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1 Strongly Regular Graphs

We say a graph G(V,E) where |V | = v is strongly regular if the following are
true.

• G is a regular graph with valency k.

• Any two adjacent vertices have λ common neighbors.

• Any two non-adjacent vertices have µ common neighbors.

We can then say G has a parameter set (v, k, λ, µ).
Example: The cycle graph with 5 vertices is an SRG with parameters

(5, 2, 0, 1)

The Paley(9) graph is an srg(9, 4, 1, 2).

An important question regarding SRGs is whether it is possible to construct
a graph for any given parameter set. Some parameter sets can easily be shown
to be impossible using established bounds that will be discussed later, but other
parameter sets are not easily dismissed using these methods. We will now discuss
some of the tools used to determine the non-existence of certain parameter sets
for SRGs.
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We define the adjacency matrix, A, of G to be the v × v matrix, with
vertices ordered such that the n-th row and n-th column correspond the n-th
vertex of the graph. Then, if vi is adjacent to vj , A(i, j) = 1, or if vi is not
adjacent to vj then A(i, j) = 0.

We also similarly define the Laplacian matrix, L, to be the v × v matrix
where entries corresponding to adjacent vertices are −1 and the degree of each
vertex for the diagonal entry. For n-regular graphs, L = nI −A.

Example: The adjacency and Laplacian matrices of the cycle graph with 5
vertices are as follows.

A =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0



L =


2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2


For a graph G = srg(v, k, λ, µ) the adjacency matrix of G satisfies the fol-

lowing equation where J is the all ones matrix.

A2 = kI + λA+ µ(J −A− I)

Since G is k-regular, A has an eigenvalue of k corresponding to the all ones
eigenvector. We can then use the fact that all other eigenvectors must be or-
thogonal to the all ones vector to derive the following quadratic equation which
has solutions of the other eigenvalues of A.

c2 + (µ− λ)c+ (µ− k) = 0

We call the two solutions to this equation r and s. Now, using the fact that
the tr(A) = 0 and the sum of the multiplicities of the eigenvalues must equal
the number of vertices, we are left with the following system of equations which
can be used to solve for the multiplicities of r and s, which we will call f and g.

k + fr + gs = 0

f + g + 1 = v

Also, since the Laplacian matrix for SRGs can be expressed as L = kI−A, we
know the spectrum of L is as follows where the multiplicities of each eigenvalue
is the same as the corresponding one for A.

kL = 0
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rL = k − r

sL = k − s

This shows us that based solely off the parameters of an SRG, we are able to
obtain full spectral information for both the adjacency and Laplacian matrices.
In further sections we will use this spectral information to gain information
about other graph invariants that we can use to show non-existence for certain
parameter sets of SRGs.

Matrix Tree Theorem:

Given the Laplacian of a srg(v, k, λ, µ) and the spectrum of L = rf , sg, 0

The size of the critical group of the graph is |K(γ)| = rfsg

v

Which is equivalent to (Z/pZ)e1 ⊕ (Z/p2Z)e2(p1)e1(p2)e2(p3)e3

From this we look at vp as the ”exponent of p” where

vp|k(γ)| = e1 + 2e2 + 3e3 + ....

Giving

A2 + 0A+ 0I = µJ

(A− rAI)(A− sAI) = µJ

(L− rI)(L− sI) = µJ

L2 − (r + s)L+ rsI = µJ

rsI = L(L− (r + s)I)

2 Critical Groups

LetG = (V,E) be a graph with vertices V = {v1, v2, . . . , vn}. Consider assigning
to each vi a number such that the vertices sum to 0. We will call these numbers
the chip values of our vertex set. Define chip firing from a vertex vi as a
function fi : ZV → ZV that increases the chip value of each neighbor of vi by 1
and decreases the chip value of vi by the degree of vi.

Note that if

⇀
c =


c1
c2
...
cn


is our chip values for each vertex, then fi(

⇀
c ) =

⇀
c − Li where Li is the i’th

column of the Laplacian matrix of G.
Define an equivalence relation ∼ on vertex value vectors c, c′ by saying c ∼

c′ if there exists a composition of chip firing functions from one chip value
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arrangement to the other. The set of chip values summing to zero under this
equivalence relation is a finite abelian group called the critical group.

The laplacian matrix is a map L : ZV → ZV . Then

ZV /Im(L) = Coker(L) ∼= K(G)⊕ Z

Where K(G) is the cirical group of G.

3 Smith Groups

In general, if M is a map from ZV → ZV , we call S(M) = ZV /Im(M) the
smith group of M. In this way the critical group and the smith group are
heavily related, as the smith group of the laplacian matrix of a graph G is
S(L) = K(G)⊕ Z as before. Note that this group is almost finite abelian, just
with an extra copy of Z.

Definition 3.1. Let M : ZV → ZV . Then the smith normal form of M is
the diagonal matrix derived from performing elementary integer row and column
operations on M .

Observation 3.2. Let S(M) = Z/n1Z⊕· · ·⊕Z/nkZ. Then the values n1, . . . nk
are the diagonal entries of the smith normal form of M .

Note that we can always construct the smith normal form of a matrix such
that the diagonal entries are written in ascending order such that si|si+1.

Define
Z(p) := {a

b
∈ Q | p ̸ | b}

Then the diagonal entries of the smith normal form of the laplacian matrix of
a graph will look like

1, . . . , p, . . . , p2, . . . , p3, . . . , pn, . . . , 0

Definition 3.3. let p be a fixed prime p Let ei = the number of invariant factors
exactly divisible by pi.

For C : ZV → ZV we have Mi = {−→x ∈ ZV
(p) | pi divides L−→x }

Note that
ZV
(p) =M0 ⊃M1 ⊃M2 ⊃ . . .

Then dimpMi = ei + ei+1 + · · ·+ ei+n + dimkerC.

Definition 3.4. Ni = {p−iCx | x ∈Mi}. Then

dimpNi = e0 + e1 + · · ·+ ei.

Using this we arrive at the following theorems
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Theorem 3.5. Let A be the adjacency matrix of G = srg(v, kλ, µ) and M =
A+ bI be nonsingular. If

p∥rM , p∥sM , p ̸ |v, pδ∥kM ,

then Sp(M) ∼= Z/pδZ⊕ Zv−1−2
∼
e0/pZ⊕ Z/p2Z, where

∼
e0 =

{
e0 δ > 0

e0 − 1 δ = 0
.

Proof. Suppose that A is the adjacency matrix of an srg(v, k, λ, µ) and has spec-
trum, spec(A) = [k]1, [r]f , [s]g. Then we know that spec(M) = [kM ]1, [rM ]f , [sgM ,
where kM = k + b, rM = r + b, sM = s + b. Also suppose for a prime, p, that
p||rM , p||sM , pγ ||v, and pδ||kM . By Kirchhoff’s Matrix Tree Theorem, we know

|S(A+ bI)| = kMr
f
Ms

g
M , so when we reduce modulo p, we obtain the following

order for the p part of the Smith Group.

|Sp(M)| = pδpfpg = pδ+f+g

We then conclude that Sp(A) has the following form.

Sp(M) = (Z/pZ)e1 ⊕ (Z/p2Z)e2 ⊕ (Z/pδZ)

If we let M : Zv
p → Zv

p, then, since p ̸ |v we can decompose the domain
into Z(p)1 ⊕ Y , where Y is the set of vectors that sum to 0. M respects this
decomposition so will send vectors in Y to other vectors in Y . It follows from
the equation (M − rMI)(M − sMI) = µJ , that once we restrict the domain of
M to Y , (M − rMI)(M − sMI) = 0. This means that with this restriction rs
kills the group, so the maximum invariant factor is p2. When we consider the
whole domain we gain one more possible factor from our eigenvalue, pδ, as a
result of the all ones vector and its eigenvalue,k. This gives us the form of our
group from above.

We know that the number of invariant factors is the same of the number
of entries on the diagonal of A + bI, and this formula gives us a new way to
calculate the order of the group, giving us the following system of equations

e0 + e1 + e2 + 1 = f + g + 1

e1 + 2e2 + 1 = δ + f + g

Solving this system of equations gives us the following result.

e1 = f + g + 1− δ − 2e0

e2 = δ + e0 − 1

The result of the theorem follows directly.
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Theorem 3.6. Let A be the adjacency matrix of G = srg(v, kλ, µ) and M =
A+ bI be nonsingular. If

pa∥rM , p ̸ |sM , p ̸ |v, pδ∥kM ,

then Sp(M) ∼= Z/pδZ⊕ (Z/paZ)f

Proof. We take a similar approach to this theorem as Theorem 3.5. The spec-
trum of M is the same as before but this time the order of the p-part of our
group is not affected by the eigenvalue that p does not divide. Therefore,

Sp(M) = pδpf = pδ+f

.
When we restrict M to Y we again see that rs kills the critical group giving

us a maximum invariant factor of ea. As a consequence,

e1 + 2e2 + 3e3 + ...+ aea = ag

This implies that g/geqea.
However we also know that e0 + e1 + e2 + ...+ ea = f + g+1, which implies

g ≤ ea. Therefore ea = g. For the same reason as before we also have an extra
invariant factor of pδ, and the result follows.

Theorem 3.7. Let A be the adjacency matrix of G = srg(v, kλ, µ) and M =
A+ bI be nonsingular. If

pa∥s, p ̸ |r, pγ∥v (γ ≥ 1), p∥k (δ = 1),

then if all elementary divisors pi have i ≤ a, Sp(A) ∼= Z/pZ⊕ (Z/paZ)g.
Otherwise, there exists exactly one elementary divisor pb with b > a, and

Sp(A) ∼= (Z/paZ)g−1 ⊕ Z/pa+1Z.

Proof.

Theorem 3.8. Let A be the adjacency matrix of G = srg(v, kλ, µ) and M =
A+ bI be nonsingular. If

p ̸ |s, p ̸ |r, pδ∥k,

Then Sp(A) ∼= Z/pδZ.

Proof. This follows immediately from Theorem 3.6, with a = 0.

Theorem 3.9. Let A be the adjacency matrix of G = srg(v, kλ, µ) and M =
A+ bI be nonsingular. If

pa∥s, p ̸ |r, p ̸ |k,

Then Sp(A) ∼= (Z/paZ)g.

Proof. This follows from Theorem 3.6 with δ = 0
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Theorem 3.10. Let A be the adjacency matrix of G = srg(v, kλ, µ) and M =
A+ bI be nonsingular. If

p2∥s, p∥r, p ̸ |v, pδ∥k,

Then Sp(A) ∼= Z/pδZ⊕ (Z/pZ)f−
∼
e0 ⊕ (Z/p2Z)g−

∼
e0 ⊕ (Z/p3Z)

∼
e0 .

Proof. As before restrict the domain of M to Y . We know rs kills the group,
which means that p3 is our maximum elementary divisor. Therefore,

e0 + e1 + e2 + e3 = f + g + 1

e1 + 2e2 + 3e3 = f + 2g

We also know f ≤ e0+e1 and g ≤ e2+e3+1, which implies f+g ≤ f+g+1.
This gives us two cases f = e0 + e1 and g + 1 = e2 + e3 + 1 or f + 1 = e0 + e1
and g = e2 + e3 + 1.

However, ei for M |Y is has the same value as e3−i. This implies e3 =
∼
e0.

Knowing this determines the rest of the invariant factors. Combining this with
the invariant factor of pδ from the all ones vector and the result follows.

4 Existence of SRGs

A SRG with parameters v, k, λ, µ, where µ ̸= 0 has the following property:
(v-k-1)µ = (k-λ-1)k.

Suppose there exists a SRG Γ with parameters v, k, λ, µ. Fix a vertex x
then we define subconstituent Γ1(x) to be the vertices adjacent to x. Next, we
define subconstituent Γ2(x) to be the vertices remaining. We know there are k
vertices in Γ1(x) meaning there must be v-k-1 vertices in Γ2(x). By definition
any two nonadjacent vertices share µ neighbors. So we pick any one vertex in
Γ2(x) and know that there are µ edges from that vertex to a vertex in Γ1(x).
Therefore, there are µ(v-k-1) edges connecting Γ2(x) to Γ1(x).

Similarly, we can work from Γ1(x) towards Γ2(x). There are k vertices in Γ1(x).
Since every adjacent vertices has λ common neighbors, any given vertex in Γ1(x)
must connect to x and also must connect to λ vertices that are also connected
to x. The vertices that are connected to x are in Γ1(x). Therefore, a vertex
in Γ1(x) has k - λ - 1 edges going to Γ2(x). Thus we can say that there are
k(k-λ-1) edges connecting Γ1(x) to Γ2(x). The number of edges from Γ2(x) to
Γ1(x) and from Γ1(x) to Γ2(x) is the same therefore (v-k-1)µ = (k-λ-1)k.

There are additional methods to limit to number of possible parameter sets
including the Krein conditions and absolute bound.

From the paper ”Generalized Krein Parameters of a SRG” by Vieira and Mano,
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the Krein conditions are as follows. Suppose there exists a SRG Γ with param-
eters v, k, λ, µ, then the eigenvalues of Γ are k, θ, τ where:

θ = (λ− µ +
√
(λ− µ)2 + 4(k − µ))/2

τ = (λ− µ -
√

(λ− µ)2 + 4(k − µ))/2

Then the Krein conditions are:

(θ + 1)(k + θ + 2θτ) ≤ (k + θ)(τ + 1)2

(τ + 1)(k + τ + 2θτ) ≤ (k + τ)(θ + 1)2

From the paper ”Strongly Regular Graphs” by Brouwer and Maldeghem, the
absolute bound is as follows.

Suppose there exists a SRG Γ with parameters v, k, λ, µ, then the eigenvalues
of Γ are k, θ, τ . The multiplicities of the eigenvalues f and g are defined as:

f = 1/2(n− 1− (θ+τ)(v−1)+2k
θ−τ )

g = 1/2(n− 1 + (θ+τ)(v−1)+2k
θ−τ )

Then the absolute bounds are:

v ≤ 1/2f(f + 3)
v ≤ 1/2g(g + 3)

When the krein or absolute bound inequalities are not true, we know that the
parameter set is not possible.

Example:
A SRG Γ with parameters (64, 21, 0, 10) can be shown to not exist using ab-
solute bounds. The multiplicities f and g of the eigenvalue of Γ are f=56, g=7.
Then v ≤ 1/2f(f +3) is 64 ≤ 56

2 (56+3) or 64 ≤ 28(59). This inequality is true.
However the second absolute bound, v ≤ 1/2g(g + 3), becomes 64 ≤ 7

2 (7 + 3).
When this expression is evaluated we get 64 ≤ 35. This inequality is not true
therefore (64, 21, 0, 10) is not a possible parameter set for a strongly regular
graph.
A similar strategy using Krein conditions allows us to reach the same conclu-
sion. For the SRG(64, 21, 0, 10), θ = 1 and τ = −11. Then the second Krein
condition is (1 + 1)(21 + 11 + 2 ∗ 1 ∗ 11) ≤ (21 + 1)(11 + 1)2. This expression is
equivalent to 2(32+ 22) ≤ (22)(12)2 or 108 ≤ 22(144) thus this Krein condition
does not hold and once again we have shown that (64, 21, 0, 10) is not a possible
parameter set for a SRG.
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In addition to using bounds to restrict possible parameter sets, it is also possible
to use information on the groups of the SRG to find a contradiction. Again,
suppose there exist a SRG Γ with parameters (64, 21, 0, 10). Then the spectrum
of the adjacency matrix AΓ = 156,−117, 211. Using the quadratic equation from
section 1, A2 = kI + λA + µ(J − A − I) we get (A+11I)(A-I)=10J. That ex-
pression modulus 11 is Ā(Ā − I) = 10J . This expression tell us that A maps
the columns of A - I to 10J, and differences of columns of A − I are in the
kernal of A. From theorem 3.6, we have that the 11 part of smith group of A
is S(A) ∼= ( Z

11Z )
7 When we evaluate modulus 11, the 7 instances of 11 in the

Smith Normal Form all become 0. We know then that the dimension of the
kernel of the SNF for the 11 part is 7. Now suppose we choose two adjacent
vertices in this SRG Γ x and y. We define the set of all points connected to x
in this graph to be subconstituent X = Γ(x) and the set of all points connected
to y in this graph to be subconstituent Y = Γ(y). We also define Z to be the
set of vertices that are not x, y, in X, or in Y . From the parameter set we see
that the subgraph Z is composed of 11 unconnected copies of P2. We can then
arrange the columns of A− I such that x is next to y and adjacent vertices in
Z are next to each other.

A− I =



−1 1 0 0 0 0 ... 1 0

1 −1 0 0 0 0 ... 0 1

0 0 −1 1 0 0 ... ? ?
0 0 1 −1 0 0 ... ? ?
0 0 0 0 −1 1 ... ? ?
0 0 0 0 1 −1 ... ? ?
. . . . . . ... . .
. . . . . . ... . .
. . . . . . ... . .

120 020 ? ? ? ? ? ?

020 120 ? ? ? ? ? ?


If we take the difference of the first twelve pairs of columns we see that there

are 12 linearly independent vectors in the kernel of A. This is a contradiction
to the fact that the group implies a kernel of dimension 7. Therefore a strongly
regular graph with this parameter set does not exist.

5 Connection with Automorphisms

We say ϕ : V → V is a graph automorphism if for any vertices v, w ∈ V , if v
is adjacent to w, then ϕ(v) is adjacent to ϕ(w). Graph automorphisms can be
thought of as the subset of permutations of the vertices of a graph which preserve
adjacency. The set of automorphisms of a graph under the binary operation of

9



composition forms a group, Aut(G). For some graphs for which existence is
unknown, information about constraints on its automorphism group is known.
In this section we will discuss the connection between the critical group of a
graph and its automorphisms.

For any automorphism, P , of a graph. There is an induced automorphism
of the critical group of the graph. If our graph has an integer labeling, then
P permutes the order of entries in the labeling. taking one element of the
critical group and mapping it to another element. For some graphs there are
automorphisms that have the property that for any element, g, in the critical
group, Pg = g i.e. all elements of the critical group are mapped to themselves.
In this case we call the automorphism group preserving. If an automorphism
is not group preserving, then we call it group permuting.

For any graph the identity automorphism is group preserving. Also the com-
position of any two group preserving automorphisms is also group preserving.
As such we can see that the set of group preserving automorphisms,P0 is itself
a subgroup of Aut(G). In fact we know this must be a normal subgroup since
P0 = ker(ψ) where ψ : Aut(G) → Aut(K(G)) is the induced homomorphism
between the automorphism group of the graph and the automorphism group of
the graph’s critical group.

Example: For the 5-cycle, G = srg(5, 2, 0, 1), we know that Aut(G) ∼= D5

and K(G) ∼= Z/5Z. In this case the group preserving automorphisms are those
that correspond to rotations of the pentagon, so P0 = ker(ψ) ∼= Z/5Z, which
is in fact a normal subgroup of D5. Also by the first isomorphism theorem, we
know that Aut(G)/ker(ψ) ∼= Im(ψ) ∼= Z/2Z ⊂ Aut(K(G)).

In general, however, a graph having many group preserving automorphisms
seems to be rare. The next example will show how a similar analysis can also
give us information when there are very few group preserving automorphisms.

Example: For the Petersen Graph, G = srg(10, 3, 0, 1), we know thatAut(G) ∼=
S5 and K(G) ∼= Z/2Z ⊕ (Z/10Z)3. In this case the only group preserving
automorphism is the identity automorphism, so ker(ψ) is isomorphic to the
trivial group. By the first isomorphism theorem, this means that Aut(G) ∼=
Im(Aut(G)) ⊂ Aut(K(G)).

6 Missing More Graph

Moore Graph:
Let G be a regular graph with degree k and diameter d whose number of

vertices is bounded by

1 + d

−1∑
i=0

(d− 1)i

This bound can also be viewed in the form v ≤ 1 + k + k(k − 1) + ...k(k − 1)
When this relation is equivalent, the graph is referred to as a Moore Graph.
Their are four Moore graphs known to possibly exist but only three have been
discovered; the 5 Cycle, the Peterson graph, and the Hoffman-Singleton graph.
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Hoffman-Singleton Theorem:
Let G be a Moore graph with a girth of 5 and diameter 2,then it is a regular

graph with degree

k ∈ {2, 3, 7, 57}

The elements in this set in order correspond to degrees of the 5 cycle graph,
the Peterson graph, and the Hoffman Singleton graph. A Moore graph with
diameter 2 and degree 57 has yet to be discovered and is known as the missing
Moore graph.

Hoffman-Singleton Graph:
Let G be a 7-regular undirected graph with 50 vertices and 175 edges, this

graph contains 1,260 5 cycle graphs and is the unique srg(50, 7, 0, 1) that is the
highest-order Moore graph known to exist.

Suppose we have a projective geometry PG(3,2) which is the subspace of a
4 dimensional vector space over F2 = {0, 1} In this space there are 15 points
and 35 lines where each point is isomorphic to the Fano plane. For example

1
0
0
0

 =



0
0
0
0

 ,

1
0
0
0




With their being 3 subsets of the degree [7] = {1, 2, ...7} , their are
(
7
3

)
=

35 total lines. Discarding points that are adjacent such as (1, 2, 3) ∼ (7, 6, 5)
makes up a set of triplets

{(1, 2, 3), (1, 4, 5), (1, 6, 7), (2, 4, 6), (2, 5, 7), (3, 5, 6), (3, 4, 7)}

Where each element links down to 400 possible locations resulting in a col-
lection of 2,850 total lines. With each set of triplets being located in exactly
3 Fano planes, the incidence between the 35 triplets and 15 Fano planes cre-
ates the projective geometry PG(3,2) with a collection of 15 ”points” and 35
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”lines”. The Hoffman Singleton Graph is then constructed by placing a vertex
at the 15 Fano planes and 35 triplets and by connecting each Fano plane to its
corresponding 7 triplets.

7 n-Cube

We will now begin a discussion of the hypercube graph. First, a few prelimi-
naries.

Definition 7.1. Let G be a graph. We call G distance regular if the following
hold

• G is regular

• The number of vertices distance i from v ∈ v(G) and j from w ∈ V (G)
depends only on k = d(v, w).

If G is distance regular with diameter d, then the intersection array of G
is

{b0, b1, . . . , bd−1; c1, c2, . . . , cd},
where ∀ u, v ∈ V (G), bj is the number neighbors of u distance j + 1 from v,

and cj is the number of neighbors of u at distance j − 1 from v.

Fix d ≥ 1. Define

Qd := {(a1, a2, . . . , ad) | ai = 0 or 1}.

Say (a1, a2, d . . . , ad) ∼ (b1, b2, . . . , bd) if these vectors differ in exactly 1 position.
This is a distance regular graph called the d-cube graph.

The critical group of the hypercube is known for all p-parts except for p = 2.
This remains as an open problem.
Consider the case of Q3. The veritces of Q3 are elements of {0, 1}3. We will
consider a function ρ : Z[x1, x2, x3] → ZQ3 . This is a function that sends poly-
nomials to the vertices of our cube graph. We want to turn this into a monomial
basis, as since x = 0 or 1, x2 = x. To do this, condier S = (x2−x1,x2

2−x2,x2
3−x3)

and let
p̄ : Z[x1, x2, x3] → ZQ3 .

This gives us the monomial basis. Let XI =
∏

i∈I xi for I ⊂ {1, 2, , 3}. Let

α(XI) =
∑
i∈I

(XI\{i}−XI
) +

∑
i∈I

xi = (n− 2|I|)XI +
∑

J⊂I, |J|=|I|−1

XJ

Let wi,i+1 be the i, i+ 1 subset inclusion matrix. Then

W0,1 = [ 1 1 1 ]

W1,2 =

[
1 1 0
1 0 1
0 1 1

]
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W2,3 =

[
1
1
1

]
With respect to the standard basis, α gives us the adjacency matrix. With
respect to the monomial basis, α gives us the matrix

∼
A =



3 1 1 1 0 0 0 0

0 1 0 0 1 1 0 0
0 0 1 0 1 0 1 0
0 0 0 1 0 1 1 0

0 0 0 0 −1 0 0 1
0 0 0 0 0 −1 0 1
0 0 0 0 0 0 −1 1

0 1 0 0 1 1 0 0


Note that W0,1,W1,2, and W2,3 Appear as submatrices of this matrix.

8 Markov Decision Process

MDP:
AMarkov decision process or MDP is a framework for decision making under

uncertainty, it is a 5 tuple

MDP (S,A, {Psa}, γ, R)

S – States that represent the surrounding environment of an agent

A - Actions an agent can take in the various states.

{Psa} - State transition probabilities, the likelihood of taking a given action
given the current state

γ – Discount factor, a scalar that denotes how much the future is valued

R – Rewards, where the model is aiming to reach

The goal of a MDP is to fit data to a function. There is data and a func-
tion(model) is desired that will find parameters that the model can use to find
a policy that can be used to fit to new data.

π : a 7→ s

A policy π produces a path, when in a new state it tells the agent what
action should be performed. It is a mapping from states to actions with a goal
of maximizing total payoffs or rewards. This payoff is determined from the
amount of rewards gathered form an agent and the goal is to find an optimal
policy π∗ that maximizes the sum of current and futures rewards.
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For a policy π,

V π : s 7→ R

V π is a function mapping the states to rewards where V π(s) is the value
function for the policy π. It is the expected utility from an agent following a
policy from a state s. If various states are selected and a policy is run in those
states, there will be a collection of expected payoffs that will all differ, V π(s) is
the average of those payoffs.

V π(s) = R(s0) + γ
∑
s′
Psπ(s′)V

π(s′)

WhereR(s0) is the immediate rewards ,γ is the discount factor and Psπ(s)V
π(s′)

are the future rewards. Here s′ is drawn from Psπ(s) which implies future states
are drawn from the current states optimal policies. Because in a given state an
agent will take an action a = π(s), s′ will be drawn from Psa where s = π(s)
resulting in

V π(s) = R(s) + γ
∑
s′
Psπ(s)V

π(s′)

Which gives a linear system of equations with the number of states equations
and number of states unknowns that can be solved to obtain the value function
which can be used to find a policy π. Although a policy has been given from
the current state s, we seek to find the optimal policy. There are a a very large
amount of possible policies, potentially infinite, but we seek the best. The next
step is to find the optimal value function for a state, V ∗(s).

Optimal Value Function:

V ∗(s) = maxV π(s)

Equivalent to Bellman’s equation:

V ∗ = R(s) +maxa γ
∑
s′
Psa(s′)V ∗(s′)

Where R(s) is the immediate rewards .and Psa(s′)V ∗(s′) is if the agent takes
action a, what is the expected future reward.

These equation look at all possible policies and their value function returns
and picks the largest one. From this the optimal policy

π∗ = argmaxa
∑
s′
Psa(s′)V ∗(s′)

Tells the agent in the state s what is the best action, what is the action
that maximizes total payoff. This is the action taken from Bellman’s equation.
Gamma isn’t necessary for this equation as constants do not affect the value of
a argmax so it can be eliminated.
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Value Iteration:

This optimal action can be obtained by creating a vector that is the size
of the states, setting V (s) = 0 for all states s which is the estimated value of
every state, repeatedly update the expected value for every state using Bell-
man’s equation and then use synchronous gradient descent to update θ(vector
parameters) simultaneously. For this synchronous update the state transition
probabilities {Psa}(s′) are set to 0 for all states, the right hand side of Bellman’s
equations is then computed for all states, simultaneously overwrite all values,
while simultaneously updating all state values on the left hand side. If V ∗(s)
can be computed, which is not always known due to possibly infinite number of
states for a given MDP then V ∗ can then be used to find π∗ which gives a way
to decide for every state s the optimal action a which allows the computation
of the argmax which can then be used to compute the optimal action for every
state. Giving

V ∗(s) = V π∗(s) ≥ V π(s)

For every policy π and state s.
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