The Sandpile Group of Subset Intersection Graphs

Lauren Engelthaler, Jacob Gathje, Izzy Pfaff, Jenna Plute Josh Ducey, Brant Jones September 9, 2023

Introduction

APPLICATIONS: ABELIAN SANDPILE MODEL

- Cellular automaton (grid of cells, each of which has a state which changes with time)
- · Piles of sand that topple
- · Sandpile group can be derived from this model

Credit: Wikimedia Commons (https://commons.wikimedia.org/wiki/File: Sandpile_on_infinite_grid,_3e7_grains.png)

APPLICATIONS: *t*-DESIGNS

2-(7,3,1) design

- t (V, k, λ): Family of k-subsets, called blocks, of a V-set, so any t-subset of the V-set is contained in exactly λ blocks
- · Applications in design of experiments in statistics

Credit: Handbook of Combinatorial Designs

J. Ducey, L. Engelthaler, J. Gathje, B. Jones, I. Pfaff, J. Plute

APPLICATIONS: ERROR-CORRECTING CODES

- · Helps correct errors in data transmission
- Association schemes derived from graphs like ours help determine bounds of how efficiently data is corrected

Credit: NASA

(https://www.nasa.gov/mission_pages/juno/images/index.html)

Background

A graph Γ consists of a set of vertices \mathscr{V} and a set of edges \mathscr{E} . An edge $e = \{v_0, v_1\}$ is a pair of elements from the vertex set \mathscr{V} .

For an intersection graph $\Gamma(n, k, \ell)$:

- *V* is composed of size *k* subsets of an *n* element set
- & is determined by how much the subsets overlap (l is the size of the intersection between adjacent subsets)

Kneser Graphs: $\ell = 0$

J. Ducey, L. Engelthaler, J. Gathje, B. Jones, I. Pfaff, J. Plute

JOHNSON GRAPHS, $\ell = k - 1$

edges connect sets that have an intersection of size k-1

THE ADJACENCY MATRIX OF A GRAPH

- $n \times n$ matrix where *n* is the number of vertices
- A vertex *V* is **adjacent** to another vertex *W* when there is an edge between *V* and *W*
- A(i,j) = 1 if and only if *i* and *j* are adjacent, otherwise is 0

Adjacency matrix for J(4, 2)

THE DEGREE MATRIX OF A GRAPH

• The **degree** of a vertex V is the number of vertices adjacent to V.

•
$$D_{ij} = \begin{cases} \deg(i) & j = i \\ 0 & j \neq i \end{cases}$$

Degree matrix for J(4, 2)

 The Laplacian matrix *L* is defined as the difference between the degree and adjacency matrices: *L* = *D* − *A*

		$\{1, 2\}$	$\{1, 3\}$	$\{1, 4\}$	$\{2,3\}$	$\{2,4\}$	$\{3, 4\}$
	$\{1, 2\}$	/ 4	-1	-1	-1	-1	0)
	$\{1, 3\}$	-1	4	-1	-1	0	-1
L =	$\{1, 4\}$	-1	-1	4	0	-1	-1
	$\{2, 3\}$	-1	-1	0	4	-1	-1
	$\{2,4\}$	-1	0	-1	-1	4	-1
	$\{3, 4\}$	0	-1	-1	-1	-1	4 /

Laplacian matrix for J(4, 2)

Adjacency:

- For any graph $\Gamma(n,k,\ell)$, we can find its adjacency matrix A
- A has eigenvalues $\mu_0, \mu_1, \cdots, \mu_k$
- The multiplicity m_j of any eigenvalue μ_j is $m_j = \binom{n}{j} \binom{n}{j-1}$

Laplacian:

- For any graph $\Gamma(n,k,\ell)$, we can find its Laplacian matrix L
- *L* has eigenvalues $\lambda_0, \lambda_1, \cdots, \lambda_k$
 - Each vertex of $\Gamma(n,k,\ell)$ has degree d
 - $\lambda_j = d \mu_j$
- The multiplicity m_j of any eigenvalue λ_j is $m_j = \binom{n}{j} \binom{n}{j-1}$

Biggs showed that diagonalizing the Laplacian matrix returns the sandpile group of a graph.

The **sandpile group** of a graph is a finitely generated abelian group which corresponds with several things:

- Its order is the number of spanning trees in the graph.
- The equivalence classes of chip-firing configurations on a graph are the elements of its sandpile group.

Reducing a matrix M to its Smith Normal Form returns a diagonal matrix where each entry can be divided by the previous.

This is done by performing row and column operations on the original matrix.

$$\mathsf{SNF}(M) = R \begin{bmatrix} 2 & 4 & -8 & 0 \\ 1 & 0 & -2 & 2 \\ 12 & -4 & -2 & 4 \\ 10 & -4 & -2 & 0 \end{bmatrix} C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 48 \end{bmatrix}$$

However, finding the SNF of a large matrix using a computer either takes too long or runs out of memory before completion.

Set:

 $\{1,2,3,4,5,6,7,8,9\}$

Subset:

135

Standard Object:

 $\frac{\overline{z_1 \, z_2 \, \dots \, z_i \, \dots \, z_k}}{\overline{246}} \, \forall i \, z_i \ge 2 \cdot i$

Examples:

Standard Objects:

3, 259, 6789

NOT Standard Objects:

 $\overline{1}, \overline{23}, \overline{2458}$

Our Work

Diagonalize the Laplacian of subset intersection graphs to find the Sandpile group

BIER'S P MATRIX

n = 5k = 2

2-Subsets

Standard Objects

	Ø	$\overline{2}$	3	$\overline{4}$	$\overline{5}$	$\overline{24}$	25	34	35	$\overline{45}$
$\overline{12}$	(1)	1	0	0	0	0	0	0	0	0 \
13	1	0	1	0	0	0	0	0	0	0
$\overline{14}$	1	0	0	1	0	0	0	0	0	0
$\overline{15}$	1	0	0	0	1	0	0	0	0	0
23	1	1	1	0	0	0	0	0	0	0
$\overline{24}$	1	1	0	1	0	1	0	0	0	0
25	1	1	0	0	1	0	1	0	0	0
34	1	0	1	1	0	0	0	1	0	0
35	1	0	1	0	1	0	0	0	1	0
$\overline{45}$	1	0	0	1	1	0	0	0	0	1,

Recall: L = D - A

$$U_L = P^{-1}LP$$

= $P^{-1}(D - A)P$
= $P^{-1}DP - P^{-1}AP$
= $D - P^{-1}AP$
= $D - U_A$

$$m = 5$$

$$\overline{24} \quad \overline{25} \quad \overline{34} \quad \overline{35} \quad \overline{45}$$

$$\widetilde{W_{1,2}} = \frac{\overline{3}}{\overline{4}} \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Theorem:

$$U_{A} = \begin{pmatrix} f_{0,0I} & f_{0,1}\widetilde{W_{0,1}} & f_{0,2}\widetilde{W_{0,2}} & \cdots & f_{0,k}\widetilde{W_{0,k}} \\ \hline 0 & f_{1,1I} & f_{1,2}\widetilde{W_{1,2}} & \cdots & f_{1k}\widetilde{W_{1,k}} \\ \hline 0 & 0 & \ddots & \ddots & \vdots \\ \hline \hline 0 & 0 & 0 & \ddots & f_{k-1,k}\widetilde{W_{k-1,k}} \\ \hline 0 & 0 & 0 & 0 & f_{k,k}I \end{pmatrix}$$

$$f_{b,a} = c_{b,a} - \sum_{w=0}^{b-1} {\binom{b}{w}} f_{w,a},$$
$$c_{b,a} = {\binom{k-b}{\ell-b}} {\binom{n-a-k+b}{k-a-\ell+b}}.$$

GENERALIZING THE ENTRIES OF *U*_{*L*}

$$f_{b,a} = c_{b,a} - \sum_{w=0}^{b-1} {b \choose w} f_{w,a},$$
$$c_{b,a} = {k-b \choose \ell-b} {n-a-k+b \choose k-a-\ell+b}.$$

Example $KN(9,3) = \Gamma(9,3,0)$

L =

Example $KN(9,3) = \overline{\Gamma}(9,3,0)$

$P^{-1}LP =$

2 50053058050053058050051	2 4 4 4 4 4 4 4 4 4	 	
	* * * * * * * * *	 	
		* * * * * *	
		 . 18	
		 * * * * * 16	
		 	• • • = = • • • • • • • • • • • • • • •
		 	• • • • • • • • • • • • • • • • • • • •
		 	• • • • • • • • • • • • • • • • • • •
		 	1

Example $KN(9,3) = \Gamma(9,3,0)$

$$= \widetilde{E}_1 \widetilde{W}_{1,2} \widetilde{E}_2^{-1}$$

$$= \widetilde{E}_1 \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix} \widetilde{E}_2^{-1}$$

$$= \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

$$= \widetilde{D}_{1,2}$$

- $\widetilde{W}_{r,s}$ is a inclusion matrix
 - Rows indexed by standard objects of size r
 - Columns indexed by standard objects of size s
- \widetilde{E}_j is a unimodular inclusion matrix
 - Rows indexed by a selection of standard objects of size $\leq j$
 - Columns indexed by all standard objects of size j

•
$$\widetilde{D}_{r,s} = \operatorname{diag}(\binom{s-j}{r-j}^{\widetilde{e}_j}, j = 0, 1, \cdots r)$$

•
$$\widetilde{e}_j = \binom{n}{j} - \binom{n}{j-1} - \binom{n}{j-1} - \binom{n}{j-2}$$

Theorem: There exist \widetilde{E}_r and \widetilde{E}_s such that $\boxed{\widetilde{E}_r \widetilde{W}_{r,s} \widetilde{E}_s^{-1} = \widetilde{D}_{r,s}}$

$$\widetilde{E}_{r}\widetilde{W}_{r,s}\widetilde{E}_{s}^{-1} = \widetilde{D}_{r,s} = \begin{pmatrix} \underbrace{\binom{s-0}{r-0}}_{e_{0}} & & \\ & \underbrace{\binom{s-1}{r-1}}_{e_{1}} & \\ & & \ddots & \\ & & & \underbrace{\binom{s-r}{r-r}}_{e_{j}} \end{pmatrix}$$

PUTTING U_L INTO A NEW FORM...

$$\begin{split} EU_{L}E^{-1} &= \\ &= \left(\frac{\tilde{E}_{0} \mid 0 \mid \dots \mid 0}{0 \mid \tilde{E}_{1} \mid \dots \mid 0}\right) \left(\frac{\frac{\lambda_{0}I \mid f_{0,1}\tilde{W}_{0,1} \mid \dots \mid f_{0,k}\tilde{W}_{0,k}}{0 \mid \lambda_{1}I \mid \dots \mid f_{1,k}\tilde{W}_{1,k}}}{0 \mid 0 \mid \dots \mid \lambda_{k}I}\right) \left(\frac{\frac{\tilde{E}_{0}^{-1} \mid 0 \mid \dots \mid 0}{0 \mid \tilde{E}_{1}^{-1} \mid \dots \mid 0}}{0 \mid 0 \mid \dots \mid \tilde{E}_{k}^{-1}}\right) \\ &= \left(\frac{\frac{\lambda_{0}\tilde{E}_{0} \mid f_{0,1}\tilde{E}_{0}\tilde{W}_{0,1} \mid \dots \mid f_{0,k}\tilde{E}_{0}\tilde{W}_{0,k}}{0 \mid \lambda_{1}\tilde{E}_{1}I \mid \dots \mid f_{1,k}\tilde{E}_{1}\tilde{W}_{1,k}}}{0 \mid 0 \mid \dots \mid \lambda_{k}\tilde{E}_{k}I}\right) \left(\frac{\tilde{E}_{0}^{-1} \mid 0 \mid \dots \mid 0}{0 \mid \tilde{E}_{1}^{-1} \mid \dots \mid 0}}{0 \mid 0 \mid \dots \mid \tilde{E}_{k}^{-1}}\right) \\ &= \left(\frac{\frac{\lambda_{0}I \mid f_{0,1}\tilde{D}_{0,1} \mid \dots \mid f_{0,k}\tilde{D}_{0,k}}{0 \mid \lambda_{1}I \mid \dots \mid f_{1,k}\tilde{D}_{1,k}}}}{0 \mid \lambda_{1}I \mid \dots \mid f_{1,k}\tilde{D}_{1,k}}\right) \\ &= \left(\frac{\frac{\lambda_{0}I \mid f_{0,1}\tilde{D}_{0,1} \mid \dots \mid f_{0,k}\tilde{D}_{0,k}}{0 \mid \lambda_{1}I \mid \dots \mid f_{1,k}\tilde{D}_{1,k}}}\right)$$

....

0

l

0

 $\lambda_k I$

Example $KN(9,3) = \Gamma(9,3,0)$, Before Using E

Example $KN(9,3) = \Gamma(9,3,0)$, After Using E

 $EU_{L}E^{-1} =$

Γο	-10	0		0	-4	0					0	-1	0								0
0	30	0		0	8	0					0	3	0								0
:	0	÷.,		÷	0	4	0				0	0	1	0							0
1 :	1 :		÷.,	0	1 :		÷.,				÷	:		٠.,							:
0	0		0	30	0		0	4	0		0	0		0	1	0					0
0	0			0	16	0					0	-3	0								0
:	:			÷	0	γ_{ij}					÷	0	-2	0							:
1 :	:			÷	1		÷.,				÷	:		۰.							÷
:	:			÷	:			÷.,			÷	0		0	-2	0					0
1 :	:			÷	1				÷.,		÷	0			0	$^{-1}$	0				0
1 :	1			÷	1					÷.,	0	1					÷.,				÷
0	0			0	0					0	16	0					0	-1	0		0
	- V			~						0	10						0	1	0		0
0	0			0	0						0	21	0								0
0	0			0	0						0	21 0	0 ·								0
0	0			0	0						0	21 0 :	0 •	••.							0
0 : : :	0			0	0						0	21 0 :	0	···· ··.	••.						0
0 : : : : :	0			0	0						0	21 0 : :	0	···	•••	•••				•••	0
0				0	0				•••		0	21 0 : :	0	···· ··.	•••	···	·				0 :: ::
				0	0						0	21 0 : : :	0	···· ··.	·	····	·	·			0 :: :: ::
				0							0	21 0 : : : :	0	····	····	····	·	·	·		
				0								21 0 : : : :	0	···	••.	···	·	·	·	···.	0 :: : : : : 0

J. Ducey, L. Engelthaler, J. Gathje, B. Jones, I. Pfaff, J. Plute

Final Diagonalization Steps

k = 2

 U_L

	λ_0	$-f_{0,1}$	0		0	$-f_{0,2}$	0					0
	0	λ_1	0		0	$-2f_{1,2}$	0		•••			0
	÷	0	·		÷	0	$-f_{1,2}$	0				0
	÷	÷		·	0	÷		·				÷
	0	0		0	λ_1	0	•••	0	$-f_{1,2}$	0	• • •	0
	0	0			0	λ_2	0	• • •	•••		• • •	0
\sim	÷	÷			÷	0	·					÷
	÷	÷			÷	÷		·				÷
	÷	÷			÷	÷			·			÷
	÷	÷			÷	÷				·		÷
	÷	:			÷	:					·	0
	0	0			0	0					0	λ_2
$$\begin{bmatrix} \lambda_0 & -f_{0,1} & -f_{0,2} \\ 0 & \lambda_1 & -2f_{1,2} \\ 0 & 0 & \lambda_2 \end{bmatrix} \sim \begin{bmatrix} y_1 & 0 & 0 \\ 0 & y_2 & 0 \\ 0 & 0 & y_3 \end{bmatrix}$$

	y_1	0			0	0						0]
	0	y ₂	0	•••	0	0	•••		•••	• • •	• • •	0
	÷	0	λ_1		÷	0	$-f_{1,2}$	0				0
	÷	÷		·	0	÷		·				÷
	0	0		0	λ_1	0		0	$-f_{1,2}$	0		0
	0	0			0	y 3	0		•••			0
$U_L \sim$	÷	÷			÷	0	λ_2					÷
	÷	:			÷	÷		·				÷
	:	÷			÷	÷			·			÷
	÷	÷			÷	÷				·		÷
	÷	÷			÷	÷					·	0
	0	0			0	0					0	λ_2

	<i>y</i> ₁	0			0	0						0
	0	<i>y</i> ₂	0		0	0	•••	• • •	•••	• • •	• • •	0
	÷	0	λ_1		÷	0	$-f_{1,2}$	0				0
	÷	÷		(γ_{ij})	0	÷		γ_{i_1}				÷
	0	0		0	λ_1	0		0	$-f_{1,2}$	0		0
	0	0	• • •	•••	0	<i>y</i> 3	0	• • •	•••	•••	• • •	0
~	÷	÷			÷	0	λ_2					:
	÷	÷			÷	÷		γ_{i_1}				÷
	÷	÷			÷	÷			λ_2			÷
	÷	÷			÷	÷				·		÷
	÷	÷			÷	÷					·	0
	0	0			0	0					0	λ_2

	<i>y</i> ₁	0			0	0						0
	0	<i>y</i> ₂	0		0	0	•••	• • •	•••	•••	• • •	0
	÷	0	λ_1		÷	0	$-f_{1,2}$	0				0
	÷	÷		(γ_{ij})	0	÷		γ_{i_1}				÷
	0	0		0	λ_1	0		0	$-f_{1,2}$	0		0
	0	0	• • •	•••	0	<i>y</i> 3	0	• • •	•••	•••	• • •	0
~	÷	÷			÷	0	λ_2					:
	÷	÷			÷	÷		γ_{i_1}				÷
	÷	÷			÷	÷			λ_2			÷
	÷	÷			÷	÷				·		÷
	÷	÷			÷	÷					·	0
	0	0			0	0					0	λ_2

$$\begin{bmatrix} \lambda_1 & -f_{1,2} \\ 0 & \lambda_2 \end{bmatrix} \sim \begin{bmatrix} y_4 & 0 \\ 0 & y_5 \end{bmatrix}$$

	<i>y</i> ₁	0			0	0						0
	0	<i>y</i> ₂	0		0	0	• • •					0
	÷	0	y_4		÷	÷						:
	÷	÷		$\gamma_{i,j}$	0	÷						:
	0	0		0	y_4	0					• • •	0
	0	0			0	<i>y</i> 3	0				• • •	0
$U_L \sim$:	÷			÷	0	y_5					÷
	÷	÷			÷	÷		${}^{(n)}$:
	÷	÷			÷	÷			y_5			:
	÷	÷			÷	÷				λ_2		÷
	÷	:			÷	:					۰.	0
	0	0			0	0					0	λ_2

J. Ducey, L. Engelthaler, J. Gathje, B. Jones, I. Pfaff, J. Plute

	<i>y</i> ₁	0			0	0						0
	0	<i>y</i> ₂	0		0	0						0
	÷	0	y_4		÷	÷						:
	÷	÷		·	0	÷						:
	0	0		0	y_4	0						0
	0	0			0	<i>y</i> 3	0					0
$U_L \sim$	÷	÷			÷	0	y_5					÷
	÷	÷			÷	÷		·				:
	÷	÷			÷	÷			y_5			:
	÷	÷			÷	÷				λ_2		÷
	÷	:			÷	:					·	0
	0	0			0	0					0	λ_2

J. Ducey, L. Engelthaler, J. Gathje, B. Jones, I. Pfaff, J. Plute

Theorem:

Now that we have the matrix in diagonal form, we can see that the sandpile group of any intersection graph $\Gamma(n, 2, \ell)$ is

$$K(\Gamma) = \mathbb{Z}_{y_1} \oplus \mathbb{Z}_{y_2} \oplus \mathbb{Z}_{y_3} \oplus \mathbb{Z}_{y_4}^{m_1-1} \oplus \mathbb{Z}_{y_5}^{m_1-1} \oplus \mathbb{Z}_{\lambda_2}^{m_2-m_1}$$

	Γ.	6.	0		0	6.	0					0	6.	0								0
	- 10	-70,1	0		0	-70,2	0					0	-70,3	0								0
		A1	0		0	-4J1,2	0					0	-5/1,3	0								0
	1 :	0	÷.,		-	0	$-f_{1,2}$	0				0	0	$-f_{1,3}$	0						• • •	0
	1 :	:		÷.,	0	1		÷.,				÷	1		÷.,							÷
	0	0		0	λ_1	0		0	$-f_{1,2}$	0		0	0		0	$-f_{1,3}$	0					0
	0	0			0	λ_2	0					0	$-3f_{2,3}$	0								0
	1	:			÷	0	÷.,					÷	0	$-2f_{2,3}$	0							÷
	:	:			÷	:		÷.,				÷	:		÷.,							÷
	:	:			÷	:			÷.,			÷	0		0	$-2f_{2,3}$	0					0
	:	:			÷	:				۰.,		÷	0			0	$-f_{2,3}$	0				0
	:	:			÷	:					÷.,	0	:					·.,				÷
$_{\rm c} \sim$	0	0			0	0					0	λ_2	0					0	$-f_{2,3}$	0		0
	0	0			0	0						0	λ_3	0								0
	:	:			÷	:						÷	0	÷.,								÷
	1 :	:			÷	:						÷	:		÷.,							÷
	:	:			÷	:						÷	:			·						÷
		:			:												÷.,					÷
		•																				
	:	:			:							-						·				1
		:			:													·	·			:
												:						·	·	·		:
																		÷.	·	·	·	: : 0

$$\begin{bmatrix} \lambda_0 & -f_{0,1} & -f_{0,2} & -f_{0,3} \\ 0 & \lambda_1 & -2f_{1,2} & -3f_{1,3} \\ 0 & 0 & \lambda_2 & -3f_{2,3} \\ 0 & 0 & 0 & \lambda_3 \end{bmatrix} \sim \begin{bmatrix} y_1 & 0 & 0 & 0 \\ 0 & y_2 & 0 & 0 \\ 0 & 0 & y_3 & 0 \\ 0 & 0 & 0 & y_4 \end{bmatrix}$$

	y1	0			0	0						0	0									0
	0	y_2	0		0	0						0	0									0
	1 :	0	λ_1		÷	0	-f _{1,2}	0				0	0	-f _{1,3}	0							0
	1 :	1		(2π)	0	:		(2π)				÷	:		142							-
	0	0		0	λ_1	0		0	$-f_{1,2}$	0		0	0		0	$-f_{1,3}$	0					0
	0	0			0	y_3	0					0	0									0
	1 :	:			÷	0	λ_2					÷	:	$-2f_{2,3}$	0							
	:	:			÷	:		γ_{i_1}				÷	:		γ_{i_1}							-
	:	:			÷	:			λ_2			÷	0		0	$-2f_{2,3}$	0					0
	1	:			÷	:				÷.,		÷	0			0	$-f_{2,3}$	0				0
	1 :	1			÷	:					۰.	0	:					÷.,				
\sim	0	0			0	0					0	λ_2	0					0	$-f_{2,3}$	0		0
	0	0			0	0						0	y_4	0								0
	1	1			÷	1						÷	0	λ_3								
	1 :	1			÷	:						÷	÷		γ_{i_1}							
	:	:			÷	:						÷	:			λ_3						-
	1	:			÷	:						÷	:				÷.,					-
	1 :	:			÷	1						÷	Ξ					÷.,				-
	1	÷			÷	÷						÷	÷						·			-
	1	÷			÷	:						÷	÷							÷.,		-
	1	÷			÷	:						÷	÷								÷.,	0
	0	0			0	0						0	0								0	A3

	_																					_
	y_1	0			0	0						0	0									0
	0	<i>y</i> ₂	0		0	0						0	0									0
	:	0	1/=		:	:						:	:									:
		l.	95																			
	:	:		•.	0	:						:	:									:
	0	0		0	<i>y</i> ₅	0																0
	0	0			0	y_3	0					0	0									0
	1	1:			÷	0	y_6					÷	:									-
	1 :	1:			÷	Ξ		÷.,				÷	÷									1
					÷	:			¥6			÷	:									:
	l :	:			:	:			50			:	:									:
		1			:	1				y_8		•	:									
,		11			÷	÷					÷.,	0	1									-
		0			0	0					0	y_8	0									0
	0	0			0	0		• • • •				0	y_4	0								0
	1	1:			÷	÷						÷	0	y_7								1
	1	1:			÷	Ξ						÷	:		÷.,							÷
	:	:			:	:						:	:			1/7						:
																97						
	1 :	:			:	:						:	:				<u>y</u> 8					:
	1 :	11			÷	1						÷	1					÷.,				÷
	1	1			÷	:						÷	:						$\frac{\lambda_2 \lambda_3}{1/8}$			÷
	:	:			÷	:						÷	:							λ_3		:
	:	:			:	:						:	:								÷.,	0
	Lò	0			0	0						0	0								0	λ2 -

Theorem:

Now that all entries are on the diagonal, we see that the general form for the sandpile group of k = 3 intersection graphs $\Gamma(n, 3, \ell)$ is

$$K(\Gamma) = \mathbb{Z}_{y_1} \oplus \mathbb{Z}_{y_2} \oplus \mathbb{Z}_{y_3} \oplus \mathbb{Z}_{y_4} \oplus \mathbb{Z}_{y_5}^{m_1 - 1} \oplus \mathbb{Z}_{y_6}^{m_1 - 1} \oplus \mathbb{Z}_{y_7}^{m_1 - 1} \oplus \mathbb{Z}_{y_8}^{m_2 - m_1} \oplus \mathbb{Z}_{\lambda_3}^{m_2 - m_1} \oplus \mathbb{Z}_{\lambda_3}^{m_3 - m_2}$$

The problem for general *k* is then reduced to finding the Smith group of a series of k + 1 - j by k + 1 - j matrices for $0 \le j \le k$:

$$N_{j} = \begin{bmatrix} \lambda_{j} & -\binom{1}{0}f_{j,j+1} & \cdots & -\binom{k-j}{0}f_{jk} \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \lambda_{k-1} & -\binom{k-j}{k-1-j}f_{k-1,k} \\ 0 & \cdots & 0 & \lambda_{k} \end{bmatrix}$$

Theorem:

For each j, we reduce N_j exactly $m_{k-j+1} - m_{k-j}$ times to Smith form. Then

$$K(\Gamma(n,k,\ell)) = \bigoplus_{j=0}^{k} S(N_j)^{m_j - m_{j-1}}.$$

where S(N) denotes the **Smith group** of a matrix N.

Γ1	0			0	0						0	0									0
0	2	0		0	0						0	0									0
	0	20		:	0	4	0				0		1	0							0
	1.	30				*							1								
	1		1	:	1		1				-	÷		1							÷
0	0		0	30	0		0	4	0		0	0		0	1	0					0
0	0			0	60	0					0	0									0
1 :	11			1	0	16					÷	÷	-2	0							:
1 :	1:			÷	1		γ_{i_1}				÷	÷		$\mathcal{D}_{\mathcal{A}}$							÷
1 :	1:			÷	1			16			÷	0		0	-2	0					0
:	:			÷	:				÷.,		÷	0			0	-1	0				0
:	:			:	:					۰.,	0	:					÷.,				:
0	0			0	0					0	16	0					0	-1	0		0
0	0			0	0						0	0	0								0
				:	:						:	0	21								:
												:		1.							
	1:				1						:	÷									
	11			÷							÷	÷			21						:
1 :	11			÷	1						÷	÷				÷.,					÷
:	:			÷	:						÷	:					÷.,				:
:	:			-	:						:	:						٠.,			:
:				:	:						:	:							÷.,		;
	1:																				
					÷							:								۰.	0

	[1	0			0	0						0	0									0
	0	2	0		0	0						0	0									0
	1	0	1		÷	0	0	0				0	0	0	0							0
	:	:		$\sim 10^{-1}$:	:		14				:	:		1.							:
	0	0		0	1	0		0	0	0		0	0		0	0	0					0
	0	0			0	60	0					0	0									0
	:	:			:	0	6					:	:	0	0							:
					÷	:	Ŭ	÷.,				÷		Ŭ								
		:			÷	:						÷	:		1.							:
		1:			÷	:			6			÷	0		0	0	0					0
	1	1			÷	÷				16		÷	0			0	$^{-1}$	0				0
		:			÷	÷					÷.,	0	1					٠.,				:
0	0	0			0	0					0	16	0					0	$^{-1}$	0		0
	0	0	• • •		0	0						0	0	0								0
		:			÷	÷						÷	0	1680								:
	:	:			:	:						:	:		14							:
		:				:							1			4.000						:
					-	:						-				1680						
	:	:			:	:						:	:				21					:
	1	1			÷	÷						÷	1					÷.,				-
	:	:			÷	:						÷	:						٠.,			:
	:	:			:	:						:	:							۰.,		:
					÷																	
	:	:			:	:						:	:								·.	21
						/							/								/	- C - 1

Example $KN(9,3) = \Gamma(9,3,0)$

	1	0			0	0						0	0									0
	0	2	0		0	0						0	0									0
	1 :	0	1		÷	÷						÷	:									:
	:	:		÷.,	÷	:						÷	:									
	0	0		0	1	0																0
	0	0			0	60	0					0	0									0
	1 :	1			÷	0	6					÷	:									
	1:	:			÷	÷		÷.,				÷	:									:
	:	:			÷	:			6			÷	:									:
	:	:			÷	÷				1		÷	:									:
11 .	:	:			÷	:					·.,	0	:									:
u_L , \circ	0	0			0	0					0	1	0									0
u _L , s	$\frac{0}{0}$	0			0	0					0	1 0	0									0
u_L , \circ	$\begin{bmatrix} 0\\ 0\\ \vdots \end{bmatrix}$	0 0 :		••••	0	0					0	1 0 :	0									0
u _L + •	0 0 : :	0 0 : :			0 0 : :	0 0 : :					0	1 0 : :	0	1680	•••							0
a _L + •	0 0 : : :	0 : : :			0	0					0	1 0 : :	0 0 : : :		•••							0
a _L , o		0 0 :: ::			0	0	••••				0	1 0 : : :	0	 1680	•••							0 : : :
α _L το		0			0	0					0	1 0 : : :	0	 1680	•••	 1680		•••				0
u _L is		0			0	0					0		0 : : : :	 1680	····	 1680	336	····				
u _L is		0									0		0	 1680	····		336	••••	336	21		
u _L is											0			1680	····		336	•••	336		····	0

From this diagonal form, the sandpile group of KN(9,3) is

 $\textit{K}(\textit{KN}(9,3)) = \mathbb{Z}_2 \oplus \mathbb{Z}_{60} \oplus (\mathbb{Z}_6)^7 \oplus (\mathbb{Z}_{1680})^7 \oplus (\mathbb{Z}_{336})^{19} \oplus (\mathbb{Z}_{21})^{21}$

Conclusion

Our results find sandpile group much faster than the computer. Take $\Gamma(n, 3, 0)$, for example:

n	Us	Computer	n	Us	Computer
7	0.031	0.022	14	2.645	1:17.579
8	0.063	0.088	15	4.783	2:35.555
9	0.127	0.333	16	6.819	5:17.419
10	0.279	1.005	17	11.122	10:58.193
11	0.467	2.896	18	16.485	21:46.368
12	0.870	9.301	19	23.841	ERROR
13	1.563	26.505	20	34.001	ERROR

Even without a computer, our work shows that the sandpile group can be found for any subset intersection graph.

REFERENCES I

- [1] Thomas Bier, *Remarks on recent formulas of Wilson and Frankl*, European J. Combin. **14** (1993), no. 1, 1–8. MR 1197469
- [2] Ezra Brown, *Many more names of (7, 3, 1)*, Mathematics Magazine 88 (2015), no. 2, 103–120.
- [3] Joshua E Ducey, Ian Hill, and Peter Sin, *The critical group of the kneser graph on 2-subsets of an n-element set*, Linear Algebra and its Applications 546 (2018), 154–168.
- [4] Jordan Ellenberg, The math of the amazing sandpile.
- [5] Ian Jorquera, An introduction to error-correcting codes part 1, May 2020.
- [6] Neil James Alexander Sloane, An introduction to association schemes and coding theory, Theory and application of special functions, Elsevier, 1975, pp. 225–260.

- [7] Henry J. Stephen Smith, On systems of linear indeterminate equations and congruences, Philosophical Transactions of the Royal Society of London 151 (1861), 293–326.
- [8] Richard M. Wilson, A diagonal form for the incidence matrices of t-subsets vs. k-subsets, European J. Combin. 11 (1990), no. 6, 609–615. MR 1078717

- Josh Ducey and Brant Jones, our mentors
- · Hala Nelson, for organizing this experience
- National Science Foundation, for supporting our research
- James Madison University, for providing an incredible environment to do our work
- Holly Bill, Elke Doby, Jacob Steger, and Daniel Trudell, for keeping things fun when math got hard
- JMU Department of Mathematics and Statistics

Questions

- An (n, M, d) error-correcting code is a set of M vectors
 u = u₁ ··· u_n of 0s and 1s of length n (codewords) such that any two distinct codewords differ in at least d places. n is the length of the code, M is the size, and d is the minimum distance.
- A (5, 2, 5) code: {00000, 11111}.
- A (3, 4, 2) code: $\{000, 011, 101, 110\}$
- We want to find a bound of how large *M* can be for given values of *n* (small) and *d* (large)
- This bound describes efficiency of code performing linear optimization

- An **association scheme** with *n* classes consists of a finite set *X* of *v* points, together with *n* + 1 symmetric relations *R*₀, *R*₁, · · · , *R*_n defined on *X* which satisfy
 - For every $x, y \in X$, $(x, y) \in R_i$ for exactly one *i*.
 - $R_0 = \{(x, x) : x \in X\}$ is the identity relation
 - If (x, y) ∈ R_k, the number of z ∈ X such that (x, z) ∈ R_i and (y, z) ∈ R_j is a constant p_{i,j,k} depending on i, j, k but not on the particular choice of x and y
- Two points *x* and *y* are *i*th associates if $(x, y) \in R_i$.
- Can be described by a complete graph (every pair of vertices is connected by a unique edge) with *v* vertices that correspond to elements of *X* with edges between vertices *x* and *y* labeled *i* if *x* and *y* are *i*th associates.

- Hamming Distance: The number of places where two vectors differ
- X is the set of binary vectors of length *n*. Two vectors are adjacent if they are Hamming distance *i* apart

- *X* is all $\binom{V}{n}$ binary vectors of length *V* and weight *n* where *V*, *n* are fixed integers with $0 \le n \le V/2$. Two vectors *u*, *v* are *i*th associates if dist(u, v) = 2i for i = [n]
- · Johnson graph: distance-1 relation in the Johnson scheme
- Kneser graph: graph that describes being at the maximum distance in the Johnson scheme
- Applications to t-designs

 A t - (V, k, λ) design is a family of k-subsets (blocks) of a V-set such that any t-subset of the V-set is contained in exactly λ blocks. The *i*th entry of a matrix in Smith Normal Form is equal to the greatest common divisor of the *ixi* minors (η_i) of the original matrix divided by the gcd of the (i - 1)x(i - 1) minors (η_{i-1}).

Take our matrix M from earlier:

$$\begin{bmatrix} 2 & 4 & -8 & 0 \\ 1 & 0 & -2 & 2 \\ 12 & -4 & -2 & 4 \\ 10 & -4 & -2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 48 \end{bmatrix}$$

$$\begin{split} \eta_1 &= \gcd(1,2,4,8,10,12) = 1 \\ \eta_2 &= \gcd(4,8,16,56,92,40,32,48,76,22,20,18) = 2 \\ \eta_3 &= \gcd(72,96,168,48,56,152,80,192,304,160,16,32) = 8 \\ \eta_4 &= \gcd(384) = 384 \end{split}$$