.59-78}{6.26 / \sqrt{9}}=-8.82$
p -value $=2 \mathrm{P}(t<-8.82)<0.0001$
(R code: > 2* pt(-8.82,8)).
pt (tvalue, d.f.) computes the cumulative probability of tvalue, i.e., the area to the left of tvalue under the t curve. so $\mathrm{pt}(-8.82,8)$ gives the probability $P(t<-8.82)$.
Reject H_{0}.

p -value for two tailed test

t test

General form of one sample t test:

1. $H_{0}: \mu \leq \mu_{0}, H_{a}: \mu>\mu_{0}$. (right sided test)
2. $H_{0}: \mu \geq \mu_{0}, H_{a}: \mu<\mu_{0}$. (left sided test)
3. $H_{0}: \mu=\mu_{0}, H_{a}: \mu \neq \mu_{0}$. (two sided test) the t statistic
$t=\frac{\bar{y}-\mu_{0}}{s / \sqrt{n}}$.
Let t^{*} be the observed test statistic.
P -value $=P\left(t>t^{*}\right)$ for right sided test or
$P\left(t<t^{*}\right)$ for left sided test or
$2 P\left(t>\left|t^{*}\right|\right)$ for two sided test.

example

A standard method of treating a disease has resulted in a mean survival time of 60 months. A new treatment given to a sample of 15 patients produced the following survival time:
615568626554706356517263765371
Does the new treatment result in higher average survival time? Use $\alpha=0.05$.
Based on data, $\bar{y}=62.7, s=7.7$.
$H_{0}: \mu \leq 60, H_{a}: \mu>60$.
$t=\frac{\bar{y}-\mu_{0}}{s / \sqrt{n}}=\frac{62.7-60}{7.7 / \sqrt{15}}=1.35$.
p -value $=P(t>1.35)=0.101$.
R code: 1-pt(1.35,14)
Fail to reject H_{0}.

p -value for right sided test

Type I and Type II error

Type I error: Reject H_{0} when it is true.
Type II error: Fail to reject H_{0} when it is false.
α : prob. of making Type I error
β : prob. of making Type II error.
$1-\beta$: power of the test. Prob. of accepting H_{a} when it is true.

Example: An observation y comes from a normal distribution with μ and $\sigma=1$. Test $H_{0}: \mu=0$ vs $H_{a}: \mu=2$.
Test statistic: y.
Rejection region : $y>1.645$, i.e., reject H_{0} if $y>1.645$.
$\alpha=P($ Type I error $)=P\left(H_{0}\right.$ rejected when it is true $)=P(y>$
1.645 when $\mu=0)=P(z>1.645)=0.05$.
$\beta=P($ type II error $)=P\left(H_{0}\right.$ is not rejected when $\left.\mu=2\right)=P(y \leq$
1.645 when $\mu=2)=P(z<-0.355)=0.3613$.

R code for normal distribution pnorm(z) computes the cumulative probability up to z. qnorm(p) computes the quantile and the cumulative probability up to the quantile is p.
so pnorm(-0.355) gives $P(z<-0.355)$
Compute α and β for Rejection region: $y>1.96$.

Power of the test

p. 33.
example: $y_{1}, \cdots, y_{25} \sim N(\mu, 1)$.
Test $H_{0}: \mu=0$ vs $H_{a}: \mu=1$ with significance level $\alpha=0.05$.
Test statistic is $z=\frac{\bar{y}-0}{\sigma / \sqrt{n}}$
Reject H_{0} if $z>1.645$ or $\bar{y}>1.645 \frac{\sigma}{\sqrt{n}}$.
power $=1-\beta=P\left(\bar{y}>1.645 \frac{\sigma}{\sqrt{n}} ; \mu=1\right)$
$=P\left(z>\frac{(1.645 \sigma / \sqrt{n})-1}{\sigma / \sqrt{n}}\right)=P(z>-3.355)=0.9996$.
Q: what sample size is needed if we want $1-\beta \geq 0.90$?

Solution

$$
\begin{aligned}
& \text { power }=1-\beta=P\left(\bar{y}>1.645 \frac{\sigma}{\sqrt{n}} ; \mu=1\right) \\
& =P\left(z>\frac{(1.645 \sigma / \sqrt{n})-1}{\sigma / \sqrt{n}}\right) \\
& \text { Note } P(z>-1.28)=0.90 \text {, so } \\
& \text { let } \frac{(1.645 \sigma / \sqrt{n})-1}{\sigma / \sqrt{n}}=-1.28 \text {, } \\
& \text { we have } \frac{(1.645 / \sqrt{n})-1}{1 / \sqrt{n}}=-1.28 \text {, and } \\
& n \approx 9 \text {. }
\end{aligned}
$$

Power and sample size

H_{a} is true usually means there exists an effect and a test has high power means the test has a high probability of detecting an effect if it exists. Intuitively it is easier to detect an effect if its size is big. The standardized effect size can be expressed as $E=\frac{\left|\mu_{a}-\mu_{0}\right|}{\sigma}$, where μ_{0}, μ_{a} are mull and alternative values of μ. Table 2.3 shows the power of a one-sided one sample t test for given E and n at fixed $\alpha=0.05$.

```
survival = c(61, 55, 68, 62, 65, 54, 70, 63, 56, 51, 72,
    63, 76, 53, 71) #write data in a vector
mean(survival) # compute the sample mean
var(survival) # compute the sample variance
sd(survival) # compute the sample standard deviation
t.test(survival)
#t.test performs t test: default for 0 null value and
two sided test, produces 95% CI.
t.test(survival, mu=60, conf.level=0.90)
#null value 60, 90% CI
t.test(survival, mu=60, alternative="less")
#left sided test
t.test(survival, mu=60, alternative="greater")
#right sided test
```

```
> survival = c(61, 55, 68, 62, 65, 54, 70, 63, 56, 51, 72,
+ 63, 76, 53, 71)
> t.test(survival,mu=60,alternative="greater")
```

One Sample t-test
data: survival
$\mathrm{t}=1.3387, \mathrm{df}=14, \mathrm{p}$-value $=0.101$
alternative hypothesis: true mean is greater than 60
95 percent confidence interval:
59.15805 Inf
sample estimates:
mean of x
62.66667
> t.test(survival, mu=60)

One Sample t-test
data: survival
$\mathrm{t}=1.3387, \mathrm{df}=14, \mathrm{p}$-value $=0.202$
alternative hypothesis: true mean is not equal to 60 95 percent confidence interval:
58.3941566 .93918
sample estimates:
mean of x
62.66667

