
Multiple Comparisons

If the F test in One-Way ANOVA shows the population means are
different, then often we want to further examine which means
differ. A common way is to make pairwise comparisons.
If there are t treatments, there are
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comparisons.
e.g, if t=3, there are 3 pairwise comparisons (1 vs 2, 1vs 3 and 2
vs 3) and if t=4, there are 6 pairwise comparisons (1 vs 2, 1 vs 3,
1 vs 4, 2 vs 3, 2 vs 4 and 3 vs 4).
Compare group i to j :
H0 : µi = µj ,Ha : µi 6= µj .
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t ∼ tν with ν = N − t under H0.
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Note MSE is based on t samples with d.f.=N-t.



One factor completely randomized design

example 5.1
Three covers on the box of cereal, 18 markets selected.

Cover 1: Sports hero: 52.4, 47.8, 52.4, 51.3, 50.0, 52.1

Cover 2: Child: 50.1, 45.2, 46.0, 46.5, 47.4, 46.2

Cover 3: Cereal Bowl: 49.2, 48.3, 49.0, 47.2, 48.6, 48.2

Is there a difference among the population means? Use α = 0.05.
If there is a significant difference, get 95% CI for
µ1 − µ2, µ1 − µ3, µ2 − µ3 to see which means differ.



boxplot of data

> cover1=c(52.4, 47.8, 52.4, 51.3, 50.0, 52.1)

> cover2=c(50.1, 45.2, 46.0, 46.5, 47.4, 46.2)

> cover3=c( 49.2, 48.3, 49.0, 47.2, 48.6, 48.2)

> boxplot(cover1,cover2,cover3)



> y=c(cover1,cover2,cover3)

> treatment=c(rep(1,6),rep(2,6),rep(3,6))

> output=aov(y~factor(treatment))

> summary(output)

Df Sum Sq Mean Sq F value Pr(>F)

factor(treatment) 2 51.57 25.784 11.43 0.000963

Residuals 15 33.83 2.255

--- ======

Summary of data:
ȳ1· = 51.0, ȳ2· = 46.90, ȳ3· = 48.42, s1 = 1.81, s2 = 1.72, s3 = 0.71,
and MSE = 2.26.



Pairwise comparisons

CI for µ1 − µ2: ȳ1· − ȳ2· ± t0.025,15
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6 = 4.10± 1.85 = (2.25, 5.95).

Similarly, we can get
CI for µ1 − µ3 : (0.73, 4.43)
CI for µ2 − µ3 : (−3.37, 0.33).

> qt(0.025,15)

[1] -2.13145

> qt(0.975,15)

[1] 2.13145



Contrasts

A contrast is a linear combination of population means. It is a
more general comparison of means.
contrast: C = c1µ1 + c2µ2 + ·+ ctµt where
ci ’s are constants such that

∑
ci = 0.

e.g., C1 = µ3 − µ4

C2 = 1
2µ1 + 1

2µ2 − 1
3µ3 − 1

3µ4 − 1
3µ5 are contrasts.

C2 compares the average of µ1 and µ2 to the average of µ3, µ4

and µ5.



Estimate C

Ĉ = c1ȳ1· + · · ·+ ct ȳt·
If the t samples are random and independent samples from normal
distributions with mean µi and common variance σ2, then each
ȳi · ∼ N(µi ,
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Fact: Suppose X1,X2, · · · ,Xk are independent random variables,
for constants c1, c2, · · · ck ,
E(c1X1 + c2X2 + · · ·+ ckXk) = c1E(X1) + c2E(X2) + · · · ckE(Xk)
and
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Ĉ

.



t test and CI

Fact: t = Ĉ−C
sĈ
∼ tν with ν = N − t.

CI for C: Ĉ ± tα/2;N−tsĈ .
point estimate ± multiplier× standard error of point estimate

test H0 : C = 0,Ha : C 6= 0.

test statistic t = Ĉ
sĈ
∼ tN−t under H0.



Estimate and test a contrast

Exercise: Use the data of example 5.1. Define contrast
C = µ1 − 1

2µ2 − 1
2µ3 (compares mean 1 to the average of mean 2

and mean 3)
Test H0 : C = 0 vs Ha : C 6= 0 at levele of significance α = 0.05.
Also find a 95% CI for C .



Solutions

Here c1 = 1, c2 = −0.5, c3 = −0.5

Ĉ = ȳ1· − 1
2 ȳ2· − 1

2 ȳ3· = 51− 1
2 ∗ 46.90− 1

2 ∗ 48.42 = 3.34.

s2
Ĉ

= 2.26 ∗ ( 12

6 + (−0.5)2

6 + (−0.5)2

6 ) = 0.565, sĈ = 0.752.

t = 3.34
0.752 = 4.44.

p-value =2 ∗ P(t > 4.44) = 0.0005. Reject H0.

CI for C is 3.34± 2.131 ∗ 0.752 = (1.74, 4.94).

> 2*pt(-4.44,15)

[1] 0.0004771517



Exercise

Exercise 5.7.

Delay(min) Angle(dgree)

30 140,138,140,138,142

45 140,150,120,128,130

60 118,130,128,118,118

Perform an F test to examine if there is a difference in the mean
angle among the three delay times.
If the test is significant (at α = 0.05), get three CIs for
µ1 − µ2, µ1 − µ3 and µ2 − µ3.
Also define a contrast C = 1

2µ1 + 1
2µ2−µ3 (this contrast compares

the mean angle of short and medium delay to mean angle of long
delay). Test H0 : C = 0 vs Ha : C 6= 0 and obtain a 95% CI for C .



Effect of multiple comparisons

I Overall or experimentwise significance level αe : probability
of making at least 1 type I error among m tests. αe ≤ mα,
where α is the significance level of each individual test.

I Overall experimentwise confidence level CLe : probability
that all confidence intervals are correct. CLe ≥ 1−mα, where
1− α is the confidence level of each individual CI.

A CI is correct means it contains the true parameter it tries to
estimate.



Bonferroni method

Carry out each test at significance level α
m rather than α or

multiply the p-value of each test by m then compare to α.
e.g., m = 5, if need αe = 0.05, reject each test if
p-value< 0.05/5 = 0.01. or multiply each p-value by 5 then
compare to 0.05.

In confidence interval, use critical value tαe/(2m),ν rather than
tαe/2,ν .
e.g., m = 5, if need CLe = 0.95 (implying αe = 0.05), then use
critical value in each CI t0.025/5 instead of t0.025.
In example 5.3. use critical value t0.025/3,15 = 2.69 for the three
CIs as m = 3.
in R, it is easier to use left tail probability in qt function.
qt(αe/(2 ∗m), ν) gives a negative critical value. Just drop the
negative sign.



R code for pairwise tests with Bonferroni adjustment

g1 = c(9,12,10,8,15)

g2 = c(20,21,23,17,30)

g3 = c(6,5,8,16,7)

y = c(g1,g2,g3)

type = c(rep(1,5),rep(2,5),rep(3,5))

type = factor (type)

pairwise.t.test(y,type,p.adj="none")

pairwise.t.test(y,type,p.adj="bonf")



output

> pairwise.t.test(y,type,p.adj="none")

Pairwise comparisons using t tests with pooled SD

data: y and type

1 2

2 0.00089 -

3 0.37416 0.00019

P value adjustment method: none

>pairwise.t.test(y,type,p.adj="bonf")

Pairwise comparisons using t tests with pooled SD

data: y and type

1 2

2 0.00267 -

3 1.00000 0.00056

P value adjustment method: bonferroni

Note with Bonferroni adjustment, each p-value is multiplied by 3.



Tukey-Cramer method

With Bonferroni adjustment, we use a larger t critical value in each
CI and multiply the p-value of each test by m.
We can also use the quantiles and tail probabilities of the q
distribution (studentized range distribution) to achieve similar
results.
Assume t independent random samples:
y11, · · · , y1n ∼ N(µ1, σ

2),
....
yt1, · · · , ytn ∼ N(µt , σ

2).
Then under H0 : µ1 = µ2 = · · · = µt ,
q = ȳmax−ȳmin

Sp

√
1
n

(where Sp is the pooled sample standard

deviation) has a Studentized Range distribution with t and
ν(ν = nt − t,associated with SP) degrees of freedom.



Tukey Test and CI

H0 : µi = µj ;Ha : µi 6= µj

test statistic value q∗ =
|ȳi.−ȳj.|√
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√
2,

p-value = P(q > q∗)

R code to get p-value: 1- ptukey(q∗,t, ν).

CI: Let the experimentwise CL is 1− αe .
The critical value is qαe ,t,ν/

√
2 where qαe is quantile of the q

distribution with upper tail probability αe , ν is the d.f. associated
with MSE, and t is the number of groups to be compared.
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R code to get quantile of the q distribution q0.05;3,15 :

> qtukey(0.95, 3, 15)

More general, qtukey(CLe, t, N-t).



Problem 5.2:
time for ice cubes to melt in three beverages:

1. Coke 19,17, 15,14,18

2. Orange Juice 27,28, 30,26, 27

3. Water 10,11, 13,7,9

ȳ1· = 16.6, ȳ2· = 27.6, ȳ3· = 10.0
MSE=3.87 with 12 d.f. (F = 102.22, P-value < 0.0001).
Get Tukey CIs for µ1 − µ2, µ1 − µ3, µ2 − µ3 with experimentwise
confidence level 99%.
What critical value would you use for Bonferroni CIs?



Boxplot

> boxplot(y~type)

or > boxplot(coke,juice,water)



ANOVA table

> coke=c(19,17, 15,14,18)

> juice=c(27,28, 30,26, 27)

> water=c(10,11, 13,7,9)

> y=c(coke,juice,water)

> type=c(rep(1,5),rep(2,5),rep(3,5))

> type=factor(type)

> output=aov(y~type)

> anova(output) #anova(output) can have higher precision

#than summary(output)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

type 2 790.53 395.27 102.22 2.904e-08 ***

Residuals 12 46.40 3.87



Solutions
Note α = 0.01, t = 3, ν = 12.
so q0.01,3,12=5.046, and the critical value is 5.046/

√
2 = 3.568.

> qtukey(0.99,3,12)

[1] 5.045934

The CIs are:

1 vs 2: 16.6− 27.6± 3.568 ∗
√

3.87
√

1
5 + 1

5 = (−15.44,−6.56)

1 vs 3: 16.6− 10± 3.568 ∗
√

3.87
√

1
5 + 1

5 = (2.16, 11.04).

2 vs 3: 27.6− 10± 3.568 ∗
√

3.87
√

1
5 + 1

5 = (13.16, 22.04).

The critical value for the Bonferroni CIs is 3.649.

> qt(0.01/6,12)

[1] -3.648889

Tukey adjustment is less conservative than Bonferroni adjustment
when making all pairwise comparisons.



R code for Tukey method

HSD: Honest Significant Difference

> output = aov(y~type)

> TukeyHSD(output,conf.level=.99)

Tukey multiple comparisons of means

99% family-wise confidence level

Fit: aov(formula = y ~ type)

$type

diff lwr upr p adj

2-1 11.0 6.562637 15.437363 0.0000037

3-1 -6.6 -11.037363 -2.162637 0.0005048

3-2 -17.6 -22.037363 -13.162637 0.0000000



Tukey test

H0 : µ1 = µ3

Ha : µ1 6= µ3

q∗ = |10−16.6|√
3.87
√

1/5+1/5
∗
√

2 = 7.502

p-value= P(q > 7.502) = 0.0005 which matches the p-adj value in
the R output.

> 1-ptukey(7.502,3,12)

[1] 0.0005066512


