Multiple Comparisons

If the F test in One-Way ANOVA shows the population means are different, then often we want to further examine which means differ. A common way is to make pairwise comparisons.
If there are t treatments, there are $\binom{t}{2}=\frac{t!}{2!(t-2)!}$ pairwise comparisons.
e.g, if $t=3$, there are 3 pairwise comparisons (1 vs 2,1 vs 3 and 2 vs 3) and if $t=4$, there are 6 pairwise comparisons (1 vs 2,1 vs 3 , 1 vs 4,2 vs 3,2 vs 4 and 3 vs 4).
Compare group i to j :
$H_{0}: \mu_{i}=\mu_{j}, H_{a}: \mu_{i} \neq \mu_{j}$.
$t=\frac{\bar{y}_{i} \cdot-\bar{y}_{j}}{\sqrt{M S E} \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{j}}}}$.
$t \sim t_{\nu}$ with $\nu=N-t$ under H_{0}.
$100(1-\alpha) \% \mathrm{Cl}$ for $\mu_{i}-\mu_{j}$ is
$\bar{y}_{i .}-\bar{y}_{j} . \pm t_{\frac{\alpha}{2} ; \nu} \sqrt{M S E} \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{j}}}$.
Note MSE is based on t samples with d.f. $=\mathrm{N}-\mathrm{t}$.

One factor completely randomized design

example 5.1
Three covers on the box of cereal, 18 markets selected.
Cover 1: Sports hero: 52.4, 47.8, 52.4, 51.3, 50.0, 52.1
Cover 2: Child: $50.1,45.2,46.0,46.5,47.4,46.2$
Cover 3: Cereal Bowl: 49.2, 48.3, 49.0, 47.2, 48.6, 48.2
Is there a difference among the population means? Use $\alpha=0.05$.
If there is a significant difference, get $95 \% \mathrm{Cl}$ for
$\mu_{1}-\mu_{2}, \mu_{1}-\mu_{3}, \mu_{2}-\mu_{3}$ to see which means differ.

boxplot of data

$>$ cover $1=\mathrm{c}(52.4,47.8,52.4,51.3,50.0,52.1)$
> cover2=c (50.1, 45.2, 46.0, 46.5, 47.4, 46.2)
> cover3=c(49.2, 48.3, 49.0, 47.2, 48.6, 48.2)
> boxplot(cover1, cover2, cover3)

$>y=c$ (cover1, cover2, cover3)
$>$ treatment $=c(\operatorname{rep}(1,6), \operatorname{rep}(2,6), \operatorname{rep}(3,6))$
$>$ output=aov(y^{\sim} factor (treatment))
> summary(output)

| | Df | Sum Sq Mean Sq F value | $\operatorname{Pr}(>F)$ | | |
| :--- | ---: | ---: | :--- | :--- | :--- | ---: |
| factor (treatment) | 2 | 51.57 | 25.784 | 11.43 | 0.000963 |
| Residuals | 15 | 33.83 | 2.255 | | |
| _-_ | | | $======$ | | |

Summary of data:
$\bar{y}_{1} .=51.0, \bar{y}_{2}=46.90, \bar{y}_{3}=48.42, s_{1}=1.81, s_{2}=1.72, s_{3}=0.71$, and $M S E=2.26$.

Pairwise comparisons

$$
\mathrm{Cl} \text { for } \mu_{1}-\mu_{2}: \bar{y}_{1} .-\bar{y}_{2} . \pm t_{0.025,15} \sqrt{M S E} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}=
$$

$$
51-46.90 \pm 2.131 \sqrt{2.26} * \sqrt{\frac{1}{6}+\frac{1}{6}}=4.10 \pm 1.85=(2.25,5.95)
$$

$$
\begin{aligned}
& \text { Similarly, we can get } \\
& \text { CI for } \mu_{1}-\mu_{3}:(0.73,4.43) \\
& \text { Cl for } \mu_{2}-\mu_{3}:(-3.37,0.33) \text {. } \\
& \text { > qt }(0.025,15) \\
& \text { [1] }-2.13145 \\
& \text { > qt }(0.975,15) \\
& \text { [1] } 2.13145
\end{aligned}
$$

Contrasts

A contrast is a linear combination of population means. It is a more general comparison of means.
contrast: $C=c_{1} \mu_{1}+c_{2} \mu_{2}+\cdot+c_{t} \mu_{t}$ where c_{i} 's are constants such that $\sum c_{i}=0$.
e.g., $C_{1}=\mu_{3}-\mu_{4}$
$C_{2}=\frac{1}{2} \mu_{1}+\frac{1}{2} \mu_{2}-\frac{1}{3} \mu_{3}-\frac{1}{3} \mu_{4}-\frac{1}{3} \mu_{5}$ are contrasts.
C_{2} compares the average of μ_{1} and μ_{2} to the average of μ_{3}, μ_{4} and μ_{5}.

Estimate C

$\hat{C}=c_{1} \bar{y}_{1} \cdot+\cdots+c_{t} \bar{y}_{t}$.
If the t samples are random and independent samples from normal distributions with mean μ_{i} and common variance σ^{2}, then each $\bar{y}_{i} . \sim N\left(\mu_{i}, \frac{\sigma^{2}}{n_{i}}\right)$. As \hat{C} is a linear combination of independent normal random variables, hence $\hat{C} \sim N\left(C, \sigma_{\hat{C}}^{2}\right)$ with $V(\hat{C})=\sigma_{\hat{C}}^{2}=\sigma^{2}\left(\frac{c_{1}^{2}}{n_{1}}+\cdots+\frac{c_{t}^{2}}{n_{t}}\right)$.
Fact: Suppose $X_{1}, X_{2}, \cdots, X_{k}$ are independent random variables, for constants $c_{1}, c_{2}, \cdots c_{k}$,
$\mathrm{E}\left(c_{1} X_{1}+c_{2} X_{2}+\cdots+c_{k} X_{k}\right)=c_{1} \mathrm{E}\left(X_{1}\right)+c_{2} \mathrm{E}\left(X_{2}\right)+\cdots c_{k} \mathrm{E}\left(X_{k}\right)$ and
$V\left(c_{1} X_{1}+c_{2} X_{2}+\cdots+c_{k} X_{k}\right)=c_{1}^{2} V\left(X_{1}\right)+c_{2}^{2} V\left(X_{2}\right)+\cdots c_{k}^{2} V\left(X_{k}\right)$
An estimate of $\sigma_{\hat{C}}^{2}$ is $s_{\hat{C}}^{2}=\operatorname{MSE}\left(\frac{c_{1}^{2}}{n_{1}}+\cdots+\frac{c_{t}^{2}}{n_{t}}\right)$.
the standard error of \hat{C} is $s_{\hat{C}}=\sqrt{s_{\hat{C}}^{2}}$.

t test and Cl

Fact: $t=\frac{\hat{C}-C}{s_{\hat{C}}} \sim t_{\nu}$ with $\nu=N-t$.
Cl for $\mathrm{C}: \hat{C} \pm t_{\alpha / 2 ; N-t}{ }^{S} \hat{C}$.
point estimate \pm multiplier \times standard error of point estimate
test $H_{0}: C=0, H_{a}: C \neq 0$.
test statistic $t=\frac{\hat{C}}{s_{\hat{C}}} \sim t_{N-t}$ under H_{0}.

Estimate and test a contrast

Exercise: Use the data of example 5.1. Define contrast $C=\mu_{1}-\frac{1}{2} \mu_{2}-\frac{1}{2} \mu_{3}$ (compares mean 1 to the average of mean 2 and mean 3)
Test $H_{0}: C=0$ vs $H_{a}: C \neq 0$ at levele of significance $\alpha=0.05$. Also find a $95 \% \mathrm{Cl}$ for C.

Solutions

Here $c_{1}=1, c_{2}=-0.5, c_{3}=-0.5$
$\hat{C}=\bar{y}_{1 .}-\frac{1}{2} \bar{y}_{2} .-\frac{1}{2} \bar{y}_{3 .}=51-\frac{1}{2} * 46.90-\frac{1}{2} * 48.42=3.34$.
$s_{\hat{C}}^{2}=2.26 *\left(\frac{1^{2}}{6}+\frac{(-0.5)^{2}}{6}+\frac{(-0.5)^{2}}{6}\right)=0.565, s_{\hat{C}}=0.752$.
$t=\frac{3.34}{0.752}=4.44$.
p-value $=2 * P(t>4.44)=0.0005$. Reject H_{0}.
Cl for C is $3.34 \pm 2.131 * 0.752=(1.74,4.94)$.
> $2 * \operatorname{pt}(-4.44,15)$
[1] 0.0004771517

Exercise

Exercise 5.7.

Delay(min)	Angle(dgree)
30	$140,138,140,138,142$
45	$140,150,120,128,130$
60	$118,130,128,118,118$

Perform an F test to examine if there is a difference in the mean angle among the three delay times.
If the test is significant (at $\alpha=0.05$), get three Cls for
$\mu_{1}-\mu_{2}, \mu_{1}-\mu_{3}$ and $\mu_{2}-\mu_{3}$.
Also define a contrast $C=\frac{1}{2} \mu_{1}+\frac{1}{2} \mu_{2}-\mu_{3}$ (this contrast compares the mean angle of short and medium delay to mean angle of long delay). Test $H_{0}: C=0$ vs $H_{a}: C \neq 0$ and obtain a $95 \% \mathrm{CI}$ for C.

Effect of multiple comparisons

- Overall or experimentwise significance level α_{e} : probability of making at least 1 type I error among m tests. $\alpha_{e} \leq m \alpha$, where α is the significance level of each individual test.
- Overall experimentwise confidence level $C L_{e}$: probability that all confidence intervals are correct. $C L_{e} \geq 1-m \alpha$, where $1-\alpha$ is the confidence level of each individual Cl .

ACl is correct means it contains the true parameter it tries to estimate.

Bonferroni method

Carry out each test at significance level $\frac{\alpha}{m}$ rather than α or multiply the p-value of each test by m then compare to α. e.g., $m=5$, if need $\alpha_{e}=0.05$, reject each test if p-value $<0.05 / 5=0.01$. or multiply each p-value by 5 then compare to 0.05 .

In confidence interval, use critical value $t_{\alpha_{e} /(2 m), \nu}$ rather than $t_{\alpha_{e} / 2, \nu}$.
e.g., $m=5$, if need $C L_{e}=0.95$ (implying $\alpha_{e}=0.05$), then use critical value in each $\mathrm{Cl} t_{0.025 / 5}$ instead of $t_{0.025}$. In example 5.3. use critical value $t_{0.025 / 3,15}=2.69$ for the three Cls as $m=3$.
in R, it is easier to use left tail probability in qt function. $q t\left(\alpha_{e} /(2 * m), \nu\right)$ gives a negative critical value. Just drop the negative sign.

R code for pairwise tests with Bonferroni adjustment

```
g1 = c(9,12,10,8,15)
g2 = c(20,21,23,17,30)
g3 = c(6,5,8,16,7)
y = c(g1,g2,g3)
type = c(rep (1,5),rep (2,5),rep (3,5))
type = factor (type)
pairwise.t.test(y,type,p.adj="none")
pairwise.t.test(y,type,p.adj="bonf")
```


output

```
> pairwise.t.test(y,type,p.adj="none")
Pairwise comparisons using t tests with pooled SD
data: y and type
    1
    2
2 0.00089 -
3 0.37416 0.00019
P value adjustment method: none
>pairwise.t.test(y,type,p.adj="bonf")
Pairwise comparisons using t tests with pooled SD
data: y and type
    1
                                    2
2 0.00267 -
3 1.00000 0.00056
P value adjustment method: bonferroni
```

Note with Bonferroni adjustment, each p-value is multiplied by 3 .

Tukey-Cramer method

With Bonferroni adjustment, we use a larger t critical value in each Cl and multiply the p -value of each test by m. We can also use the quantiles and tail probabilities of the q distribution (studentized range distribution) to achieve similar results.
Assume \mathbf{t} independent random samples:
$y_{11}, \cdots, y_{1 n} \sim N\left(\mu_{1}, \sigma^{2}\right)$,
$y_{t 1}, \cdots, y_{t n} \sim N\left(\mu_{t}, \sigma^{2}\right)$.
Then under $H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{t}$,
$q=\frac{\bar{y}_{\text {max }}-\bar{y}_{\text {min }}}{S_{p} \sqrt{\frac{1}{n}}}$ (where S_{p} is the pooled sample standard deviation) has a Studentized Range distribution with t and $\nu\left(\nu=n t-t\right.$, associated with $\left.S_{P}\right)$ degrees of freedom.

Tukey Test and Cl

$H_{0}: \mu_{i}=\mu_{j} ; H_{a}: \mu_{i} \neq \mu_{j}$
test statistic value $q^{*}=\frac{\left|\bar{y}_{i}-\bar{y}_{j}\right|}{\sqrt{M S E} \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{j}}}} \sqrt{2}$,
p -value $=P\left(q>q^{*}\right)$
R code to get p -value: 1- $\operatorname{ptukey}\left(q^{*}, \mathrm{t}, \nu\right)$.
Cl : Let the experimentwise CL is $1-\alpha_{e}$.
The critical value is $q_{\alpha_{e}, t, \nu} / \sqrt{2}$ where $q_{\alpha_{e}}$ is quantile of the q distribution with upper tail probability α_{e}, ν is the d.f. associated with MSE, and t is the number of groups to be compared.
$\bar{y}_{i .}-\bar{y}_{j} . \pm \frac{q_{\alpha_{e}, t, v}}{\sqrt{2}} \sqrt{M S E} \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{j}}}$.
R code to get quantile of the q distribution $q_{0.05 ; 3,15}$:
> qtukey (0.95, 3, 15)
More general, qtukey (CLe, $\mathrm{t}, \mathrm{N}-\mathrm{t})$.

Problem 5.2:
time for ice cubes to melt in three beverages:

1. Coke $19,17,15,14,18$
2. Orange Juice $27,28,30,26,27$
3. Water $10,11,13,7,9$
$\bar{y}_{1} .=16.6, \bar{y}_{2}=27.6, \bar{y}_{3} .=10.0$
$\mathrm{MSE}=3.87$ with 12 d.f. $(\mathrm{F}=102.22$, P -value $<0.0001)$.
Get Tukey Cls for $\mu_{1}-\mu_{2}, \mu_{1}-\mu_{3}, \mu_{2}-\mu_{3}$ with experimentwise confidence level 99%.
What critical value would you use for Bonferroni Cls?

Boxplot

$$
\begin{aligned}
& >\text { boxplot(} y^{\sim} \text { type) } \\
\text { or } & >\text { boxplot(coke,juice,water) }
\end{aligned}
$$

ANOVA table

> coke=c(19,17, 15,14,18)
> juice=c (27,28, 30,26, 27)
> water=c (10,11, 13,7,9)
> y=c(coke,juice,water)
$>$ type=c (rep $(1,5)$,rep $(2,5), r e p(3,5))$
> type=factor (type)
> output=aov(y~type)
> anova(output) \#anova(output) can have higher precision \#than summary(output)

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
type $\quad 2790.53 \quad 395.27 \quad 102.22 \quad 2.904 \mathrm{e}-08$ ***
Residuals $1246.40 \quad 3.87$

Solutions

Note $\alpha=0.01, t=3, \nu=12$.
so $q_{0.01,3,12}=5.046$, and the critical value is $5.046 / \sqrt{2}=3.568$.
> qtukey $(0.99,3,12)$
[1] 5.045934
The Cls are:
1 vs $2: 16.6-27.6 \pm 3.568 * \sqrt{3.87} \sqrt{\frac{1}{5}+\frac{1}{5}}=(-15.44,-6.56)$
1 vs 3: $16.6-10 \pm 3.568 * \sqrt{3.87} \sqrt{\frac{1}{5}+\frac{1}{5}}=(2.16,11.04)$.
2 vs 3: $27.6-10 \pm 3.568 * \sqrt{3.87} \sqrt{\frac{1}{5}+\frac{1}{5}}=(13.16,22.04)$.
The critical value for the Bonferroni Cls is 3.649 .

```
> qt(0.01/6,12)
[1] -3.648889
```

Tukey adjustment is less conservative than Bonferroni adjustment when making all pairwise comparisons.

R code for Tukey method

HSD: Honest Significant Difference
> output $=\operatorname{aov}\left(y^{\sim}\right.$ type $)$
> TukeyHSD(output, conf.level=.99)
Tukey multiple comparisons of means 99\% family-wise confidence level

Fit: $\operatorname{aov}(f o r m u l a=y$ ~ type)
\$type

	diff	lwr	upr	p adj
$2-1$	11.0	6.562637	15.437363	0.0000037
$3-1$	-6.6	-11.037363	-2.162637	0.0005048
$3-2$	-17.6	-22.037363	-13.162637	0.0000000

Tukey test

$H_{0}: \mu_{1}=\mu_{3}$
$H_{a}: \mu_{1} \neq \mu_{3}$
$q^{*}=\frac{|10-16.6|}{\sqrt{3.87} \sqrt{1 / 5+1 / 5}} * \sqrt{2}=7.502$
p-value $=P(q>7.502)=0.0005$ which matches the p-adj value in the R output.
> 1-ptukey $(7.502,3,12)$
[1] 0.0005066512

